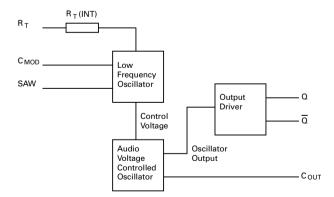
AUTOMOTIVE AND HOUSEHOLD SECURITY SIREN DRIVER

ISSUE 6 – JANUARY 1998

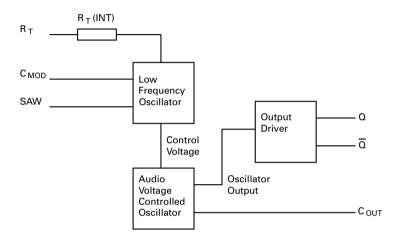
ZSD100

INTRODUCTION


The ZSD100 is a frequency swept alarm signal generator designed specifically for static and automotive security alarm systems. One ZSD100, two timing capacitors, an in-expensive TO92 darlington, piezo transducer and coupling transformer is all that is necessary to produce an ear piercing 120 dB alarm siren.

Including an audio frequency signal generator, low frequency sweep generator, disable circuitry and output driver stages, the ZSD100 provides every function necessary to produce a standard alarm signal. Available in either an 8 pin DIL or SO package the IC gives a low cost compact solution to siren signal generation. The device operates from supplies of 4V up to 18V and is ideal for security alarms in battery powered applications, burglar alarms and automotive anti theft systems.

FEATURES


- 4-18V Operating voltage range.
- Small external component count.
- Direct drive of darlington, mosfet and IGBT output stages.
- Single ended or push-pull output stages.
- Suitable for automotive and static alarm systems.
- Low supply current 10mA operating
 1μA sleep mode
- Low cost 8 pin DIL & SO packages.
- User selected audio and sweep frequencies.
- -40°C to 125°C operating temperature range.
- Choice of modulation waveform.

SCHEMATIC DIAGRAM

FUNCTIONAL DESCRIPTION

The audio signal of the ZSD100 is generated using a squarewave oscillator whose output is capable of directly driving a wide range of output circuits. To produce a characteristic alarm siren sound, the frequency of the audio oscillator is swept over a fixed 2:1 range by a second, low frequency oscillator. The freqencies of both oscillators are controlled by $R_T(INT)$ and capacitors C_{MOD} and C_{OUT} .

PIN DESCRIPTIONS

- R_T Optional external resistor for improved frequency control. An external resistor improves the control of both the modulating and output oscillators.
 The R_T pin is also used to power the device down. Either connecting R_T to V_{CC} or an open circuit will result in the device being disabled.
- SAW Selection of modulation waveform is made using the SAW pin. An open circuit
 produces a triangle wave, sawtooth is achieved by connecting SAW to the C_{MOD}
 pin.
- 3. C_{MOD} An external capacitor is used to program the low frequency modulating oscillator. The value of C_{MOD} recommended is between $0.1\mu F$ and $100\mu F$.
- 4. G_{ND}
- C_{OUT} An external capacitor is used to program the output oscillator. The value of C_{OUT} recommended is between 1nF and 100nF.
- Q Non inverted output driver
- 7. \overline{\text{Q}} Inverted output driver
- V_{CC}

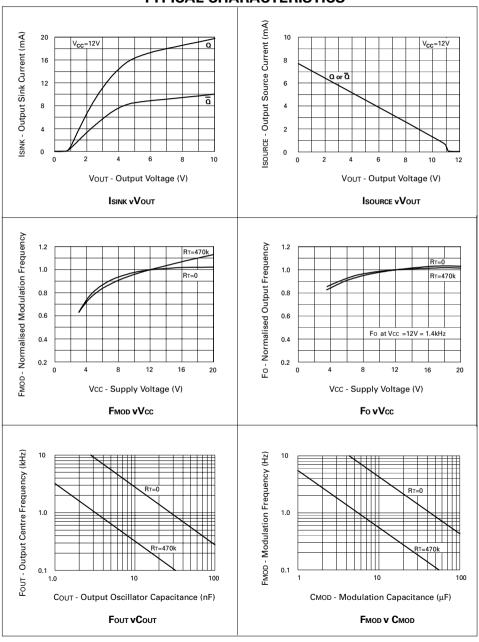
ABSOLUTE MAXIMUM RATING

Power Dissipation (Tamb=25°C)

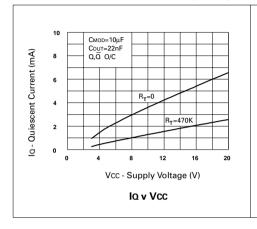
 V_{cc}
 -0.5V to +20V

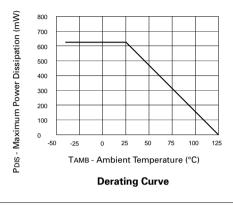
 Operating Temperature
 -40 to 125°C
 SO8
 625mW

 Storage Temperature
 -65 to 150°C
 DIL8
 625mW

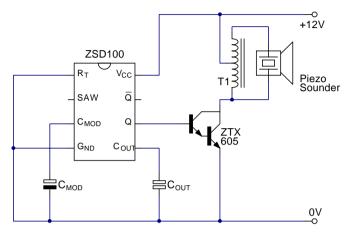

ELECTRICAL CHARACTERISTICS

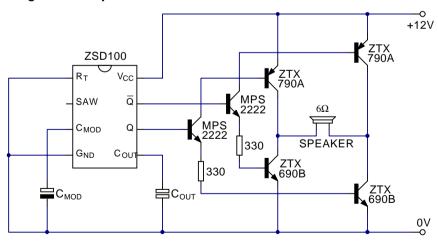
TEST CONDITIONS (Unless otherwise stated):Tamb=25°C, V_{CC}=12V


			ou, an	110	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	CONDITIONS.
Supply Voltage Operating Range	Vcc	4V		18V	
Supply Current Disabled Enabled	Icc			1μΑ 25mA	R _T O/C <u>,</u> V _{CC} =18V R _T , Q, Q at Gnd, V _{CC} =18V
Modulating Oscillator Frequency Range	F _{MOD}	0.1Hz		10Hz	V _{CC} =4 to 18V
Frequency Value See Note 1	F _{MOD}	3.3Hz 5.1Hz	4.3Hz 5.5Hz	5.4Hz 5.9Hz	R_{T} =0, C_{MOD} =10 μ F R_{T} =470 $k\Omega$, C_{MOD} =1 μ F
Output Oscillator Frequency Range	Fout	100Hz		10kHz	V _{CC} =4 to 18V
Centre Frequency (Note 2) Deviation Duty Cycle	F _{OUT} ΔF _{OUT}	1.01kHz	1.26kHz ±33% 49%	1.58kHz 55%	R _T =0, C _{OUT} =22nF
Output Source Current Sink Current Open Circuit Voltage	Isource Isink Vout(High) Vout(Low)	5mA 0.5mA V _{CC} -1.5V		0.5V	V _{OUT} =1.4V V _{OUT} =1.4V I _{OUT} =100μA I _{SINK} =0.1μA
Frequency Control Components Internal Resistor External Resistor Modulation Capacitor Output Capacitor	R _T (INT) R _T (EXT) Смор Соит	0 0.1μF 1nF	61.5kΩ	1MΩ 100μF 100nF	

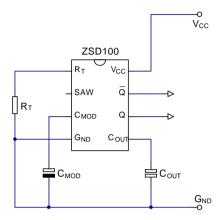

Note 1. $F_{MOD} = \frac{2850}{C_{MOD}(61.5 + R_T (EXT))} Hz$ $C_{MOD} \text{ in } \mu\text{F, R}_T (EXT) \text{ in } k\Omega$ $R_{OUT} = \frac{1710}{C_{OUT}(61.5 + R_T (EXT))} Hz$ $C_{OUT} \text{ in } \mu\text{F, R}_T (EXT) \text{ in } k\Omega$

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS


APPLICATIONS CIRCUITS

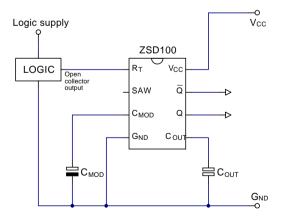
Piezo Sounder


Utilizing a standard autotransformer driven piezo sounder, this circuit indicates a minimum component count alarm solution. In this configuration a ZTX605 darlington transistor can be connected directly to the ouput of the IC without the need for base resistors.

Moving Coil Loudspeaker Sounder

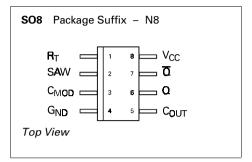
Moving coil loudspeakers are often used for the very highest output automotive alarm sounders. The ZSD100 complementary outputs, with the selection of ZTX790A and ZTX690B transistors, can drive this H bridge ouput circuit without any additional interface components.

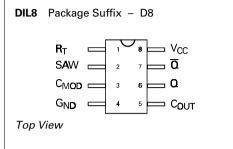
Improved Frequency Control



Improved frequency control can be achieved with an external resistor between the R_T pin and G_{ND} . An external resistor reduces the value of the timing capacitors required for the selected operating frequency and also reduces the ZSD100's power consumption.

Note: The outputs of the ZSD100 have been designed to avoid cross-conduction in full bridge output circuits. Large value external timing resistors can lead to a small level of cross-conduction. It is recommended that external timing resistors are not used with bridge output circuits.


Remote Switching


If the R_T pin is switched open-circuit, all internal functions of the IC are shut down.

Note: A small leakage current in the open collector logic controller will enable the IC. If such leakage cannot be eliminated, its effect can be easily negated by adding a high value resistor (eg. 100k) between pin R_T and V_{CC} . This resistor will have no effect on frequency control.

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part Number	Package	Part Mark
ZSD100D8	DIL8	ZSD100
ZSD100N8	S08	ZSD100