网站首页
IC库存
IC展台
电子资讯
技术资料
PDF文档
我的博客
IC72论坛
ic72 logo
资料首页最新产品 技术参数 电路图 设计应用 解决方案 代理商查询 IC替换 IC厂商 电子辞典
关键字: 技术文章 PDF资料 IC价格 电路图 代理商查询 IC替换 IC厂商 电子辞典

低成本、高精度的电池测试设备数字控制方案

1   低成本

采用TI的C2000数字控制方案的典型结构如图 1所示:电流/电压放大器对电池充放电的电流/电压进行采样,通过模数转换器ADC将模拟信号转化为数字信号并送入C2000?中,C2000根据恒流或恒压指令与采样信号进行环路计算,输出一定占空比的PWM从而调节MOSFET的开关,最终使得buck/boost变换器按照指令通过恒流或恒压的方式对锂电池进行充放电。

image.png

图1

相比于模拟方案,由于电压、电流指令和环路控制都在C2000中产生和完成,省去了高分辨率的数模转换器DAC和误差放大器,有效地降低了系统成本。

TMS320F280049是具有100MHz主频、256KB 闪存的 C2000? 32 位 MCU,通过高分辨率的16bit PWM,最多可以控制8个独立通道的同步buck/boost变换器。采用TMS320F280049的数字控制方案,比传统的模拟控制方案可以节省30%以上的BOM成本。

此外,由于锂离子电池在3C产品、电动汽车、储能等诸多领域都有广泛应用,各类锂离子电池的电流往往差别很大。这导致了电池测试设备若采用模拟控制,往往需要根据电流大小选取不同的硬件方案,增加了研发周期与设备成本。如果采用C2000的数字控制方案,则可以在不改变硬件的前提下,在小电流或大电流模式间自由切换:在小电流时,8各通道可以分别独立运行;在大电流时,则将多个通道并联运行,以输出更大的电流。

image.png

图2

如图2所示,在多通道并联运行时,每个通道都将采用同一个恒压环路,恒流环路则各自独立,只需将输出并联后就可以实现更大的输出电流范围。因此,相比于模拟控制,采用C2000的数字控制方案,可以在不改变硬件的条件下适应更广泛的测试场景,大大减少了设备成本。

2   高精度

通过校准,电池测试设备往往可以除去大部分初始系统误差。剩余难以被校准的误差来源主要包括:电流检测电阻的温漂,电流、电压检测放大器的失调与增益温漂、输入共模电压变化带来的失调,ADC的非线性度,基准电压源的温漂。在本文中,按照±5°C的温度变化范围计算误差值。

电流检测电阻:

电流检测电阻的温漂是总系统误差的重要来源,对于CC控制,需要一个几毫欧并且低温度系数的高精度电流检测电阻。本文采用高精密、电流感应金属条 SMD 功率电阻器,检测电阻的阻值为5m?,温漂值为10 ppm。那么,由于电流检测电阻的温漂造成的误差为50ppm。

电流检测放大器:

为了减小大电流造成的温升和功率损耗,电流检测电阻的阻值一般较小,因此电流检测放大器的输入差分信号一般不超过几十毫伏,往往选择仪表放大器进行信号调理。仪表放大器的误差主要来源于以下两个方面:环境温度改变时,失调电压和增益的漂移;电池电压改变时,由于输入共模电压变化造成的失调电压。因此,在选择仪表放大器时,应该主要关注失调电压漂移、增益漂移、CMRR等参数。表1为TI主推的几款应用于电池测试设备的仪表放大器的关键参数:

表1

Specifications

INA821

INA828

INA819

INA188

Vos max (μV)

35

50

35

55

Drift (Max) (μV/C)

0.4

0.5

0.4

0.2

Gain Error (% Max)

0.15

0.15

0.15

0.5

Gain drift (ppm/°C) (G=1)

5

5

5

5

CMRR (Max Gain) (Min) (dB)

140

140

140

118

GBW (MHz) (G=1)

4.7

2

2

0.6

INA821作为一款高精密、低漂移的仪表放大器,失调电压漂移最大值为0.4 μV/°C,那么±5°C温度偏移将会产生2 μV失调电压,即40ppm满量程误差;增益漂移为5 ppm/°C,那么±5°C温度偏移会产生25ppm误差;共模电压抑制比为140dB,那么输入共模电压范围在0~5V变化时,将产生0.5μV失调电压。在10A充电电流下,满量程采样电阻的电压信号为50mV,即输入共模电压变化带来10ppm满量程误差。

电压检测放大器:

电压检测放大器的误差来源同样主要来源于失调电压和增益的漂移,以及输入共模电压变化造成的失调电压。因此,在选择仪表放大器时,同样应该主要关注失调电压漂移、增益漂移、CMRR等参数。

TLV07是一款成本敏感型、低噪声、轨到轨输出、精密运算放大器,失调电压漂移的典型值为0.9 μV/°C,那么±5°C温度偏移将会产生4.5μV失调电压,即1ppm满量程误差;增益漂移主要受输入电阻与反馈电阻的漂移误差的影响,在这里取5 ppm/°C,那么±5°C温度偏移会产生25ppm误差。共模电压抑制比最小值为104dB,那么输入共模电压范围在0~5V变化时,将产生31.5μV失调电压,即6ppm满量程误差。

模数转换器及基准电压源:

模数转换器ADC的误差主要是由于非线性度和基准电压源的漂移造成的。ADS131M08是24位、32kSPS 、8通道同步采样的Δ-Σ高精度ADC,由于ADS131M08是差分输入,可以有效减小由于各通道间串扰引起的误差。从数据表中可以查到,ADS131M08的非线性度INL仅为7.5ppm满量程误差。如果采用内部基准电压源,温漂最大值为20 ppm/°C,那么±5°C温度偏移会产生100ppm误差。如果采用外部基准电压源REF2025,温漂最大值仅为8 ppm/°C,那么±5°C温度偏移误差将会降至40ppm。

误差汇总:

根据以上分析,将各误差来源造成的误差值汇总,即可计算得到在恒流、恒压控制时,电池测试设备的系统总误差如表2所示。可以看到,采用C2000的数字控制方案,电流和电压误差范围都在万二以内,达到了极高的控制精度。

表2

电流误差

电压误差

误差来源

满量程误差

误差来源

满量程误差

分流电阻温漂

50   ppm

分流电阻温漂

50   ppm

INA821失调温漂

40   ppm

TLV07失调温漂

1   ppm

INA821增益温漂

25   ppm

TLV07增益温漂

25   ppm

INA821   CMRR

10   ppm

TLV07   CMRR

6   ppm

ADS131M08非线性度

7.5   ppm

ADS131M08非线性度

7.5   ppm

REF2025   电压温漂

40   ppm

REF2025   电压温漂

40   ppm

总误差

0.017%

总误差

0.013%

综上所述,在电池测试设备中采用TI的C2000数字控制方案,在降低系统成本的同时,可以保证极高的电流、电压控制精度,非常适合在各类电池测试方案中的应用。

热门搜索:8300SB1 2838228 SBB400 PS2408RA ADS1013IDGSR BT137S-500E 6SPDX-15 SBB1005-1 2858043 2866569 B20-8000-PCB 01C1001JF CC2544RHBR 2920078 2762265 2838322 TLP808TEL UL24RA-15 PS361220 SS7619-15 SBB2805-1 PDU12IEC TLP808TELTAA 2838319 TLP1210SATG
COPYRIGHT:(1998-2010) IC72 达普IC芯片交易网
客户服务:service@IC72.com 库存上载:IC72@IC72.com
(北京)联系方式: 在线QQ咨询:点击这里给我发消息 联系电话:010-82614113 传真:010-82614123
京ICP备06008810号-21 京公网安备 11010802032910 号 企业资质