

NDIR TYPE INFRARED GAS ANALYZER

DATA SHEET ZRG

This NDIR gas analyzer features high accuracy, multiple functions and easy operation through use of a microprocessor. It also utilizes a mass flow detector noted for its high sensitivity and reliability.

This analyzer is used not only for measuring environmental pollution but is also used for various processes and/or experiments.

This product, combined with sampling system (ZSP), has passed the type-approval test based on Weight and Measure Act.

FEATURES

- (1) Use of a microprocessor provides high accuracy, multiple functions and easy operation.
 - A maximum of 3 gas components can be calibrated with the built-in automatic calibrator (option).
 - Using a signal from a zirconiz O₂ sensor (ZFK3) or from any other O₂ sensor, the gas analyzer is able to output a value converted into O₂ (option).
 - Alarm function to emit high/low limit contact output is also available (option).
 - Measuring range can be selected by using external single (option).
 - Zero and span can be calibrated with high accuracy, simply by pressing calibration keys.
 - A self-diagnosis function is included.
- (2) This analyzer utilizes mass flow detector featuring high sensitivity and reliability. It has 2 standard measuring ranges with a range ratio of up to 1:20.
- (3) Three different gas components can be measured simultaneously by connecting a zirconia O₂ sensor (ZFK3), in addition to one-and two-component type sensors.
- (4) Besides the standard measurement type, a sample switching type and a differential flow type are also available.

SPECIFICATIONS

General items

Power supply: $100V \pm 10\%$ AC, 50/60Hz

115, 220V AC also available on request

Note: Refer to "Code symbols"

Power consumption:

125VA max.

Ambient temperature:

-5 to +45°C

Ambient humidity:

90% RH or less

Enclosure: Steel casing, indoor-use

Dimensions (H x W x D):

835 x 220 x 232 mm

Mass{weight}: Approx. 24kg

Finish color: Munsell 2.5Y 8.4/1.2
Indication: 4-digit LED for concentration

4-digit LED for sub-indication

Output hold: Output hold prior to manual/auto calibra-

tion is possible. Hold ON/OFF is select-

able.

Standard requirements for sample gas:

Temperature 0 to 50°C

(dehumidification 2°C satu-

ration or less)

Dust $0.3\mu m$ or less

Pressure 9.8kPa{0.1kgf/cm²} or less

(flow rate 0.5 ℓ /min)

Standard control for sample gas:

Calibration gas Dry gas

Interfere control gas 2°C saturation

Warm-up time: About 8 hours (after power ON)

About 4 hours for sample switching type

Material of gas-contacting parts:

Sample cell; 304 stainless steel, neoprene

rubber

Infrared-ray transmitting window; ${\sf CaF}_{\scriptscriptstyle 2}$ or

sapphire

Internal tubing; Teflon tube, silicone tube,

toaron tube

Gas inlet/outlet, purge gas inlet size:

Rc 1/4 (PT 1/4 internal thread) or NPT1/4

internal thread

EDS3-110c

Date | Feb. 15, 2001

Purge gas flow rate:

1 ±0.5 ℓ /min

Purging is required when measuring gas is contained in the atmosphere or the range of CO₂ is 0 to less than 50ppm. In other cases, purging should be made as necessary.

Scope of delivery: Analyzer, test report, power fuse, cloth for cleaning infrared-ray transmitting window

Mounting method:

Flush mounting (vertical mounting)

Installation condition:

Install the analyzer at a place not exposed to direct sunlight or the radiation from a high temperature object. Avoid vibration, and select a clean place free from corrosive and/or combustible gases. If installing outdoors, provide a suitable casing or cover to protect the analyzer from wind, rain, etc.

Standard type

Measuring system:

Non-dispersion infrared-ray absorption method, single light source, double beam

Measurable components and measuring range:

Standard single-component analyzer

Measu	urable component	Min. measuring range [ppm]	Measuring range
CO	Carbon monoxide	0 to 50	See Page 12
CO ₂	Carbon dioxide	0 to 5	
NO	Nitrogen monoxide	0 to 50	
SO ₂	Sulfur dioxide	0 to 50	
CH ₄	Methane	0 to 200	

Standard two-component analyzer

	e component d component	Min. measuring range [ppm]	Measuring range
$NO + SO_2$ $CO + CO_2$ $NO + CO$	Nitrogen monoxide + sulfur dioxide Carbon monoxide + carbon dioxide Nitrogen monoxide + carbon monoxide	0 to 100/0 to 100 0 to 100/0 to 100 0 to 250/0 to 250	Refer to "Code symbols"

Measuring range:Refer to table.

0 to 1V DC or 4 to 20mA DC (allowable Output signal:

load resistance, 550Ω or less), linear

Repeatability: within ±0.5% of full scale

(*1) (within ±1% of full scale)

Linearity: Within ±2% of full scale

Zero drift: Within ±2% of full scale/week

(*1) (within ±2% of full scale/day) (*2) (within ±3% of full scale/week)

Within ±2% of full scale/week Span drift: (*1) (within ±2% of full scale/day)

(*2) (within ±3% of full scale/week)

Response time: Max. 50 seconds (for 90% response) in-

cluding gas substitution time; time differs

with the length of sample cell.

Measured gas flow rate:

0.5 ± 0.25 \(\ell \) /min

Note: *(1) (): For the range less than 50ppm

*(2) (): For 50ppm range

Sample switching type

(Sample switching type gas analyzer suited for measurement of low concentrations or for eliminating the effects of interfering components.)

Measuring system:

Non-dispersion infrared-ray absorption method, single light source, double beam, sample switching system

Measurable component:

CO (carbon monoxide)

Measuring range:

1st range [ppm]	2nd range, 3rd range, 4th range (*4) [ppm]
0 to 2 0 to 5 0 to 10 0 to 25 0 to 50 0 to 100	Select from 5, 10, 20, 25, 50, 100 Max. range rate within 1:10 1st range<2nd range<3rd range<4th range

0 to 1V DC or 4 to 20mA DC, linear, step Output signal:

output which changes every 50 seconds

Within ± 1% of full scale Repeatability:

(*3) (within \pm 2% of full scale)

Linearity: Within ± 2% of full scale

Zero drift: Within ± 0.5% of full scale/week

(*3) (within ± 1% of full scale/week)

Span drift: Within ± 1.5% of full scale/week

(*3) (within \pm 2.5% of full scale/week)

Response time: Within 120 seconds (for 90% response)

(*3) (within 150 seconds)

Measured gas flow rate:

 $1 \pm 0.1 \ell$ /min (reference gas) 1 \pm 0.1 ℓ /min (sample gas)

Sample switching relay drive output:

3V DC, ON/OFF signal at 50 second interval (for solid state relay drive)

Note: *(3) (): For 0 to 2ppm range

*(4) (): Sample switching type with 4-ranges is available (Max. range ratio within 1:10). In 4-range analyzer, optional functions of remote range, range identification, alarm and external hold are not available.

Differential flow type

(Gas analyzer suited for measurement in two modes, absolute concentration and concentration difference)

Measuring system:

Non-dispersion infrared-ray absorption method, single light source, double beam, differential flow system

Measurable components and measuring range:

		1st range [ppm]	2nd range [ppm]
CO ₂	Carbon dioxide	- 50 to +50 -100 to +100	0 to 500 0 to 1000
СО	Carbon mon- oxide	0 to 50 0 to 100 0 to 200 0 to 250	None, 0 to 100, 0 to 200, 0 to 250, 0 to 500 None, 0 to 200, 0 to 250, 0 to 500 None, 0 to 500 None, 0 to 500

Note: There are restrictions on the reference gas conditions.

Output signal:

	1st range	2nd range
CO ₂	- 1 to +1V DC	0 to 1V DC
СО	0 to 1V or 4 to 20mA DC	0 to 1V or 4 to 20mA DC

Note: Linear output

Repeatability: Within ± 0.5% of full scale within ± 2% of full scale Linearity: Zero drift: Within ± 2% of full scale/week Span drift: Within ± 2% of full scale/week

Response time: Max. 50 seconds (for 90% response) in-

cluding gas substitution time

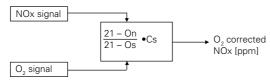
Measured gas flow rate:

 $0.5 \pm 0.25 \ell$ /min (reference gas) $0.5 \pm 0.25 \ell$ /min (sample gas)

Optional specifications

(There are added on request. Refer to the "Code symbols".) O_2 correction output:

An private $\rm O_2$ sensor is used for correcting the measured gas concentration into the value at standard $\rm O_2$ concentration. For obtaining the NOx exhaust standard value, NOx concentration and residual oxygen concentration in exhaust gas are measured simultaneously, then it is corrected according to the following equation. (Application of this equation is mandatory for the NOx exhaust standard.)


$$C = \frac{21 - On}{21 - Os} \bullet Cs$$

where C: Concentration after O₂ correction

Cs: NOx measured concentration Os: O₂ measured concentration

On: O₂ standard concentration

Block diagram (Example of NOx measurement)

The $\rm O_2$ measured signal is according to the private $\rm O_2$ sensor (ZFK) or external $\rm O_2$ meter (0 to 1V DC/0 to 25% $\rm O_2$).

O₂ output signal: 0 to 1V or 4 to 20mA DC, linear

O correction output signal:

0 to 1V or 4 to 20mA DC, linear

Output can be provided for each of 1st

and 2nd components

Alarm output: Upper limit alarm

Contact output, SPDT (1c) contact Contact capacity, 250V AC, 2A

intact capacity, 250V AC, 2A

(resistive load)

Lower limit alarm

Contact output, SPDT (1c) contact Contact capacity, 250V AC, 2A

(resistive load)

Remote range changeover:

Range is changeable via external signal. Range changeover input signal: 5V DC (minimum range selection at 5V input)

Range identification signal output:

Contact output, SPST (1a) contact Contact capacity, 250V AC, 2A

(resistive load)

External hold: Output hold

Output hold is possible with external in-

put signal.

External hold signal input: 5V DC (hold at 5V input)

Average value output:

Moving average value or average value is outputted at intervals of 1-hour or 4-hour (only the 1-output type for 4-hour average value is available).

Output signal: 0 to 1V or 4 to 20mA DC, linear.

Automatic calibration:

Zero and span are automatically calibrated at the present cycle.

Calibrating gas is supplied by operating the external electromagnetic valve.

Calibration channels:

Up to 3 components can be calibrated simultaneously.

Zero calibration point:

Fixed at 0% (air point and span point can be set by zirconia O₂ meter)

Span calibration point:

0 to 100% of full scale

Calibration start:

Built-in timer or remote start signal

Output hold during calibration:

Possible

Calibration gas flow mode:

(1) Zero gas

(2) Zero gas – span gas 1

(3) Zero gas - span gas 1 - span gas 2

(4) Zero gas - span gas 1 - span gas 3 (O₂)

(5) Zero gas – span gas 1 – span gas 2 – span gas 3 (O_2)

Calibration gas flow time:

Settable from 100 to 599 seconds

Calibration cycle:

1 to 99 hours (1-hour units) or 1 to 7 days (1-day units)

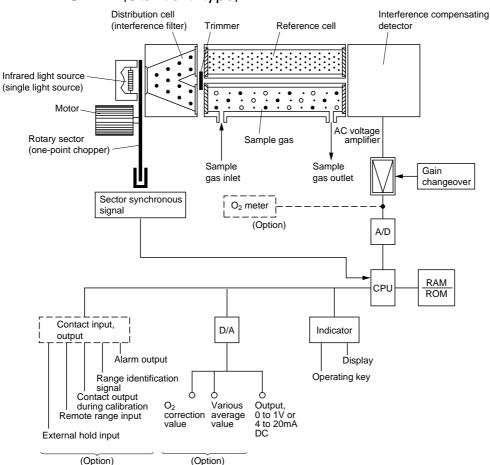
Calibration failure alarm:

Provided when fault occurs during auto calibration.

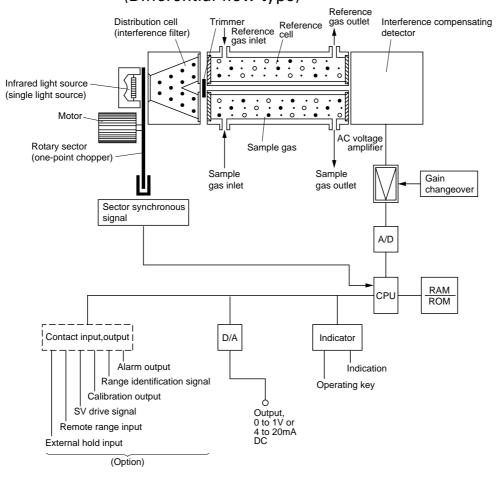
Contact output:

Under calibration; SPST (1a) contact, contact capacity 250V AC, 2A (resistive load)

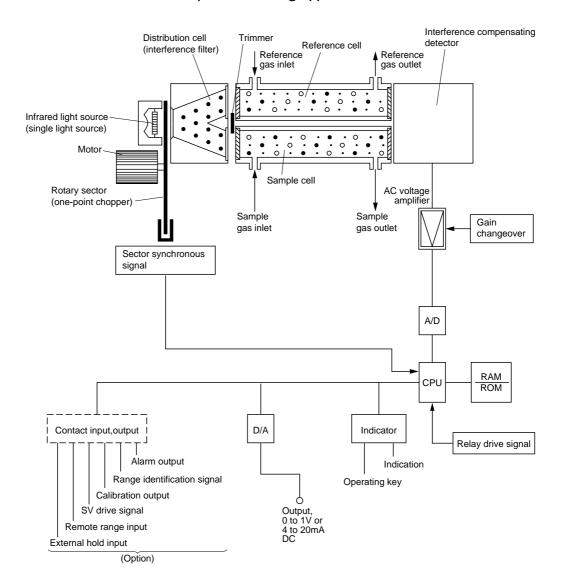
Calibration failure; SPST (1a) contact, contact capacity 250V AC, 2A (resistive load)


Electromagnetic valve drive; SPST (1a) contact, contact capacity 250V AC, 2A (resistive load)

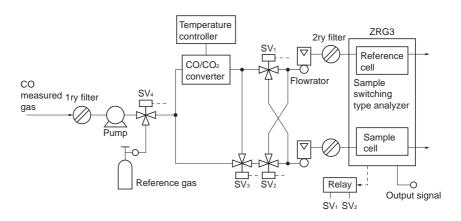
Remote start: Remote start signal


Voltage input 5V DC

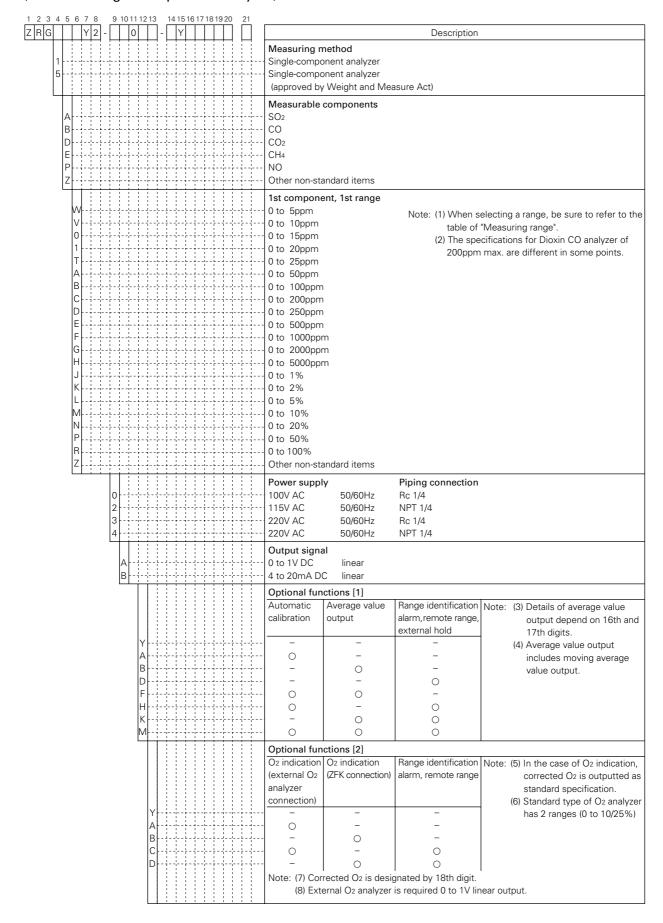
(start at 100msec pulse input)


FUNDAMENTAL DIAGRAM (Standard type)

(Differential flow type)

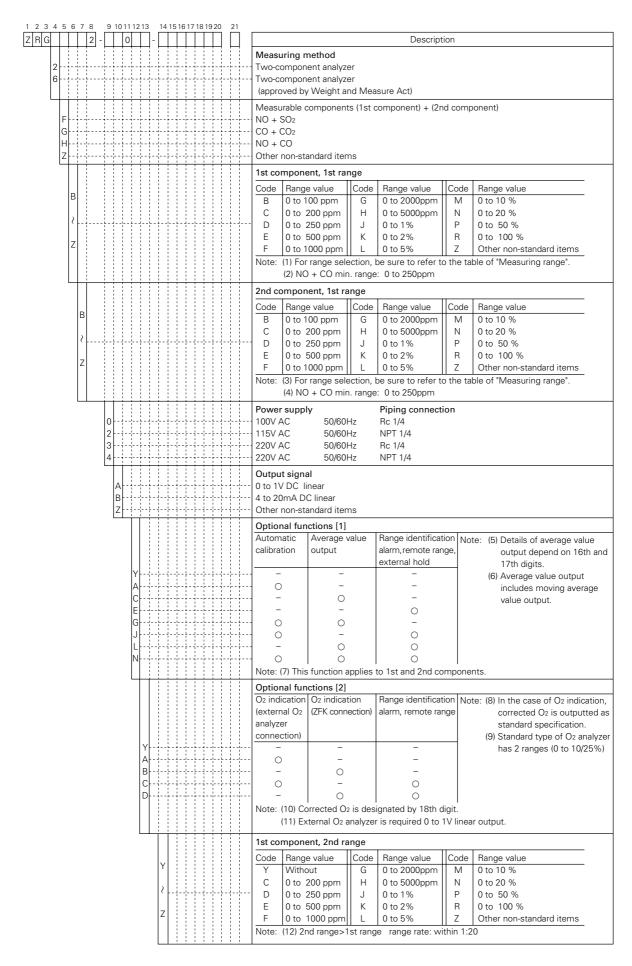

FUNDAMENTAL DIAGRAM (Sample switching type)

Description of sample switching system


The measured gas is divided into two, and in one of the flow paths, a high performance converter is provided to convert carbon monoxide into carbonic acid gas. Here, the carbon monoxide in the measured gas is eliminated and the gas is led into one cell of the high-sensitivity infrared analyzer. In the other flow path, the gas is led directly into the other cell of the analyzer.

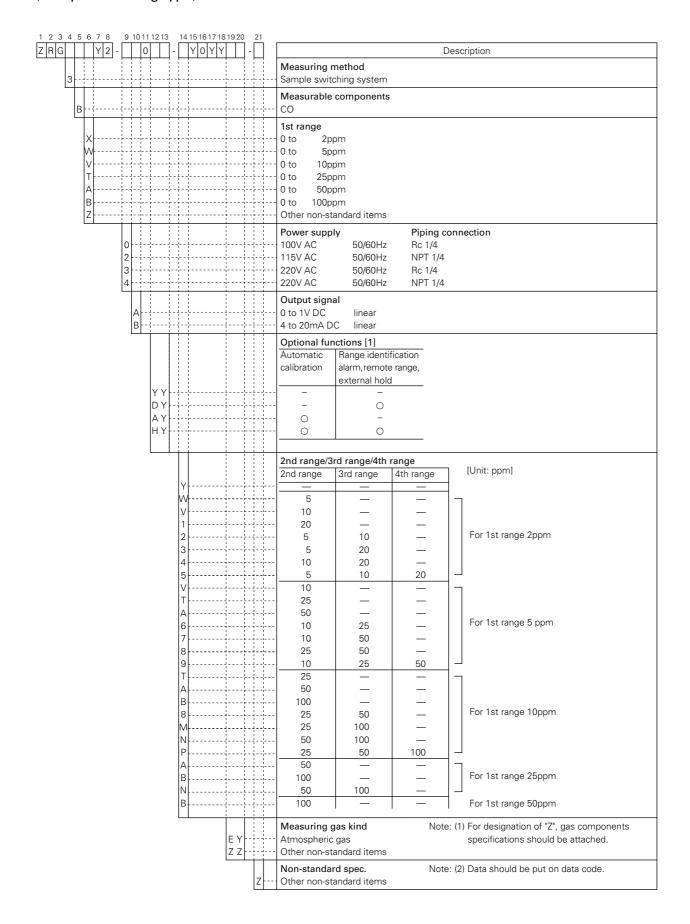
These flow paths are changed over via changeover valves SV_1 and SV_2 every 50 seconds by means of the changeover valve drive signal transmitted from the analyzer. By carrying out this changeover cyclically, the output of the analyzer varies with the concentration of the carbon monoxide in the measured gas. Use of the obtained variation width as a measured value enables improving the S/N ratio and eliminating the effect of interfering components plus zero drift.

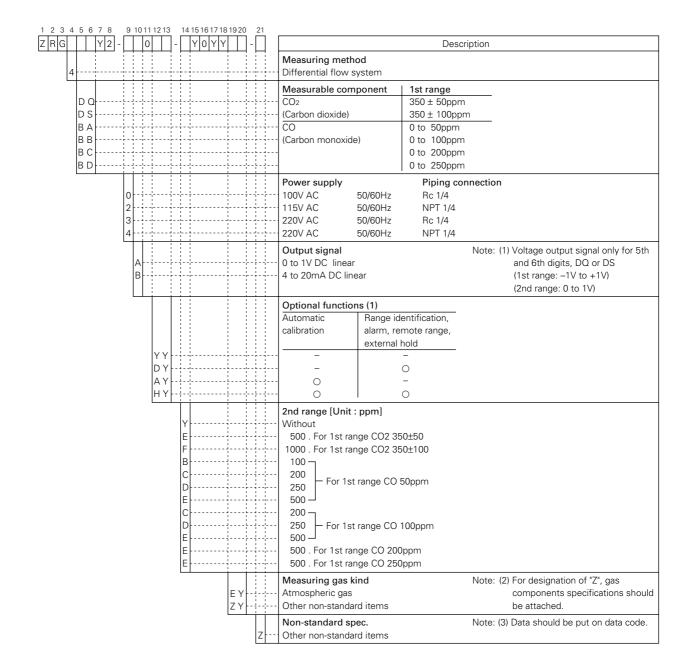
CODE SYMBOLS


(Standard single-component analyzer)

(Standard single-component analyzer) (cont'd)

Z R G Y Z - 0 - Y	20
Y	20
V	20
0	
1	
T	
A	
B	
C	
C	
D	
E	
G0 to 2000ppm	
H	
J	
K	
L	
M	
P	
$\begin{bmatrix} R_1 - \vdots - $	
Z	
Average value output time Note: (10) Average value output	ut (option)
0	
1 1-hour moving average value output	
4 4-hour moving average value output	
5	
6 4-hour average value output	
Average value output object component Note: (11) Average value output	
1st component designated only by	-
Instantaneous value O2 corrected (12) For selection of 4-ho	-
Y average value outpu	
A average value outpu	
D − O 1-output type is ava	lable.
O2 corrected standard value Note: (13) For designation of "2	", the data
Y Without must be put on the	
4	aata ooao.
55%	
6	
77%	
B	
C	
Z Other non-standard items (specify within 0 to 19%)	
Measuring gas kind Note: (14) For designation of "Z	z", gas
E Y Atmospheric gas components specific	
FY Combustible exhaust gas be attached.	
(Dioxin included)	
G Y Converter exhaust gas	
Z Z Other non-standard items	
Non-standard spec. Note: (15) Data should be put (16) Ovid proposed to the control of the contr	
Z Other non-standard items (16) Quick response type	
A Quick response only when gas dens	ity is 20%
or more.	


(Standard two-component analyzer)


(Standard two-component analyzer) (cont'd)

1 2 3 4 5 6 7 8 9 10111213 14151617181920	21					
Z R G 2 - 0 -	Ш			Description		
		2nd component, 2	nd range			
		Code Range value				Range value
		Y Without	G			0 to 10 %
Y ; ; ;		C 0 to 200 pp				0 to 20 %
		D 0 to 250 pp	l I I	0 to 1%		0 to 50 %
>	iii	E 0 to 500 pp	l I I			0 to 100 %
		F 0 to 1000 p		0 to 5%	Z	Other non-standard items
Z		Note: (13) 2nd ran				
		Average value ou	tput time	Note		rerage value output (option)
0		Without			de	signated only by 12th digit.
1	T-7F	1-hour moving ave	-			
5 		4-hour moving ave 1-hour average value	•	utput		
6		4-hour average value				
			-			N
		Average value ou		component 2nd compo	nont	Note: (15)
				Instantaneous value		
_V	ļ. ļ. ļ	- Instantaneous value	— —	–	- -	(option) designated only
A			_	_	_	by 12th digit.
B	ļ. ļ. ļ	0	_	0	_	(16)
c 	}		_	_	0	For selection of 4-hour
D	ļ. ļ. ļ	-	0	_	_	moving average value
E		_	0	0	-	output and 4-hour average
F	} 	-	0	-	0	value output, only the
G		-	_	0	-	1-output type is available.
H	}- <u></u>	-	_	_	0	
		O2 correct standa	rd value	Note	: (17) Fo	r designation of "Z", the data
Υ	 	Without			mı	ust be put on the data code.
4	: : : : : : : : : : : : : : : : : : :	4%				
5		5%				
6	{} : : : :	6%				
/ ·	() 	7%				
A B	1111	- 10% - 11%				
C		12%				
F	LLLI	15%				
'Z	 	1 1	l items (spe	cify within 0 to 19%)	
<u> </u>		Measuring gas kir	•			r designation of "Z", gas
EY		Atmospheric gas	iu	Note		mponents specifications should
L F Y	<u> </u>	Combustible exhau	ist das			attached.
		(Dioxin included)	or gao		20	attasiisa.
G Y	ļ. ļ. ļ	Converter exhaust	gas			
ZZ	- - -	Other non-standard	-			
	' 	Non-standard spe	c	Note	· (19) Da	ata should be put on data code.
	Z	Other non-standard		14016		uick response type is available
	A	Quick response				ly when gas density is 20%
						more.
	ш	1				

(Sample switching type)

(Differential flow system)

NDIR TYPE INFRARED GAS ANALYZER

<Standard single-component analyzer measuring range>

Measuable	2nd									15	st measu	ring ran	ge								
component	range	5ppm	10ppm	15ppm	20ppm	25ppm	50ppm	100ppm	200ppm	250ppm	500ppm	0.1%	0.2%	0.5%	1%	2%	5%	10%	20%	50%	100%
	x 0	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
СО	x 2	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	x 2.5	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 4	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 5	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 8	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	x 10	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	x 20	_	_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	_	_	_	_
	× 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO ₂	x 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	x 2.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	x 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	x 20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_	_
	x 0	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	Δ	_	_	_	_	_	_	_
NO	x 2	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	Δ	_		_	_		_	_
	x 2.5	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	Δ	_	_	_	_	_	_	_	
	x 4	_	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	_	_	_	_	_	_	_	_	
	x 5	_	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	_	_	_	_	_	_	_	_	_
	x 8	_	Δ	Δ	Δ	Δ	0	0	0	0	Δ	_	_	_	_	_	_	_	_	_	
	x 10	_	Δ	Δ	Δ	Δ	0	0	0	0	Δ	_	_	_	_	_	_	_	_	_	
	x 20	_	Δ	Δ	Δ	Δ	0	0	0	Δ	_	_	_	_	_	_		_	_	_	
	x 0	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
SO ₂	x 2	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	0	0	_		_	
	x 2.5	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	0	0	_	_	_	_
	x 4	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	0		_	_	_	_
	x 5	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	0	_	_	_	_	_
	x 8	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	_		_	_	_	_
	x 10	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	0	_	_	_	_	_	_
	x 20	_	Δ	Δ	Δ	Δ	0	0	0	0	0	0	0	0	_	_		_	_	_	_
CH,	x 0	_	_		_		_	_	0	0	0	0	0	0	0	0	0	0	0	0	0
CH ₄	x 2	_	_		_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 2.5	_	_		_		_		0	0	0	0	0	0	0	0	0	0	0	_	
	x 4	_	_		_	_	_	_	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 5	_	_		_		_	_	0	0	0	0	0	0	0	0	0	0	0	_	_
	x 8	_	_		_	_	_	_	0	0	0	0	0	0	0	0	0	0	_	_	
	x 10	_	_		_			_	0	0	0	0	0	0	0	0	0	0			
	x 20	_	—	-	-	_	—	—	0	0	0	0	0	0	0	0	0	—	_	—	_

Remarks: (1) \circ : Standard measuring range

(2) \triangle : Consult us regarding manufacture availability, price and delivery period.

(3) — : Not manufactured

<Standard type two-component analyzer measuring range>

NO	100	200	250	500
SO ₂	ppm	ppm	ppm	ppm
100ppm	0	0	0	0
200ppm	0	0	0	0
250ppm	0	0	0	0
500ppm	0	0	0	0

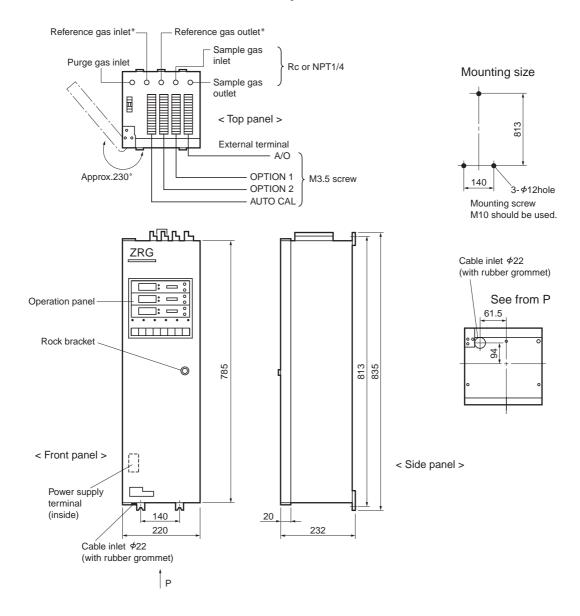
Remarks:(1) ①:Scope of manufacture for 1st range (2) 2nd range type is available provided the range ratio of 1st or 2nd component is within 1:20.

(Max. 2000ppm for NO analyzer)

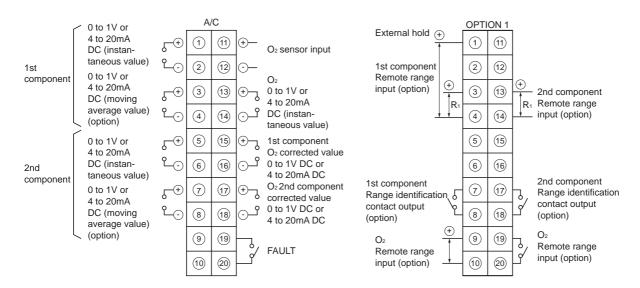
NO	250	500	1000
co	ppm	ppm	ppm
250ppm	0	0	0
500ppm	0	0	0
1000ppm	0	0	0

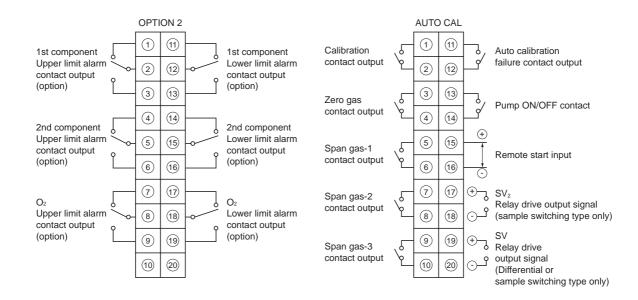
Remarks: (1) 2nd range type is available provided the range ratio of 1st or 2nd component is within 1:20.

(Max. 2000ppm for NO analyzer)


CO CO ₂	100 ppm	200 ppm	250 ppm	500 ppm	0.1 %	0.2 %	0.5 %	1 %	2 %	5 %	10 %	20 %	50 %	100 %
100ppm	0	0	0	0	8	8	8	_	_	1		-		
200ppm	0	0	0	0	0	8	8	-	_		_	_	_	
250ppm	0	0	0	0	0	8	8	8	1	-	_	-	-	_
500ppm	0	0	0	0	0	0	0	8	8	_	_	_	_	
0.1%	8	8	8	8	0	0	0	8	8	8	-			_
0.2%	8	8	8	8	8	0	0	0	8	8	8	ı	ı	_
0.5%	_	_	_	8	8	8	8	0	0	8	8	8	-	
1%	_	_	_	_	8	8	8	0	0	0	8	8	8	8
2%	_	_	_	_	_	8	8	8	0	0	0	0	0	0
5%	_	_	_	_	_	_	8	8	8	0	0	0	0	0
10%	_	_	_	_	_	_	_	8	8	0	0	0	0	0
20%	_	_	_	_	_	_	_	_	8	0	0	0	0	0
50%	_	_	_	_	-	_	I		-	0	0	0	0	0
100%	_	_	_	_	_	_		_	_	0	0	0	0	0

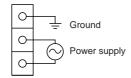
Remarks : (1) \bigcirc : Scope of manufacture for 1st range


- \otimes : Scope of manufacture for 2nd range for CO and $\mathrm{CO}_{\scriptscriptstyle 2}$ (maximum range)
- (2) 2nd range type is available provided the range ratio of 1st or 2nd component is within 1:20.


OUTLINE DIAGRAM (Unit:mm)

NOTE* Lid is mounted when reference gas is not used.

External connection diagram



Note: For relay drive output signal terminal, only the sample switching type of differential flow system is used.

Terminal block should be used at the position of AUTO-CAL terminal block.

Power supply (installed in the main unit)

Private zirconia O₂ sensor <option>

This sensor is used together with ZRG.

Measuring method:

Zirconia system

Measurable component and measuring range:

Meas	urable component	1st range	2nd range
O ₂	Oxygen	0 to 10 vol %	0 to 25 vol %

Measured gas flow rate:

0.5 ±0.25 ℓ /min

Note: The Zirconia system, due to its principle, may produce a measuring error due to relative concentration versus combustible O_2 gas concentration. Also, a corrosive gas (SO₂ of 250ppm or more, etc.) may affect the life of the sensor.

Gas inlet/outlet size:

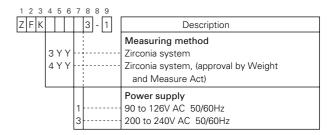
Rc1/4

Power supply: 90 to 126V or 200 to 240V AC, 50/60Hz Enclosure: Steel casing, for indoor application

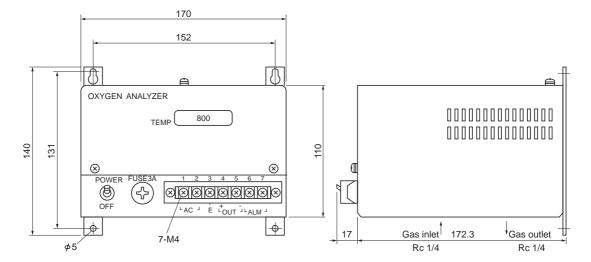
Indication: Temperature indication (LED)

Temperature alarm output:

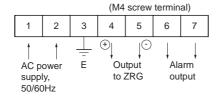
Contact output, SPST (1a) contact Contact capacity, 220V AC 1A


(resistive load)

Dimensions (H x W x D):


140 x 170 x 190mm

Mass{weight}: Approx. 3kg
Finish color: Munsell 5 Y7/1


CODE SYMBOLS

OUTLINE DIAGRAM (Unit:mm)

External connection diagram

*Before using this product, be sure to read its instruction manual in advance.

Fuji Electric Systems Co., Ltd.

Head office

6-17, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan http://www.fesys.co.jp

Fuji Electric Instruments Co., Ltd.

Sales Div. International Sales Dept.

No.1, Fuji-machi, Hino-city, Tokyo, 191-8502 Japan

Phone: 81-42-585-6201, 6202 Fax: 81-42-585-6187

http://www.fic-net.co.jp