**ZRT062** 

**ISSUE 1 - OCTOBER 1995** 

### **DEVICE DESCRIPTION**

The ZRT062 is a monolithic integrated circuit providing a precise stable reference voltage of 6.17V at 500µA.

The circuit features a knee current of 150µA and operation over a wide range of temperatures and currents.

The ZRT062 is available in a 3-pin metal can package for through hole applications as well as SOT223 and SO8 packages for surface mount applications. Each package option offers a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, the pin should be left open circuit.

#### **FEATURES**

- Trimmable output
- Excellent temperature stability
- · Low output noise figure
- Available in two temperature ranges
- 1 and 2% initial voltage tolerance versions available
- No external stabilising capacitor required in most cases
- Low slope resistance
- TO18 package
- SOT223 and SO8 small outline packages

### SCHEMATIC DIAGRAM

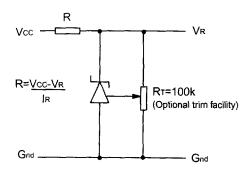



Figure 1: This circuit will allow the reference to be trimmed over a wide range. The device is specified over a  $\pm 5\%$  trim range.

|      | CONNECTION TABLE        |        |                |  |  |  |  |  |
|------|-------------------------|--------|----------------|--|--|--|--|--|
| Pin  | SO8                     | SOT223 | TO18           |  |  |  |  |  |
| 1    | Trim                    | Trim   | V <sub>R</sub> |  |  |  |  |  |
| 2    | N/C                     | Gnd    | Trim           |  |  |  |  |  |
| 3    | N/C                     | VR     | Gnd            |  |  |  |  |  |
| 4    | Gnd                     | -      | _              |  |  |  |  |  |
| 5    | N/C                     | _      | -              |  |  |  |  |  |
| 6    | N/C                     | _      | _              |  |  |  |  |  |
| 7    | N/C                     | -      | _              |  |  |  |  |  |
| 8    | VR                      | -      |                |  |  |  |  |  |
| Pack | N8                      | G      | -              |  |  |  |  |  |
|      | see Diagrams Page 1 - 8 |        |                |  |  |  |  |  |

# **ZRT062**

**ABSOLUTE MAXIMUM RATING** 

**Reverse Current** 

50mA ø

Operating Temperature

-55°C to 125°C 0°C to 70°C

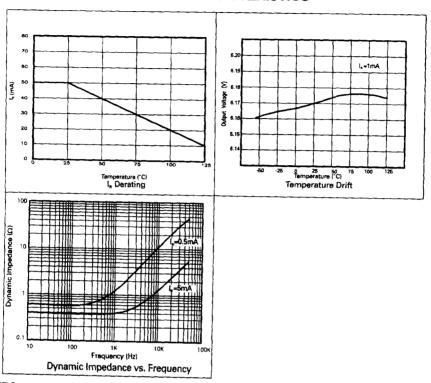
A grade C grade Storage Temperature

TO18 -55 °C to 175 °C SO8, SOT223 -55 °C to 125 °C Power Dissipation (Tamb=25°C)

TO18 300mW **SO8** 625mW **SOT223** 2W

ø Above 25°C this figure should be linearly derated to 10mA at 125°C

#### TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS


| SYMBOL                        | PARAMETER                                                                     | INITIAL<br>VOLTAGE<br>TOLERANCE<br>% | GRADE A<br>-55°C TO 125°C |      | GRADE C<br>0°C TO 70°C |      | UNITS  |
|-------------------------------|-------------------------------------------------------------------------------|--------------------------------------|---------------------------|------|------------------------|------|--------|
|                               |                                                                               |                                      | TYP                       | MAX  | TYP                    | MAX  |        |
| ΔV <sub>B</sub>               | Output voltage<br>change over relevant<br>temperature range<br>(See note (a)) | 1 & 2                                | 15.0                      | 40.0 | 6.5                    | 22.0 | mV     |
| T <sub>C</sub> V <sub>R</sub> | Output voltage<br>temperature<br>coefficient (See note<br>(b))                | 1 & 2                                | 15.0                      | 40.0 | 15.0                   | 50.0 | ppm/°C |

### **ELECTRICAL CHARACTERISTICS** ( at Tamb=25°C and Pin 2 o/c unless otherwise stated)

| SYMBOL                              | PARAMETER                                                      | MIN.         | TYP.         | MAX.         | UNITS    | COMMENTS                                    |
|-------------------------------------|----------------------------------------------------------------|--------------|--------------|--------------|----------|---------------------------------------------|
| V <sub>R</sub>                      | Output voltage<br>1% tolerance (A1,C1)<br>2% tolerance (C2)    | 6.11<br>6.05 | 6.17<br>6.17 | 6.23<br>6.29 | v        | I <sub>R</sub> =500µА                       |
| $\Delta V_{TRIM}$                   | Output voltage adjustment range                                |              | ±5           |              | %        | R <sub>T</sub> =100kΩ                       |
| T <sub>C</sub> ∆V <sub>TRIM</sub>   | Change in T <sub>C</sub> V <sub>R</sub> with output adjustment |              | 5.0          |              | ppm/°C/% |                                             |
| I <sub>R</sub>                      | Operating current range                                        | 0.15         |              | 50           | mA       | See note (c)                                |
| t <sub>on</sub><br>t <sub>off</sub> | Turn-on time<br>Turn-off time                                  |              | 250<br>0.3   |              | μѕ       | R <sub>L</sub> =1kΩ                         |
| e <sub>np-p</sub>                   | Output voltage noise (over the range 0.1 to 10Hz)              |              | 50           |              | μV       | Peak to peak measurement                    |
| R <sub>S</sub>                      | Slope resistance                                               |              | 1.4          | 3.0          | Ω        | I <sub>R</sub> 0.5mA to 5mA<br>See note (d) |

# **ZRT062**

## TYPICAL CHARACTERISTICS



### NOTES

## (a) Output change with temperature (V<sub>R</sub>)

The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range

$$\Delta V_R = V_{max} - V_{min}$$

## (b) Output temperature coefficient (TcV<sub>R</sub>)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C

$$T_c V_R = \frac{\Delta V_R \times 10^6}{V_R \times \Delta T} ppm/°C$$

ΔT= Full temperature range

### (c) Operating current (IR)

Maximum operating current must be derated as indicated in maximum ratings.

### (d) Slope resistance (R<sub>S</sub>)

The slope resistance is defined as:

$$R_S = \frac{\text{change in } V_R}{\text{specified current range}}$$

$$\Delta I = 5 - 0.5 = 4.5 \text{mA (typically)}$$

#### (e) Line regulation

The ratio of change in output voltage to the change in input voltage producing it.