1 引 言
金属氧化物气体传感器的选择性通常较差,具体来说,基于SnO2的CO传感器对H2,CH4等多种还原性或易燃性气体的交叉响应非常明显。针对这个问题,目前常用的方法是对传感器进行温度调制。在这种工作方式下,传感器对不同的气体呈现不同的响应特性,利用模式识别技术对响应信号进行处理就有可能对被测气体的类别和浓度给出判定。Haifeng Ge等人对单个气体传感器进行温度调制,利用支持向量机算法实现了对H2,CO及其混合气体的定性识别,但是没有给出定量分析的结果;太惠玲等人利用4个SnO2气体传感器构成的阵列实现了对CO和H2混合气体的定量分析。
支持向量机是近年来模式识别领域新的研究热点,它解决了在人工神经网络方法中无法避免的局部极值问题,具有很好的泛化能力,此外,它在学习速度方面的性能也优于神经网络。
2 实 验
传感器型号为MQ307A,其敏感部分是一个微型小球,内嵌加热丝和金属电极。传感器的输出信号经数据采集卡采样后,发送到计算机(PC)进行处理。由于气体传感器的性能易受环境温、湿度的影响,整个测试过程在温度为25℃、相对湿度为30%的环境中完成。
3 结果与讨论
3.1 加热电压波形对传感器响应的影响
3.2 加热电压周期对传感器响应的影响
3.3 CO/H2混合气体定量分析
训练过程如下:
对于被测气体为CO/H2混合气体的情况。首先,将混合气体中H2的实际浓度作为期望值,将传感器在tf时刻的响应值作为一维输入向量,训练模型SVM1,利用SVM1估计混合气体中H2的浓度CH2。其次,将混合气体中CO的实际浓度作为期望值,将SVM1估计的H2浓度CH2传感器灵敏度S组成二维输入向量[CH2S],训练模型SVM2,利用SVM2估计CO/H2混合气体中CO的浓度。
对于被测气体为单一CO的情况,将CO的实际浓度作为期望值,传感器灵敏度作为一维输入向量,训练模型SVM3,利用SVM3估计空气中CO的浓度。
4 结 论
对单个SnO2传感器进行温度调制,考察加热电压对传感器性能的影响。在正弦电压调制下,传感器对CO和Hz的响应曲线易于区分,且正弦电压有利于对CO作定量分析。获取传感器在不同浓度的CO/H2混合气体中的动态响应,利用SVM算法估计混合气体中CO的浓度,平均估计误差为10.45%。本文提出的方法能够有效地提高CO传感器抗H2干扰的能力。