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APPLICATION NOTE

INTERFACING THE Z16C32 IUSC 
WITH MOTOROLA PROCESSORS 1

DIRECT-REGISTER ADDRESSING SIMPLIFIES 
SOFTWARE REQUIREMENTS AND INCREASES 

RELIABILITY
INTRODUCTION
This application note describes an Altera Embedded Pro-
grammable Logic Device (EPLD) design that comprises a
single-chip interface between a ZiLOG Z16C32 Integrated
Universal Serial Controller (IUSC) and a Motorola
MC68340 processor.

The Z16C32’s ancestor, the Z16C30 USC, was originally
designed as a peripheral for the ZiLOG Z8000 processor.
The USC and IUSC feature seamless/glueless interface to the
Z8000’s successors, the Z16C0x processors. These proces-
sors feature a multiplexed address/data bus. Other proces-
sors that offer multiplexed address and data, such as the Intel
80186, can also be interfaced to the Z16C32 with fairly min-
imal glue logic.

Processors with separate address and data buses, such as
those from Motorola, can easily be interfaced to the USC
and IUSC if the IUSC’s indirect register addressing feature
is used. Each time that software must access any of the
IUSC’s numerous registers, a register address must be writ-
ten into the Z16C32. While indirect addressing allows a sim-

ple hardware interface, it makes the software more complex
and degrades performance. Indirect addressing also requires
software to disable interrupts prior to writing the register ad-
dress, in addition to reenabling interrupts after reading or
writing the register. Programmers must remember to disable
and reenable before and after every register access, or use
centralized read and write register subroutines, which further
degrade performance. 

Typically IUSC-based products and applications that use in-
direct register addressing take more time to develop and fi-
nalize than those that use direct register addressing (the
IUSC User Manual notes this difference in Chapter 2). For
complete Bus Demultiplexing, which indicates the conversion
between a nonmultiplexed bus and the IUSC’s multiplexed
bus, ZiLOG’s IUSC User Manual falls short of the detail
necessary to build such an interface. To aid in your devel-
opment and understanding of Bus Demultiplexing, this Ap-
plication Note is intended to provide that detailed interface
between an IUSC and a typical Motorola processor, the
MC68340.

OVERVIEW

Figure 1 shows the interconnection of a Z16C32 IUSC and
a Motorola  MC68340 processor wi th  an  Altera
EPM7128EQC100 EPLD. When the 68340 is in control of
its address and data buses, the 7128 converts its bus cycles
for the IUSC, including time-multiplexing of the address
and data. When the IUSC takes control of the bus, the 7128
demultiplexes its address and data onto the 68340’s separate
address and data buses, so that memory can be configured
for the 68340 bus. This configuration occurs without much
regard for the characteristics of the IUSC.

Appendix A includes the logic equations for the Altera
7128, written in Altera’s Hardware Description Language
(AHDL). For those who want to convert this logic to other
languages and devices, or for those not familiar with AHDL,
a short summary of AHDL appears on the page 3.

Appendix B shows the results of simulation of the 7128 log-
ic using the Altera simulator. 

Note: The logic has been simulated according to the author’s
understanding of the Motorola 68340. It has been used
successfully by at least one customer; however, readers
should critically examine the schematic and both Appen-
dices, in view of their knowledge of their particular pro-
cessor and application. 

All Signals with an overline, “   ” are active Low, for ex-
ample, B/W (WORD is active Low); B/W (BYTE is ac-
tive Low, only).
AN000801-0701 1
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Figure 1. Z16C32 Schematic Diagram
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ABOUT THE SCHEMATIC

Many pins on the 68340 are left unconnected in the sche-
matic. This arrangement is intended to show just the hookup
of the three parts (68340, 7128 and Z16C32). Similarly, the
serial interface pins and port pins of the IUSC are left un-
connected. 

Four tri-statable outputs of the IUSC are pulled up with 10K
resistors to avoid floating inputs to the 68340 or 7128. Two

unused input/outputs of the IUSC (RD and WR) are simi-
larly pulled up. Pull-up resistors are not included on signals
between the 7128 and IUSC, such as AS, DS, R/W, and
WT/RDY, because the two parts should exchange the driv-
ing of these signals without long dormant periods. Neither
the 7128 nor the IUSC drive the signal with the Pull-up re-
sistors included.

ABOUT APPENDIX A

The SUBDESIGN block near the start of Appendix A lists
the inputs and outputs of the design. The VARIABLEs
block defines buried (internal) signals and registers. The
body of Appendix A consists of logic equations, which are
arranged in no particular order.

AHDL Summary
� ! indicates negation 

� & indicates logical And 

� # indicates logical Or

Unless parentheses indicate otherwise, the sequence is !,
followed by &, then #.

� name[n..m] is an � ��� wide bus, whose individu-
al signals can be referred to without brackets, for exam-
ple, �� rather than ����.

� Comments are enclosed in % signs

� NODEs are intermediate signals

� DFFs are D-type flip-flops that clock their 	
 inputs on
rising edges of their 	��
 inputs, and have low-active
asynchronous 	��� presets and 	���� clear inputs.

� LATCHes pass their 	
 inputs to their outputs when their
	��� inputs are High (transparent latches).

� TRIs drive their first operand to their outputs, when their
second (enable) operand is High.

ABOUT APPENDIX B

The simulation waveforms of Appendix B are arranged with
all of the inputs of the IUSC first: �������� through
����
���		��. Next, ����� through ����
��		�� are the out-
puts of the IUSC. 

Many of the pins of the Z16C32 are input/outputs, and there-
fore appear twice; the upper [I] instance shows whether out-
side influences are driving the pins, while the second [O]
instance includes input states, including states driven by the
IUSC. The reader should take care to observe the [O] trace
to see how the Altera part is operating, and the [I] trace to
see how it is being stimulated.

Finally, ���
������� through ������ !		�� shows the state
of the buried (internal) registers and latches in the Z16C32.

High impedance states are shown as either ""			 for buses,
or a thick line between a High and a Low for non-bused sig-
nals. ##			 for outputs and buried registers indicates an un-
defined state, which typically results from an internal regis-
ter or latch that is not preset or reset. This condition may
also result from enabling a driver, the input of which is in
Z state.

Notes at the bottom of each page show the type of cycle or
event occurring above. Initially, the part is Reset. The 68340
runs cycles not targeted for the IUSC, and follows by per-
forming a read and write for the IUSC. The IUSC then re-
quests bus control, the 68340 grants it, and the IUSC runs
a read and write cycle with memory. Finally, the IUSC re-
turns bus control to the 68340, which then acknowledges
an interrupt from the IUSC.

DESCRIPTION OF THE LOGIC EQUATIONS

The following descriptions follow the order of the logic
equations in Appendix A.

BGACK is asserted Low to the 68340 and IUSC when the
IUSC drives BUSREQ low, and the 68340 asserts BG low.

Thereafter, it is held Low until the IUSC drives BUSREQ
high.

BR is asserted Low to the 68340 when the IUSC drives
BUSREQ until the 68340 asserts BG.
AN000801-0701 3
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The ��� !		��� latches open to capture the high-order ad-
dress on �
�$		�� from the IUSC, when it drives UAS low.
The �����		�� captures the low-order address from
�
���		��, when the IUSC drives its AS pin (called IAS to
distinguish it from the 68340’s AS) low.

When BGACK High indicates the 68340 is controlling the
bus, the part drives the states of A7 and A6 onto the IUSC
S/D and D/C pins, thereby selecting between serial regis-
ters, (Tx DMA registers and Rx DMA registers). Thus, the
IUSC occupies a 256-byte block in 68340 address space.

The asd1 and asd2 provide time-delayed versions of 68340
AS, and are used to time-multiplex the 68K address and data
into the IUSC. 

IAS, IDS, and IRW (IUSC AS, DS, and R/W) are driven
to the IUSC when BGACK High indicates the 68340 has
bus control. Within this time, IAS is driven Low between
the time AS goes Low from the 68K, and when the asd1
flip-flop goes Low about one CPU clock later. IDS is driven
Low from when asd2 goes Low one-half CPU clock later,
for the duration of the DS from the 68K. IRW simply tracks
68K R/W.

The 68K control signals (SIZ1 and SIZ0) are driven from
the B/W output of the IUSC to indicate byte vs. word trans-
fers, when BGACK Low indicates the IUSC has bus con-
trol.

DSACK1 is driven to the 68K to indicate cycle completion,
including the 16-bit width of the IUSC, when BGACK is
High indicating the 68K has bus control. In this case, either
CS and DS are both Low indicating an IUSC register access,
or INTACK is Low indicating an interrupt vector fetch from
the IUSC. DSACK1 is driven from the WT/RDY signal
from the IUSC, which has the proper timing to indicate cy-
cle completion.

Conversely, the WT/RDY signal to the IUSC is driven from
DSACK1, when the IUSC has bus control. This state as-
sumes that memory is always 16 bits wide, causing the
memory to “wait” for the IUSC. This feature should be de-
leted if memory is fast enough, and never needs to wait for
the IUSC when it is bus master. A DFF named 
������� is
used as an RS latch. This DFF drives WT/RDY from UAS

Low, until a High BGACK signals that the IUSC has given
up control of the bus.

The signal 
�%&� enables drivers from the IUSC’s AD bus
to the 68K D bus in three cases: 

1. BGACK is Low indicating that the IUSC has bus
control, and IRW is Low  indicating that it is writing
to memory.

2. BGACK is High indicating that the 68K has bus
control; CS and DS are  Low and R/W is high,
indicating that it is reading from an IUSC  register.

3. BGACK is high, indicating that the 68K has bus
control, and INTACK is low, indicating that the 68K
is fetching an interrupt vector from the IUSC.

The signal 
��� enables data from the 68K D bus to the
IUSC’s AD bus, in two cases: 

1. BGACK is low, indicating that the IUSC has bus
control; In addition, IRW is High and  IDS is Low,
indicating that the IUSC is reading from memory.

2. BGACK is high, indicating that the 68K has bus
control, and CS and R/W are  both Low, indicating that
the 68K is writing an IUSC register.

The signal 
����
 enables drivers to the IUSC’s AD bus for
address from the start of 68K AS until ASD1 goes Low
about one CPU clock later. The same is true for data when

��� is High as described above.

When AD6 though AD0 is driven in from the 68K, it is mul-
tiplexed between address and write data by the signal �'
 ,
which satisfies the timing requirements of the IUSC. 

Note: AD6 is driven from SIZ0 in the address time to allow the
68K of software to access either bytes or words. This ca-
pability is very important when writing certain IUSC reg-
isters.

The final block of equations drive ()���		$� from
)���		$�, and should be enabled by d_in rather than 
����
.
Because the Altera 7000E family allows only 6 tri-state en-
able terms in one part, 
����
 is used instead of 
���.

CONCLUSION

By performing the Altera logic equations contained within
this document, and incorporating the power of the Z16C32,
a strong single-chip interface can be obtained using a variety

of well-known processors, including those from Motorola
or Intel.
4 AN000801-0701
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APPENDIX A

User Friendly Glue: Z16C32 IUSC/Motorola 68340

% An Altera FPGA to act as the interface between ZiLOG Z16C32 IUSC and Motorola MC68340
processor bus.

Begun by CAM, ZiLOG  2/23/98 %

SUBDESIGN IUSCMOT ( cs, busreq, bg, uas, cpuclk, reset, bw, intack : INPUT; 
ao[23..8], br, bgack, sd, dc, siz1 : OUTPUT; 
a[7..0], d[15..0], ad[15..0], ias, as, ids, ds, irw, rw, 
siz0, dsack1, wait_rdy : BIDIR; )

VARIABLE 
d_out, d_in, a_to_ad, drv_ad : NODE; 
asd1, asd2, asff, drv_wait : DFF; 
ar[23..0] : LATCH;

BEGIN     
% Make BGACK, assuming the IUSC is the only requester % 
bgack = !reset           

#  busreq           
# (bg & bgack);

% Make BR for 68K %     
br = !reset # busreq # !bgack;

% Address latching when IUSC is bus master %     
ar[23..16].d = ad[7..0];     
ar[23..16].ena = !uas;     
ar[15..0].d = ad[];     
ar[15..0].ena = !bgack & !ias;

    

% Drive S/D and D/C from A7-A6 in slave mode %     
sd = TRI(a7, bgack);     
dc = TRI(a6, bgack);

% Delayed versions of address strobe from processor %     
asd1.d = as;     
asd1.clk = !cpuclk;     
asd1.prn = bgack;     
AN000801-0701 5
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asd2.d = asd1;     
asd2.clk = cpuclk;     
asd2.prn = bgack;     
a_to_ad = bgack & !as & asd1;         

% Drive IAS, IDS, IRW from processor in slave mode %     
ias = TRI(as # !asd1, bgack);     
ids = TRI(asd1 # asd2 # ds, bgack);     
irw = TRI(rw, bgack);

% Synthesize a 68K type AS in master mode %     
asff.d = VCC;     
asff.clrn = ias;     
asff.prn = reset;     
asff.clk = ids;         % negate 68K /AS at end of IUSC /DS %     
as = TRI(asff, !bgack);

 

% Drive 68K DS and R/W from IUSC in master mode %     
ds = TRI(ids, !bgack);     
rw = TRI(irw, !bgack);

% Drive SIZ[1..0] in master mode %     
siz1 = TRI(!bw, !bgack);     
siz0 = TRI( bw, !bgack);

% Drive 68K DSACK1 (16 bit port) in slave mode %     
dsack1 = TRI(wait_rdy, bgack & !cs & !ds                          
              # bgack & !intack);

% Drive IUSC /WAIT line in master mode %     
drv_wait.d = VCC;     
drv_wait.clk = VCC;     
drv_wait.prn = uas;     
drv_wait.clrn = !bgack;     
wait_rdy = TRI(dsack1, drv_wait); % 16 bit memory only %

% Ad bus to d bus (slave and master) %     
d_out = !bgack & !irw           
#  bgack & !cs & rw & !ds           

#  bgack & !intack;
6 AN000801-0701
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% D bus to ad bus (slave and master) %     
d_in = !bgack & irw & !ids          

#  bgack & !cs & !rw;

% AD6-0 <-- address or data % 
drv_ad = a_to_ad # d_in;

  

ad6 = TRI(siz0 & asd2 # d6 & !asd2, drv_ad);     
ad5 = TRI(a5   & asd2 # d5 & !asd2, drv_ad);     
ad4 = TRI(a4   & asd2 # d4 & !asd2, drv_ad);     
ad3 = TRI(a3   & asd2 # d3 & !asd2, drv_ad);     
ad2 = TRI(a2   & asd2 # d2 & !asd2, drv_ad);     
ad1 = TRI(a1   & asd2 # d1 & !asd2, drv_ad);     
ad0 = TRI(a0   & asd2 # d0 & !asd2, drv_ad);

% Other tri-state drivers %

ao23 = TRI(ar23, !bgack);     
ao22 = TRI(ar22, !bgack);     
ao21 = TRI(ar21, !bgack);     
ao20 = TRI(ar20, !bgack);     
ao19 = TRI(ar19, !bgack);     
ao18 = TRI(ar18, !bgack);     
ao17 = TRI(ar17, !bgack);     
ao16 = TRI(ar16, !bgack);     
ao15 = TRI(ar15, !bgack);     
ao14 = TRI(ar14, !bgack);     
ao13 = TRI(ar13, !bgack);     
ao12 = TRI(ar12, !bgack);     
ao11 = TRI(ar11, !bgack);     
ao10 = TRI(ar10, !bgack);     
ao9 = TRI(ar9, !bgack);     
ao8 = TRI(ar8, !bgack);     
a7 = TRI(ar7, !bgack);     
a6 = TRI(ar6, !bgack);     
a5 = TRI(ar5, !bgack);     
a4 = TRI(ar4, !bgack);     
a3 = TRI(ar3, !bgack);     
a2 = TRI(ar2, !bgack);     
a1 = TRI(ar1, !bgack);     
a0 = TRI(ar0, !bgack);

  

d15 = TRI(ad15, d_out);     
d14 = TRI(ad14, d_out);     
d13 = TRI(ad13, d_out);     
d12 = TRI(ad12, d_out);     
d11 = TRI(ad11, d_out);     
d10 = TRI(ad10, d_out);     
AN000801-0701 7
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d9 = TRI(ad9, d_out);     
d8 = TRI(ad8, d_out);     
d7 = TRI(ad7, d_out);     
d6 = TRI(ad6, d_out);     
d5 = TRI(ad5, d_out);     
d4 = TRI(ad4, d_out);     
d3 = TRI(ad3, d_out);     
d2 = TRI(ad2, d_out);     
d1 = TRI(ad1, d_out);     
d0 = TRI(ad0, d_out);

% The following should be enabled by d_in, but Altera MAX7000E family only allows 6 output 
enable terms %     
ad15 = TRI(d15, drv_ad);     
ad14 = TRI(d14, drv_ad);     
ad13 = TRI(d13, drv_ad);     
ad12 = TRI(d12, drv_ad);     
ad11 = TRI(d11, drv_ad);     
ad10 = TRI(d10, drv_ad);     
ad9 = TRI(d9, drv_ad);     
ad8 = TRI(d8, drv_ad);     
ad7 = TRI(d7, drv_ad);

END;
8 AN000801-0701
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APPENDIX B

Figure 2. Simulation Waveforms (1 of 5)
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Figure 3. Simulation Waveforms (2 of 5)
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Figure 4. Simulation Waveforms (3 of 5)
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Figure 5. Simulation Waveforms (4 of 5)
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Figure 6. Simulation Waveforms (5 of 5)
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