SUPPLY VOLTAGE MONITOR

ISSUE 1 - MARCH 1998

ZSH560

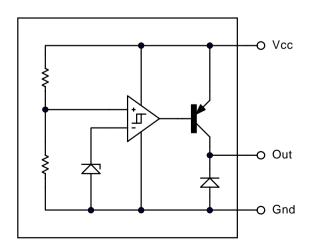
DEVICE DESCRIPTION

The ZSH560 is a three terminal under voltage monitor circuit for use in microprocessor systems. The threshold voltage of the device has been set to 4.6 volts making it ideal for 5 volt circuits.

Included in the device is a precise voltage reference and a comparator with built in hysteresis to prevent erratic operation. The ZSH560 features an open collector output capable of sourcing at least I0mA which only requires a single external resistor to interface to following circuits.

Operation of the device is guaranteed from one volt upwards, from this level to the device threshold voltage the output is held high providing a power on reset function. Should the supply voltage, once established, at any time drop below the threshold level then the output again will pull high.

The device is available in a TO92 package for through hole applications as well as SO8 and SOT223 for surface mount requirements.


FEATURES

- SO8, SOT223 and TO92 packages
- Power on reset generator
- Automatic reset generation
- Low standby current
- Guaranteed operation from 1 volt
- Wide supply voltage range
- Internal clamp diode to discharge delay capacitor
- 4.6 volt threshold for 5 volt logic
- 20mV hysteresis prevents erratic operation

APPLICATIONS

- Microprocessor systems
- Computers
- Computer peripherals
- Instrumentation
- Automotive
- Battery powered equipment

SCHEMATIC DIAGRAM

ZSH560

ABSOLUTE MAXIMUM RATING

-1 to 10V Power Dissipation Input Supply Voltage

Offstate Output Voltage 10V TO92 780mW **Onstate Output** SOT223 2W(Note 2)

Source Current(Note 1) Internally limited 780mW(Note 2) SO8 Clamp Diode

Forward Current(Note 1)

100mA

Operating Junction

150°C Temperature -40 to 85°C Operating Temperature Storage Temperature -55 to 150°C

TEST CONDITIONS

(T_{amb}=25°C for typical values, T_{amb}=-40 to 85°C for min/max values (Note3))

COMPARATOR

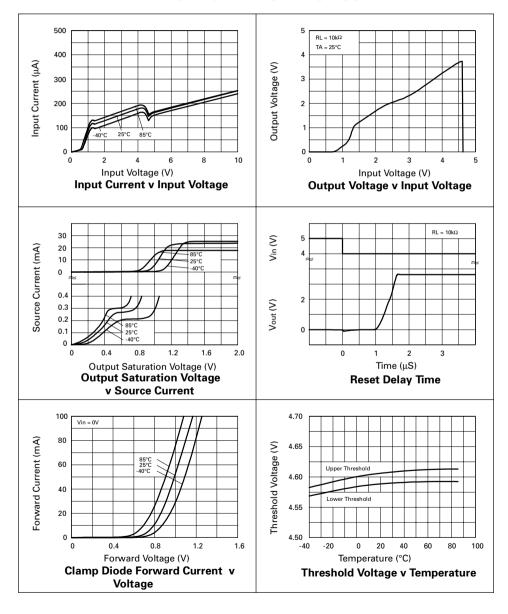
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Threshold Voltage Low state output (Vcc increasing)	V _{IL}	4.5	4.61	4.7	>
Threshold Voltage High state output (Vcc decreasing)	V _{IH}	4.5	4.59	4.7	V
Hysteresis	V _H	0.01	0.02	0.05	V

OUPUT

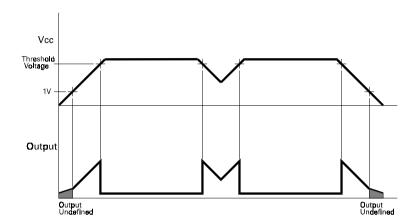
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Output source saturation:	V_{OH}				
(V _{cc} =4.0V, I _{source} =8.0mA)				V _{CC} -1.3	V
(V _{cc} =4.0V, I _{source} =2.0mA)				V _{CC} -1.2	V
(V _{cc} =1.0V, I _{source} =2μA)				V _{CC} -0.4	V
Onstate output source current (V _{cc} =4.0V, Output=0V)	I _{source}	10	20	50	mA
Offstate output leakage current (V _{cc} =5.0V, Output=0V)	I _{oh}		0.02	0.5	μΑ
Clamp diode forward voltage (I _f =10mA)	V_{f}	0.6	1.2	1.5	V
Propagation delay (V _{in} 5V to 4V, R _I =10k, T _{amb} =25°C)	T _d		1.5		μs

TOTAL DEVICE

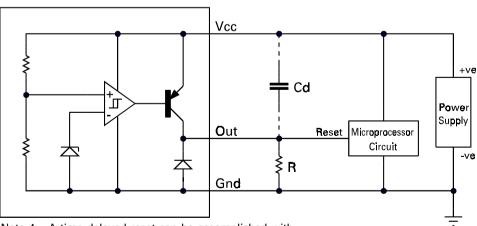
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Operating input voltage range	V _{cc}	1.0 to 6.5			V
Quiescent input current (V _{cc} =5V)	Iq		135	200	μΑ


Note:

1. Maximum package power dissipation must be observed.
2. Maximum power dissipation, for the SOT223 and SO8 packages, is calculated assuming that the device is mounted on a PCB measuring 2 inches square.
3. Low duty cycle pulse sich inques are used during test to maintain junction temperatures as


close to ambient as possible.

ZSH560


TYPICAL CHARACTERISTICS

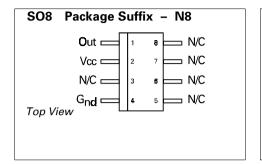
TIMING DIAGRAM

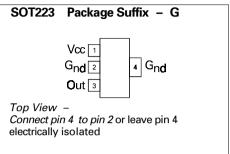
APPLICATION CIRCUIT

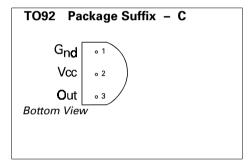
Note 4: A time delayed reset can be accomplished with the additional Cd.

$$T_{DY} = RCd \left[In \left(\frac{1}{V_{TH}} \right) - In \left(\frac{1}{1 - \frac{V_{SAT}}{V_{in}}} \right) \right]$$

T_{DY} =Time (Seconds)


V_{TH} =Microprocessor Reset Threshold (ground referenced)


V_{SAT} =Output Saturation Voltage (from Output Saturation Voltage characteristic)


Vin = Power Supply Voltage

ZSH560

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part No	Package	Partmark
ZSH560C	TO92	ZSH560
ZSH560G	SOT223	ZSH560
ZSH560N8	SO8	ZSH560