5.0V LOW POWER PRECISION REFERENCE SOURCE

ZRT050

ISSUE 1 - OCTOBER 1995

DEVICE DESCRIPTION

The ZRT050 is a monolithic integrated circuit providing a precise stable reference voltage of 4.9V at 500µA.

The circuit features a knee current of 150µA and operation over a wide range of temperatures and currents.

The ZRT050 is available in a 3-pin metal can package for through hole applications as well as SOT223 and SO8 packages for surface mount applications. Each package option offers a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, the pin should be left open circuit.

FFATURES

- Trimmable output
- Excellent temperature stability
- Low output noise figure
- Available in two temperature ranges
- 1 and 2% initial voltage tolerance versions available
- No external stabilising capacitor required in most cases
- Low slope resistance
- TO18 package
- SOT223 and SO8 small outline packages

SCHEMATIC DIAGRAM

Figure 1: This circuit will allow the reference to be trimmed over a wide range. The device is specified over a $\pm 5\%$ trim range.

0	CONNECTION TABLE						
Pin	SO8	SOT223	TO18				
1	Trim	Trim	V _R				
2	N/C	Gnd	Trim				
3	N/C	VR	G _{nd}				
4	G _{nd}	-	_				
5	N/C	_	-				
6	N/C	-	_				
7	N/C	-	-				
8	V_{R}	_	-				
Pack	N8	G	<u>-</u>				
	see Diagrams Page 1 - 8						

ZRT050

ABSOLUTE MAXIMUM RATING

Reverse Current 60mA ø

Operating Temperature

A grade C grade -55°C to 125°C

0°C to 70°C

Storage Temperature TO18 -55 °C to 175 °C

SO8, SOT223 -55 °C to 125 °C

Power Dissipation (Tamb=25°C)

TO18 300mW SO8

625mW **SOT223** 2W

ø Above 25°C this figure should be linearly derated to 12mA at 125°C

TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	INITIAL VOLTAGE TOLERANCE %	GRADE A -55°C TO 125°C		GRADE C 0°C TO 70°C		UNITS
			TYP	MAX	TYP	MAX	
ΔV _R	Output voltage change over relevant temperature range (See note (a))	1 & 2	13.5	45.0	5.4	17.2	mV
T _C V _R	Output voltage temperature coefficient (See note (b))	1 & 2	15.0	50.0	15.0	50.0	ppm/°C

ELECTRICAL CHARACTERISTICS

(at Tamb=25°C and Pin 2 o/c unless otherwise stated)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	COMMENTS
V _R	Output voltage 1% tolerance (A1,C1) 2% tolerance (C2)	4.85 4.80	4.90 4.90	4.95 5.00	V	I _R =500μA
ΔV_{TRIM}	Output voltage adjustment range		±5		%	R _T =100kΩ
T _C ∆V _{TRIM}	Change in TCV _R with output adjustment		2.5		ppm/°C/%	
R	Operating current range	0.15		60	mA	See note (c)
t _{on}	Turn-on time Turn-off time		100 0.3		μs	R _L =1kΩ
ө _{пр-р}	Output voltage noise (over the range 0.1 to 10Hz)		50		μV	Peak to peak measurement
R _s	Slope resistance		1.25	2.0	Ω	I _R 0.5mA to 5mA See note (d)

TYPICAL CHARACTERISTICS

NOTES

(a) Output change with temperature (V_R)

The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range

$$\Delta V_R = V_{max} - V_{min}$$

(b) Output temperature coefficient (T_CV_R)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C

$$T_c V_R = \frac{\Delta V_R \times 10^6}{V_R \times \Delta T} ppm/^{\circ}C$$

ΔT= Full temperature range

(c) Operating current (I_R)

Maximum operating current must be derated as indicated in maximum ratings.

(d) Slope resistance (R_S)

The slope resistance is defined as:

$$R_S = \frac{\text{change in } V_R}{\text{specified current range}}$$

$$\Delta I = 5 - 0.5 = 4.5 \text{mA} \text{ (typically)}$$

(e) Line regulation

The ratio of change in output voltage to the change in input voltage producing it.

$$\frac{R_S \times 100}{V_R \times R_{source}} \%/V$$