

Application Note

Software UART for the
Z86E02

AN004102-0502
ZILOG WORLDWIDE HEADQUARTERS • 910 E. HAMILTON AVENUE • CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 • FAX: 408.558.8300 • WWW.ZILOG.COM

http://www.zilog.com

Application Note

Software UART for the Z86E02

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN004102-0502

http://www.zilog.com

Application Note

Software UART for the Z86E02

AN004102-0502

iii

Table of Contents

General Overview . 1

Discussion . 1
Theory of Operation . 1
Results of Operation . 2

Summary . 5
Reaffirmation of Results . 5

Technical Support . 6
Source Code . 6
Flow Charts . 15
Schematic . 17

Test Procedure . 18
Equipment Used . 18
General Test Setup and Execution . 18
Test Results . 19

References . 19

Appendix . 20
Setup HyperTerminal . 20
OTP Programming Procedure . 20

Acknowledgments

Project Lead Engineer

Mathias Loehr

Application and Support Engineer

Mathias Loehr

System and Code Development

Mathias Loehr

Application Note

Software UART for the Z86E02

1

Software UART for the Z86E02

General Overview
This Application Note describes how to implement a software-emulated universal
asynchronous receiver transmitter (UART) function on the Z86 family of low-cost
8-bit microcontrollers. This particular UART function is half-duplex, event-driven,
and supports an 8-N-1 protocol using an RS-232 interface.

Optionally, a ninth data bit can be enabled. Baud rates from 1200 to 57600 are
supported. The software features full initialization and a basic application for both
a receiver and a transmitter. The primary goals for this software UART are speed
and reliability.

Discussion

Theory of Operation

The UART protocol is based on the EIA RS-232C standard, published in 1969.
That standard was popular with the introduction of personal computers and it is
one of the most commonly used serial interfaces. Originally defined as a 25-pin
interface with several modem handshake and control signals, the basic interface
requires only three lines, Receive (RX), Transmit (TX), and GND. In this constella-
tion, a handshake is executed in software by transmitting special XON and XOFF
characters, or by using a ninth data bit as a separator between command and
data. In most MCU applications, the half-duplex communication is sufficient,
meaning that each side is either a receiver or a transmitter at any given time.

While the transmission speed of the RS-232C cable was formerly limited to 19200
baud for a cable length of 50 feet, advanced specifications and line drivers allow
much higher baud rates today. The underlying UART protocol, however, is still the
same. Figure 1 illustrates that protocol.

Figure 1. Basic 8-bit UART Protocol

0

1
Start Stop0 1 2 3 4 5 6 7

51 hex

RX Sampling
AN004102-0502

Application Note

Software UART for the Z86E02

2

The TX idle state of the UART is High. A High-to-Low transition of the Start bit ini-
tiates the transmission. Eight or nine data bits follow before the Stop bit pulls High
again. In the case of 19200 baud, each bit time is approximately 52µs. Asynchro-
nous operation means that the clock is not transmitted. The receiver must operate
with the same baud rate, usually derived from a local oscillator. It synchronizes on
the falling Start edge and samples the incoming data in their bit middle.

Note: The actual signal levels on a PC serial connector are inverted by line drivers on
both sides and provide symmetrical levels of around ±12V.

Results of Operation

The Software UART supports the basic format 8-N-1. That format is 8 data bits,
no parity and 1 stop bit. Optionally a 9-bit mode can be enabled to receive or
transmit nine data bits. The ninth bit can be used by software as a separator
between command or address and data. The achieved baud rates depend on RX
or TX mode and the clock frequency, as shown in Table 1.

Communication is half-duplex. In RX mode, the program waits to receive charac-
ters and stores them in a 16-byte RAM buffer. In TX mode, the program continu-
ously sends out an ASCII message string, stored in code memory.

Options

Several options at assembly or runtime must be selected to adapt the program to
the desired operation. Table 2 contains a list of those options.

Table 1. Tested Baud Rates for RX and TX Modes vs. Clock Frequencies

RX-4MHz 1200 2400 4800 9600

RX-8MHz 1200 2400 4800 9600 19200

RX-12MHZ 1200 2400 4800 9600 19200 38400

RX-16MHz 2400 4800 9600 19200 38400

TX-4MHz 1200 2400 4800 9600 19200

TX-8MHz 1200 2400 4800 9600 19200 38400

TX-12MHz 1200 2400 4800 9600 19200 38400 57600

TX-16MHz 2400 4800 9600 19200 38400 57600
AN004102-0502

Application Note

Software UART for the Z86E02

3

Further, there are device options to be selected when the One-Time Programma-
ble (OTP) is programmed or a ROM code is transmitted for mask production. The
selection is given in the header of the listing.

Initialization

Out of Reset, the program sets P0 to output mode and outputs a High level at
P00, which is the TX pin. P2 is set to push-pull output for optional data display. A
RAM validation routine checks if three special patterns are still valid. If yes, the
following RAM initialization is skipped and all RAM buffers and variables are kept.
This routine stores valid information, in the case of spurious undervoltage resets,
if VCC goes below VBO but not below the RAM retention voltage.

The Stack Pointer is set to the top of RAM, the timers are disabled, and T1 is
loaded with BAUD/PBD for the bit time delay. BAUD incorporates the clock fre-
quency and PBD is the T1 prescaler value.These values are computed during
assembly time, if BAUD exceeds the value of 255. Finally, the RX interrupt for P31

Table 2. Options at Assembly and Run Time

Name Description When Where

XTAL Oscillator frequency/1000 in
standard mode. Range 4-16
MHz, odd values allowed.
Default is 8000 (8MHz).

Assembly time CONSTANTS DEF.

BAUD Baud rate: ONE_TWO to
FIFTY_SEVEN valid settings
depend on mode and
frequency shown in Table 1.
When XTAL and BAUD are
specified, the program
selects all the appropriate
timings. Default is
NINETEEN_TWO.

Assembly time CONSTANTS_DEF

RAM_TOP Top of RAM for MCU other
than Z86E02. Default is 3F.

Assembly time CONSTANTS_DEF

ROM_TOP Top of ROM for MCU other
than Z86E02. Default is
01FF.

Assembly time CONSTANTS_DEF

MODE RX or TX Run time After code label start

NINE_BIT_MODE ON or OFF Run time After code label start

WAIT_STOP ON or OFF. Wait for Stop bit,
verify it, and set
FRAME_ERR accordingly.

Assembly time CONDITIONAL
ASSEMBLY SWITCH
AN004102-0502

Application Note

Software UART for the Z86E02

4

is enabled and the program enters the RX or TX application, depending on the
setting of MODE.

Transmit Mode

The transmission is realized in the subroutine serial_out. Before calling the
subroutine, the byte to be transmitted must be loaded into DATA. The Technical
Support section contains the flowchart for the transmit routine

The routine first saves present interrupts and then enables a Timer 1 interrupt,
thereby ensuring that the RX interrupt and other user interrupts are disabled dur-
ing transmission. The transmit routine assembles the complete bit sequence of
Start, Data, and Stop into a 16-bit shift register, made up by DATA and DATA2.
This assembly allows the fastest baud rates, because the 9-bit mode decision is
kept outside the transmission loop. After bit assembly, the bit counter is set and T1
is started for bit-time delay. The bit is shifted via Carry into a P0 shadow register
and the program enters HALT mode to wait for the T1 interrupt. T1 service is just
an IRET instruction. After return, the bit is output at P00. This method allows a
precise timing without any jitter. After the Stop bit is output, the routine restores
the interrupts and returns to main.

The main application in TX mode reads an ASCII message string, stored in code
memory at label tx_rom. The message string is terminated with Carriage Return
and Line Feed for display on a PC monitor. The TX application runs in a loop.

Receive Mode

Because the receive event is asynchronous in nature, the Port interrupt pin P31 is
used for RX. The appropriate port interrupt service routine (ISR) is diagrammed in
the Technical Support section. The ISR first waits for nearly half a bit time. This
delay is realized with DJNZ instructions and there is a short-cut for the highest
baud rate at a given clock frequency. The RX pin is read to validate the Start bit. If
RX is not zero, the program exits after clearing any spurious P31 interrupt
requests. If the Start bit is valid, T1 is started with bit-time delay and the bit
counter is set to 8. The program polls the T1 IRQ bit for speed reasons. After tim-
eout, RX pin is sampled and shifted into DATA until the complete byte is received.
If 9-bit mode is enabled the program waits for another T1 timeout, reads the RX
pin and sets NINTH accordingly. The receive character available flag RX_AVAIL is
set to 1, T1 is stopped, and the program returns to main after clearing spurious
P31 interrupt requests. User interrupts are inherently disabled during P31 receive
service.

The software must continuously check the RX_AVAIL flag to save a received byte
or react on it, before it is overwritten by the next reception. To allow at least a full
bit time for check loop plus reaction, the receive routine does not wait for the Stop
bit and returns early in the second half of the most recent data bit. This fact must
be considered for handshakes and data flow control. For lower baud rates, the
AN004102-0502

Application Note

Software UART for the Z86E02

5

early return might not be required, and the user may want to wait for the Stop bit,
verify it, and set the flag FRAME_ERR accordingly. This option is provided by the
conditional assembly switch WAIT_STOP, as described in Table 2.

The RX application stores received bytes in a 16-byte RAM buffer at RX_BUF.
When the buffer is full, it is overwritten from the beginning. Additionally, each
received byte is output at P2.

Hardware

The software UART can be built using the schematics in the Technical Support
section.The schematic shows a single +5V supply setup, where the Z8 is con-
nected by a MAX-232A line driver to a SUBD-9 serial connector. Only RX and TX
lines are used. The circuit can be connected to a PC, running a terminal program
with setting no handshake.

Figure 4, in the Technical Support section, shows a setup without line drivers,
which can be used for in-system communication or for transmission via short
cables. Both Z8 MCUs must be programmed with the same baud rate, one as
transmitter and one as receiver and the RX and TX lines are crossed. Beginning
with a cable length of 10cm, wave reflections occur and can result in significant
overshoots and undershoots. Because P31 RX input is also used for OTP pro-
gramming, allowing 12V input levels, P31 RX input does not feature an input pro-
tection diode to VCC. This diode is external, in addition to an RC input filter of 1 µs
to attenuate possible overshoots.

The oscillator buildup capacitors in both schematics are connected to VCC instead
of GND. For the targeted frequency range of 4-16MHz, the RF sees no difference
between VCC and GND. The VCC connection allows a short and direct PCB path,
resulting in an improved EFT behavior.

Summary

Reaffirmation of Results

The Software UART supports the most common UART protocol 8-N-1 and,
optionally, a nine-bit mode. The concentration on the basic format results in effi-
cient code and high baud rates. Special efforts were put into the reliability of the
application, such as jitter-free transmission, glitch filter in the receive path, RAM
data protection against spurious VBO and ESD, and a PC wraparound protection
with SW-Reset. On the hardware side, the connection of the oscillator buildup
capacitors to VCC help achieve optimal system performance.
AN004102-0502

Application Note

Software UART for the Z86E02

6

Technical Support

Source Code

; **
*
* Module Name: SW-UARTX.ASM V1.2
* Copyright: ZILOG (c)1999
* Date: OCT 7, 1999
* Created by: Mathias Loehr - ZILOG Germany
* Modified by:
* Compiler: ZDS V3.00B1
* Code size: 294 bytes
* Checksum: 59B3 (Project-Settings-Debugger-Pad Memory FF)
*
* Description:
* Asynchronous Serial RS-232 Interface for Z86E02 and higher
* Half-Duplex Operation: Receive (RX) or Transmit (TX)
*
* Selectable Baudrates:
* RX-4MHz: 1200,2400,4800,9600
* RX-8MHz: 1200,2400,4800,9600,19200
* RX-12MHz: 1200,2400,4800,9600,19200,38400*
* RX-16MHz: 2400,4800,9600,19200,38400
* *crystal <0.5%
*
* TX-4MHz: 1200,2400,4800,9600,19200
* TX-8MHz: 1200,2400,4800,9600,19200,38400
* TX-12MHz: 1200,2400,4800,9600,19200,38400,57600
* TX-16MHz: 2400,4800,9600,19200,38400,57600
*
* Format: 1 START bit, 8 DATA bits, optional 9. DATA bit,
* NO PARITY and 1 STOP bit.
* Operation: T1 in continuous mode is used for bit-time delay
* Register DATA is used for RX or TX buffer
*
* Target Device: Z86E02 and Z86E04/08/30/31/33/34/40/44/733/743
* Oscillator: 4-16MHz crystal or resonator, tolerance max. +-1%
*
* Device Options: AUTOLATCHES OFF YES
* LOW EMI NO
* 32KHZ-OSC NO
* RC-OSC NO
* PERMANENT WDT NO
* TESTMODE DISABLE NO
*
* Defaults: 8MHz XTAL, 19200 Baud TX, 8 DATA, NO PARITY, 1 STOP
*
* Application: RX-Mode - 16 byte receive buffer
* TX-Mode - Send ROM-message
*
* Mode Options: - RX/TX operation mode is set by MODE in "start"
* - 9-bit mode is enabled by NINE_BIT_MODE in "start"
* - Oscillator Frequency is set by XTAL in CONSTANTS DEF
* - Baudrate is set by BAUD in CONSTANTS DEF
* - Top of MCU RAM is set by RAM_TOP in CONSTANTS DEF
AN004102-0502

Application Note

Software UART for the Z86E02

7

* - Top of MCU ROM is set by ROM_TOP in CONSTANTS DEF
* - Wait for STOP bit function is set by WAIT_STOP
* in CONDITIONAL ASSEMBLY SWITCHES
*
* Other Features: The built-in RAM pattern validation keeps valid
* RAM data in case of (spurious) Undervoltage Resets.
* Undervoltage (VBO) Reset can be also caused by ESD.
*

; 1. HARDWARE DESCRIPTION

; Receive (RX): P31
; Transmit(TX): P00

; Note: Add clamping diode between P31 and VCC and RC input filter
10k,100pF)
; at P31, if operated without line driver.

; 2. CONDITIONAL ASSEMBLY SWITCHES:

GLOBALS on ;symbols globally available to linker

ON EQU 1 ;
OFF EQU 0 ;
WAIT_STOP EQU OFF ;ON/OFF. Wait for Stop bit, verify it

;and set FRAME_ERR accordingly

; 3. SEGMENT DEFINITIONS

DEFINE ram_e02, space=rfile, org=04 ;RAM range 04-3F
DEFINE main_e02 ;relocatable ROM 000C-01FA

 DEFINE rollover_e02, org=01FB ;non-relocatable ROM 01F
 ;01FF

; 4. CONSTANTS DEFINITIONS

XTAL EQU 8000 ;SELECT CRYSTAL FREQUENCY HERE!
;Range: 4000-16000=4-16MHz (OSC/2 mode)

 ;4MHz Low EMI in OSC/1 mode = 8000

FIFTY_SEVEN EQU 175*XTAL/8/10000 ;T=17,4us (57600 Baud)
 ; TCLK=XTAL/8000
THIRTY_EIGHT EQU 26*XTAL/8/1000 ;T=26,0us (38400 Baud)
NINETEEN_TWO EQU 52*XTAL/8/1000 ;T=52,1us (19200 Baud)
NINE_SIX EQU 104*XTAL/8/1000 ;T=104,2us (9600 Baud)
FOUR_EIGHT EQU 208*XTAL/8/1000 ;T=208,3us (4800 Baud)
TWO_FOUR EQU 416*XTAL/8/1000 ;T=416,6us (2400 Baud)
ONE_TWO EQU 833*XTAL/8/1000 ;T=833,2us (1200 Baud)
 ;(49,9 rounds down to 49)

BAUD EQU NINETEEN_TWO ;SELECT BAUDRATE HERE!
 ;

IF BAUD > 1023
PBD EQU 8 ;T1 Prescaler setting for bittime delay

ELSEIF BAUD > 511
AN004102-0502

Application Note

Software UART for the Z86E02

8

PBD EQU 4 ;
ELSEIF BAUD > 255

PBD EQU 2 ;
ELSE

PBD EQU 1 ;
ENDIF

BIT0 EQU %01 ;Bit 0 mask
BIT1 EQU %02 ;Bit 1 mask
BIT2 EQU %04 ;Bit 2 mask
BIT3 EQU %08 ;Bit 3 mask
BIT4 EQU %10 ;Bit 4 mask
BIT5 EQU %20 ;Bit 5 mask
BIT6 EQU %40 ;Bit 6 mask
BIT7 EQU %80 ;Bit 7 mask

RAM_TOP EQU %3F ;SELECT TOP OF RAM HERE!
RAM_BOT EQU %04 ;bottom of RAM
ROM_TOP EQU %01FF ;SELECT TOP OF ROM HERE!

DATA_LENGTH EQU 8 ;basic data bits (fixed)
RX EQU 0 ;RX mode
TX EQU 1 ;TX mode

PATTERN1 EQU %5A ;RAM validation pattern
PATTERN2 EQU %A5 ;RAM validation pattern
PATTERN3 EQU %F0 ;RAM validation pattern

; 5. NON-RELOCATABLE I/O-PORTS, RAM & STATUS REGISTER DEFINITIONS
; (LOCAL VARIABLES)

; user-defined port & bank 0 registers (4-bit addressing mode)
PORT_GRP EQU %00 ;port register group
_P0 EQU R0 ;Port 0 R/W
_P2 EQU R2 ;Port 2 R/W
_P3 EQU R3 ;Port 3 R+W
_BIT_CNT EQU R4 ;serial bit counter
_DATA EQU R5 ;receive/transmit data
_DATA2 EQU R6 ;transmit data 2
_NINTH EQU R7 ;9. data bit, usable by SW as

;data/command switch
_NINE_BIT_MODE EQU R8 ;Nine Bit Mode ON/OFF
_RXH EQU R9 ;used in "ser_in" RX-ISR
_RX_PTR EQU R10 ;receive buffer pointer
_TX_CNT EQU R11 ;transmit byte counter
_TX_PTR EQU RR12 ;pointer to transmit table in ROM
_TX_PTR_H EQU R12 ;MSB at even address
_TX_PTR_L EQU R13 ;LSB at odd address

; user-defined control registers (4-bit addressing mode)
CTRL_GRP EQU %F0 ;control register group
_SIO EQU R0 ;sio register (only on classic Z8)
_TMR EQU R1 ;timer mode register
_T1 EQU R2 ;timer/counter 1
_PRE1 EQU R3 ;prescaler 1
_T0 EQU R4 ;timer/counter 0
_PRE0 EQU R5 ;prescaler 0
AN004102-0502

Application Note

Software UART for the Z86E02

9

_P2M EQU R6 ;port 2 mode register
_P3M EQU R7 ;port 3 mode register
_P01M EQU R8 ;port 0/1 mode register
_IPR EQU R9 ;interrupt priority register
_IRQ EQU R10 ;interrupt request register
_IMR EQU R11 ;interrupt mask register
_FLAGS EQU R12 ;flag register
_RP EQU R13 ;register pointer
_SPH EQU R14 ;stack pointer High byte
_SPL EQU R15 ;stack pointer Low byte

; 6. RELOCATABLE RAM DEFINITIONS
; (GLOBAL VARIABLES)

 SEGMENT ram_e02 ;general purpose RAM 04-3F

BIT_CNT DS 1 ;04 - serial bit counter
DATA DS 1 ;05 - receive/transmit data
DATA2 DS 1 ;06 - transmit data 2
NINTH DS 1 ;07 - 9. data bit, usable by SW as

; data/command switch
NINE_BIT_MODE DS 1 ;08 - 1=ON, 0=OFF
RXH DS 1 ;09 - various use in serial_in and
serial_out
RX_PTR DS 1 ;0A - receive buffer pointer
TX_CNT DS 1 ;0B - transmit byte counter
TX_PTR BLKW 1 ;0C - pointer to transmit table in ROM

DS 1 ;0E - unused
DS 1 ;0F - unused

FRAME_ERR DS 1 ;10 - Frame Error Flag, 0=ok, 1=bad
BAUD_SH DS 1 ;11 - Baudrate Shadow
P0_SH DS 1 ;12 - Port 0 Shadow
MODE DS 1 ;13 - RX/TX Operation Mode
RX_AVAIL DS 1 ;14 - 1 = receive character available

; 0 = no data received
SIGNATURE1 DS 1 ;15 - RAM signature
SIGNATURE2 DS 1 ;16 - RAM signature
SIGNATURE3 DS 1 ;17 - RAM signature

DS 1 ;18 - unused
BLKB 7 ;19-1F unused

RX_BUF BLKB 16 ;20-2F Receive Buffer
RX_BUF_END ;30
USER_STACK BLKB 16 ;30-3F reserved for stack

; Max. Stack Depth: 2 Call + 1 INT = 7 bytes
; Top of Stack: RAM_TOP

; 7. Z8 RESET & INTERRUPT VECTORS

VECTOR IRQ0 = dummy_isr ;P32 int, falling edge
VECTOR IRQ1 = dummy_isr ;P33 int, falling edge
VECTOR IRQ2 = serial_in ;P31 int, falling edge
VECTOR IRQ3 = dummy_isr ;P32 int, rising edge
VECTOR IRQ4 = dummy_isr ;T0 (not present on E02)
VECTOR IRQ5 = timer1 ;T1 int
AN004102-0502

Application Note

Software UART for the Z86E02

10

; VECTOR RESET = main ;Reset vector

**
* Application Name: SW-UARTX
**

SEGMENT main_e02 ;
main:

di ;
srp #CTRL_GRP ;select Control register bank
ld _P3M,#BIT0 ;P3 digital inputs

;P2 Push-Pull
ld _P2M,#00000000b ;P2 all outputs
ld P0_SH,#BIT0 ;TX=1 (P00 mark state)
ld P0,P0_SH ;output on Port 0
ld _P01M,#BIT2 ;internal stack, P0 output
cp SIGNATURE1,#PATTERN1 ;check RAM pattern 1
jr nz,ram_is_invalid
cp SIGNATURE2,#PATTERN2 ;check RAM pattern 2
jr nz,ram_is_invalid
cp SIGNATURE3,#PATTERN3 ;check RAM pattern 3
jr z,ram_is_ok ;if RAM is intact skip RAM init

ram_is_invalid:
 ld _SPL,#RAM_BOT ;RAM bottom
init_ram:

clr @_SPL ;clear RAM byte
 inc _SPL ;point to next byte
 cp _SPL,#RAM_TOP+1 ;top of RAM exceeded?
 jr nz,init_ram ;leaves SPL at RAM_TOP+1

ld SIGNATURE1,#PATTERN1 ;write special test patterns
ld SIGNATURE2,#PATTERN2 ;into contiguous RAM locations
ld SIGNATURE3,#PATTERN3 ;

ram_is_ok:
ld _SPL,#RAM_TOP+1 ;init stack pointer
clr TMR ;disable timers
ld _PRE1,#PBD<<2+BIT0+BIT1 ;Modulo-N T1 mode (autoreload)

;PSC=PBD. TCLK=SCLK/4
ld _T1,#BAUD/PBD ;T1 bit-time delay
ld BAUD_SH,#BAUD/PBD ;Baudrate Shadow

ld _IPR,#%2A ;int. priority: 3>5>2>0>4>1
;reserve IRQ3 for highest int

ld _IMR,#00000100b ;enable IRQ2 (RX-INT)
clr IRQ ;clear spurious IRQ´s
ei ;enable interrupts globally

start:
srp #PORT_GRP ;Port Register Group
ld MODE,#TX ;SELECT RX/TX MODE HERE!
ld _NINE_BIT_MODE,#OFF ;SELECT NINE BIT MODE HERE!

;ON or OFF
cp MODE,#RX ;RX mode?
jr z,rx_mode ;

; Transmits a whole message, stored bytewise in ROM at tx_rom
AN004102-0502

Application Note

Software UART for the Z86E02

11

tx_mode:
ld _TX_CNT,#(tx_end-tx_rom) ;rom table length
ld _TX_PTR_H,#>tx_rom ;load MSB of register pair
ld _TX_PTR_L,#<tx_rom ;load LSB of register pair

tx_lp: ldc _DATA,@_TX_PTR ;get constant from ROM table
ld _NINTH,#0 ;optional 9. data bit
call serial_out ;transmit one character
incw _TX_PTR ;point to next character
djnz _TX_CNT,tx_lp ;transmit whole message
jr start ;

; Inits RX mode, receives 16 bytes and stores in RAM buffer at RX_BUF.
; Buffer is overwritten when full.
; Received character is also displayed at P2.

rx_mode:
ld _RX_PTR,#RX_BUF ;

wait_rx:
cp RX_AVAIL,#1 ;character received?
jr nz,wait_rx ;
clr RX_AVAIL ;reset flag immediately
ld _P2,_DATA ;..save/process data
ld @_RX_PTR,_DATA ; within one bit-time
inc _RX_PTR ;
cp _RX_PTR,#RX_BUF_END ;end of buffer exceeded?
jr nz,wait_rx ;wait for next char
jr start ;

; SUBROUTINES

**
* Transmit Data
*
* Returns: none. DATA and NINTH are destroyed.
*
* Entry Values: DATA - byte to be transmitted
* NINTH - bit 0 holds the optional 9. data bit
* P0_SH - shadow register of P0
*
*
* Description: DATA+DATA2 form a 16-bit shift register for serial
 transmission LSB is transmitted first.
* T1 is setup in continous mode to generate the bit-time

 delay.Other interrupts are disabled during transmission.
*
* Notes: jitter-free bit synchronisation to falling START edge by
* entering HALT and waiting for T1 vector interrupt.
*
**

serial_out:
di ;
push IMR ;save user interrupt mask
ld IMR,#BIT5 ;enable T1 interrupt only
AN004102-0502

Application Note

Software UART for the Z86E02

12

or P0_SH,#BIT0 ;TX=1 (Idle mode = mark level)
ld _P0,P0_SH ;output on P00

ld _DATA2,#1 ;shift in STOP bit
cp _NINE_BIT_MODE,#ON ;9-bit mode on?
jr nz,serial_out1 ;branch, if not
sra NINTH ;9. bit into Carry
rlc DATA2 ;shift in 9. data bit

serial_out1:
rcf ;START into Carry
rlc DATA ;START into LSB, D7 into Carry
rlc DATA2 ;now all bits are in

ld _BIT_CNT,#DATA_LENGTH+2 ;sync on first T1 interrupt
add _BIT_CNT,_NINE_BIT_MODE ;
ei ;
ld TMR,#BIT2+BIT3 ;load and enable T1

send_lp:
rrc DATA2 ;LSB into Carry
rrc DATA ;Carry into MSB, LSB into Carry
rlc P0_SH ;get Carry into LSB

tx_sync:
nop ;
halt ;wait on T1 interrupt
ld _P0,P0_SH ;output at P00
rrc P0_SH ;restore P0_SH
djnz _BIT_CNT,send_lp ;loop delay = 54+40=94 SCLK

clr TMR ;disable T1
di ;disable interrupts
pop IMR ;restore user interrupt mask
ei ;
ret ;

**
* Receive data (Interrupt Service)
*
* Returns: DATA received data byte, LSB first
* NINTH optional 9. data bit in LSB
* RX_AVAIL0 = nothing received
* 1 = character is available
* FRAME_ERR 0 = ok
* (optional) 1 = invalid STOP bit detected
* Entry Values: none
*
* Description: Falling START edge causes P31-IRQ2 service.
* After nearly a half bit-time RX is sampled again to validate
* the START bit. Immediate exit in case of glitch or noise.
* Otherwise IRQ5 is enabled and T1 is setup in continous mode
* for bit-time delay. T1 is polled for timeout and received
* bits are shifted into DATA.
* Routine does not wait for the STOP bit and exits in the
* second half of the last data bit.
* RX_AVAIL is set, T1 is disabled and IRQ-bit2 is cleared.
*
* Response: P31-IRQ2: 26 + 0.5x longest instruction = 36 +-10 SCLK
AN004102-0502

Application Note

Software UART for the Z86E02

13

* T1-IRQ5: 2+22/2 = 13 +-11 SCLK
* Jitter: Total sampling jitter: +-21 SCLK
*
**

serial_in:
cp BAUD_SH,#66 ;check BAUD
jr ult,validate_start ;short cut for fast baudrates

 ld _RXH,#(BAUD/6)-(120/12) ;Half-bit delay count in DJNZ
half_bit:

djnz _RXH,half_bit ;12 SCLK - execute delay
validate_start:

tm P3,#BIT1 ;RX=0?
jr nz,rx_exit ;if zero, START bit is valid!
ld TMR,#BIT2+BIT3 ;load and enable T1 (bit time)

or IMR,#BIT5 ;enable T1 Interrupt (polling)
clr NINTH ;clear bit 9
ld _BIT_CNT,#DATA_LENGTH ;number of basic data bits

receive_lp:
tcm IRQ,#BIT5 ;bit-time elapsed - IRQ5=1?

 jr nz,receive_lp ;
sample_data:

ld _RXH,_P3 ;sample P31
rr RXH ;shift right
rr RXH ;P31 into Carry
rrc DATA ;Carry into MSB
and IRQ,#~BIT5 ;reset IRQ5
djnz _BIT_CNT,receive_lp ;loop delay: 86+13=99+-11 SCLK

cp _NINE_BIT_MODE,#ON ;9-bit mode on?
jr nz,rx_ok

wait_bit9:
tcm IRQ,#BIT5 ;bit-time elapsed - IRQ5=1?

 jr nz,wait_bit9 ;
tm P3,#BIT1 ;RX=0?
jr z,rx_ok ;
ld _NINTH,#1 ;set data bit 9

rx_ok:
ld RX_AVAIL,#1 ;set data available flag

IF WAIT_STOP=ON
wait_STOP_bit:

tcm IRQ,#BIT5 ;bit-time elapsed - IRQ5=1?
jr nz,wait_STOP_bit ;
tcm P3,#BIT1 ;STOP=1?
jr z,frame_ok
ld FRAME_ERR,#1 ;indicate frame error
ENDIF

frame_ok:
clr TMR ;disable T1
and IMR,#~BIT5 ;disable T1 interrupt

rx_exit:
and IRQ,#~(BIT2+BIT5) ;clear P31 and T1 requests
iret ;ok exit

**
AN004102-0502

Application Note

Software UART for the Z86E02

14

* Timer 1 Interrupt Service Routine
*
* Execution: 26 (latency) + 14 (IRET) = 40 SCLK
*
* Notes: If this ISR shall be used by other tasks, the T1 interrupt
* in serial_out may be changed from vector to polling mode.
*
**

timer1:
iret ;

**
* Interrupt Service for unused interrupt vectors
**

dummy_isr:
iret

**
* Table #1 - TX message string
**

tx_rom:
.ASCII "SW-UARTX V1.2 (c)1999 ZILOG"
DB %0D ;Carriage Return
DB %0A ;Newline

tx_end:

; RELOCATABLE PC ROLLOVER PROTECTION
; recommended SW-Reset to protect from wrap-around opcode fetches into
; interrupt vector table.

SEGMENT rollover_e02 ;trap routine at the end of ROM
ORG ROM_TOP-4
nop ;synchronize
nop ;synchronize
jp main ;SW-Reset

AN004102-0502

Application Note

Software UART for the Z86E02

15

Flow Charts

Figure 2. Transmit Flow Chart

Subroutine
serial_out

Save interrupt mask
Enable T1 interrupt

Output High at P0

Assemble Start, Data
and Stop in 16-bit shift
register DATA+DATA2

Load bit counter
Enable T1 with bit-time

Shift bit into P0
Shadow register

Wait for T1 bit-time
interrupt (jitterfree)

Output bit at P0
Restore P0 Shadow

Decrement bit counter

Counter = 0?
No

Stop Timer 1
Restore interrupt mask

Return

Yes
AN004102-0502

Application Note

Software UART for the Z86E02

16

Figure 3. Receive Flow Chart

P31 ISR
serial_in

Wait half a bit-time

RX-Pin = 0?

Start T1 with bit-time
 bit counter = 8

Wait bit-time

 Shift bit in DATA
decrement bit counter

Counter = 0?
No

9-bit mode

Wait bit-time

Save bit in NINTH

Return

No

Yes

No

Yes

Yes

Stop Timer 1
Clear P31 Int. Request

RX_AVAIL = 1
AN004102-0502

Application Note

Software UART for the Z86E02

17
Schematic

Figure 4. RS-232 SetupFigure 4
AN004102-0502

Application Note
Software UART for the Z86E02

18
Test Procedure

Equipment Used

The following test equipment was used for testing:

• Prototype board according to schematic

• Personal computer with Windows 95

• Z86CCP01ZEM, called CCP emulator

• Digital oscilloscope (required during debug phase)

• Clock generator (required during debug phase)

General Test Setup and Execution

Test with OTP

The board is equipped with an OTP Z86E02, programmed with the CCP emulator
and the program defaults 8MHz XTAL, 19200 TX, 9-bit mode Off and
WAIT_STOP Off. The OTP programming procedure is given in the Appendix.

The board is connected by a 9-pin serial cable to a standard PC running
Windows 95. The Windows HyperTerminal is called and setup for direct connec-
tion via COM1, 19200 baud, 8-N-1 and No Protocol. When the board is supplied
with +5V, the line message SW-UARTX V1.2 © 1999 ZILOG is displayed across
the screen. A complete setup for HyperTerminal is detailed in the Appendix. Other
terminal programs may be used as well, if they provide corresponding settings.

Test with an Emulator

The CCP emulator is used for the test of all baud rates at clock frequencies of
4MHz, 8MHz and 12MHz (16-MHz operation requires a Z86C50 emulator;
selected CCP emulators may also work at 16MHz.The board is connected to the
emulator by an ICE cable, and the VCC jumper on the emulator is set to supply the
board. The software calls the ZiLOG Developer Studio (ZDS), and a project is cre-
ated for the target MCU. The settings for assembler and linker remain at their
default values. A test for different baud rates and clock frequencies can be per-
formed by changing values for the BAUD and XTAL variables. However, please
note that the crystal on the emulator must be exchanged accordingly. Because
HyperTerminal does not synchronize or error-check the transmission in this set-
ting, a program halt and subsequent recontinuance of program execution may
lead to an improper display.

RECEIVE mode is tested in the same setup. MODE, BAUD and XTAL are set
before compiling. The ASCII representation for each pressed key becomes visible
AN004102-0502

Application Note
Software UART for the Z86E02

19
in the Z8 RAM buffer, starting at 20h. To test a continuous data stream, a text file
with 16 characters can be setup and transmitted from HyperTerminal.

Test Results

All settings according to baud rates and clock frequencies in Table 1 test success-
fully. A clock tolerance of±1% is sufficient for all settings, except 38400 RX
@ 12MHz, which requires a tolerance of ±0.5%.

The basic timing for transmission and reception includes the following variance
per bit:

1. Clock frequency tolerance, as provided by a crystal or resonator: <1%

2. T1 integer value to bit timing deviation: 0.16%

3. BAUD integer rounding for odd crystal frequency: <0.8%

These variances are added and multiplied by the number of transmitted bits (for
example, 10). The resulting word variance must be <50%, because this variance
is the maximum shift from the middle of the bit cell to its margin. In practice, the
word variance should be reasonably lower than 50% for the following reasons:

• The transmitter also exhibits a clock variance

• Receiver bit sampling is not exactly in bit middle

• There is jitter in the transmitter and receiver timing

The SW_UARTX receiver samples in the bit middle (50% of the bit cell) for all baud
rates, except for the highest setting at each frequency. 38200 baud at 16MHz and
all corresponding baud rates sample at round 60%. 38200 baud at 12MHz sam-
ples at approximately 70% of the bit cell. Additionally, there is jitter from P31 inter-
rupt and T1 IRQ polling, resulting in a worst-case measurement of ±21 SCLK.
These values were recorded during the debug phase with a frequency generator
and a digital scope.

References
Gilbert Held, Data Communications Networking Devices, John Wiley & Sons,
1993.

Z86C36 Product Specification, ZiLOG, Inc., 1999.
AN004102-0502

Application Note
Software UART for the Z86E02

20
Appendix

Setup HyperTerminal

Connect: Direct to COM1 or any available COM port

Configure:

• Bits per second: 19200

• Data Bits: 8

• Parity: None

• Stop Bits 1

• Flow Control: None

Settings:

• Function, arrow and control keys act as: Windows Keys

• Emulation: Auto detect

• Back-scroll buffer lines: 0

ASCII Setup: ASCII Receiving:

• Force incoming data to 7-bit ASCI

• Wrap lines that exceed terminal width

OTP Programming Procedure

• Install ZDS version 3, and copy SW_UARTX.ASM and SW_UARTX.ZWS into the
working directory

• IF file ZWS is not available, create FILE ➤ NEW PROJECT for the Z86E02
and Z86CCP01ZEM emulator

• ELSE navigate to FILE ➤ OPEN PROJECT and answer YES to move the
project into the directory path

• BUILD the downloadable file for the debugger

• Navigate to PROJECT ➤ SETTINGS ➤ DEBUGGER ➤ PAD MEMORY,
and check value FF for the correct checksum

• Connect the CCP emulator, power up, and click the RESET debug icon

• Click the OTP icon
AN004102-0502

Application Note
Software UART for the Z86E02

21
• Select DEVICE Z86E02 and the corresponding TOPMARK, (for example,
SL1925)

• Select the following PROGRAMMING OPTIONS:

– AUTOLATCHES DISABLE: YES

– LOW EMI: NO

– RC-OS: NO

– PERMANENT WDT: NO

– EPROM/TESTMODE DISABLE: NO

• Select SERIALIZATION none

• Insert an empty OTP into the emulator programming socket and perform
BLANK CHECK

• PROGRAM the device and note the checksum
AN004102-0502

	Software UART for the Z86E02
	Table of Contents
	Software UART for the Z86E02
	General Overview
	Discussion
	Theory of Operation
	Results of Operation

	Summary
	Reaffirmation of Results

	Technical Support
	Source Code
	Flow Charts
	Schematic

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References
	Appendix
	Setup HyperTerminal
	OTP Programming Procedure

