PRECISION 5.0 VOLT MICROPOWER VOLTAGE REFERENCE ZR4040-5.0 **ISSUE 1 - JULY 1995** ### **DEVICE DESCRIPTION** The ZR4040-5.0 uses a bandgap circuit design to achieve a precision micropower voltage reference of 5.0 volts. The device is available in small outline surface mount packages, ideal for applications where space saving is important, as well as packages for through hole requirements. The ZR4040-5.0 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZR4040-5.0 is recommended for operation between 60µA and 15mA and so is ideally suited to low power and battery powered applications. Excellent performance is maintained to a suggested absolute maximum of 25mA, however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA. Superior switching capability allows the device to reach stable operating conditions in only a few microseconds. ## **FEATURES** - Small outline SO8 and SOT23 packages - TO92 style package - No stabilising capacitor required - Typical T_C 20ppm/°C - Typical slope resistance 0.33Ω - 2% and 1% tolerance - Industrial temperature range - Operating current 60µA to 15mA - Transient response, stable in less than 10µs #### **APPLICATIONS** - Battery powered and portable equipment. - Metering and measurement systems. - Instrumentation. - Test equipment. - Data acquisition systems. - Precision power supplies. # SCHEMETIC DIAGRAM | | CONNECTION TABLE | | | | | | | | |-------------------------|------------------|-----------------|-------------------|--|--|--|--|--| | Pin | SO8 | SOT23 | E-LINE
3 pin R | | | | | | | 1 | N/C | - | Gnd | | | | | | | 2 | N/C | G _{nd} | VR | | | | | | | 3 | N/C | VR | - | | | | | | | 4 | Gnd | _ | - | | | | | | | 5 | N/C | _ | _ | | | | | | | 6 | N/C | - | - | | | | | | | 7 | N/C | - | - | | | | | | | 8 | VR | _ | - | | | | | | | Pack | N8 | F | R | | | | | | | see Diagrams Page 1 - 8 | | | | | | | | | # **ABSOLUTE MAXIMUM RATING** Reverse Current 25mA Forward Current 25mA Operating Temperature -40 to 85°C Storage Temperature -55 to 125°C Power Dissipation (T_{amb}=25°C) SOT23 330mW SO8 625mW E-line, 3 pin (TO92) 500mW | SYMBOL | PARAMETER | CONDITIONS | LIMITS | | | TOL.
% | UNITS | |------------------|--|---|--------------|------------|--------------|-----------|----------| | | | | MIN | TYP | MAX | | | | V _R | Reverse Breakdown Voltage | I _R =150μA | 4.95
4.90 | 5.0
5.0 | 5.05
5.10 | 1 2 | V | | I _{MIN} | Minimum Operating Current | | | 30 | 60 | | μА | | I _R | Recommended Operating
Current | | 0.06 | | 15 | | mA | | T _C † | Average Reverse Breakdown
Voltage Temp. Co. | I _{R(min)} to I _{R(max)} | | 20 | 100 | | ppm/°C | | R _S § | Slope Resistance | | | 0.33 | 1.5 | | Ω | | Z _R | Reverse Dynamic Impedance | I _R = 1mA
f = 100Hz
I _{AC} = 0.1 I _R | | 0.4 | 1.0 | | Ω | | E _N | Wideband Noise Voltage | I _R = 1mA
f = 10Hz to
10kHZ | | 100 | | | μV (rms) | † $$T_C = \frac{V_R Change \times 1000000}{V_R \times Temperature Change}$$ # ZR4040-5.0