MOS INTEGRATED CIRCUIT **Z78F9418A**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The Z78F9418A is a product in the Z789417A Subseries (for driving LCD) of the 78K/0S Series.

The Z78F9418A has flash memory in place of the internal ROM of the Z789415A, Z789416A, and Z789417A.

Because flash memory allows the program to be written and erased electrically with the device mounted on the board, this product is ideal for the evaluation stages of system development, small-scale production, and rapid development of new products.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

Z789407A, Z789417A Subseries User's Manual: U13952E 78K/0S Series User's Manual Instructions: U11047E

FEATURES

 Pin compatible with mask ROM version (except VPP pin)

Flash memory: 32 KB

Internal data memory

• High-speed RAM: 512 bytes

• LCD display RAM: 28 bytes

Minimum instruction execution time can be changed from high-speed (0.4 μs:@ 5.0 MHz operation with main system clock) to ultra-low-speed (122 μs:@ 32.768 kHz operation with subsystem clock)

• I/O port: 43 pins

· Serial interface: 1 channel

3-wire serial I/O mode/UART mode selectable

• 10-bit resolution A/D converter: 7 channels

• Timer: 6 channels

16-bit timer: 1 channel
8-bit timer/event counter: 2 channels
8-bit timer: 1 channel
Watch timer: 1 channel
Watchdog timer: 1 channel

• LCD controller/driver

Segment signal: 28 pins MAX.

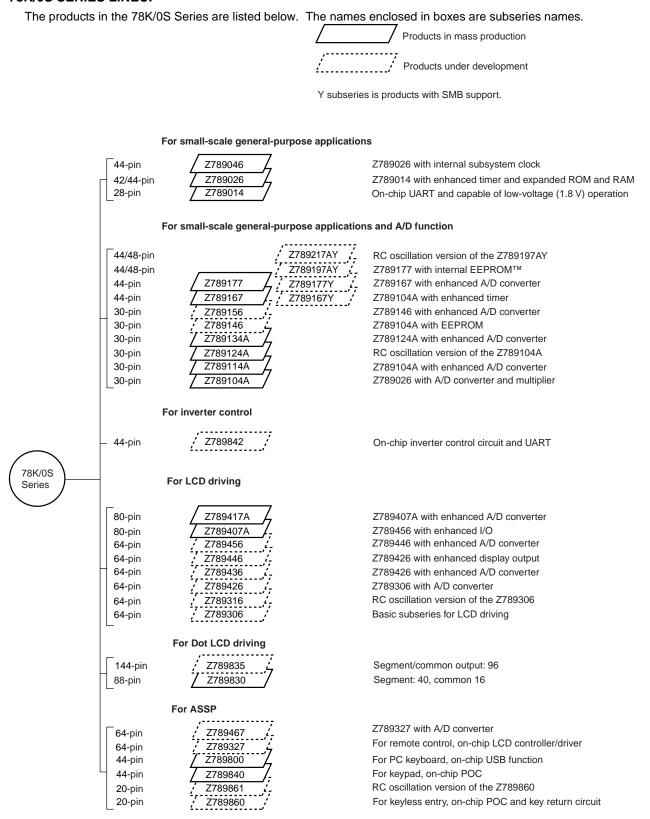
• Common signal: 4 pins MAX.

• 1/2- or 1/3-bias selectable

Supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

APS compact cameras, blood pressure gauges, rice cookers, etc.


ORDERING INFORMATION

Part Number	Package
Z78F9418AGC-8BT	80-pin plastic QFP (14 × 14 mm)
Z78F9418AGK-9EU	80-pin plastic TQFP (fine pitch) (12 ×12 mm)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

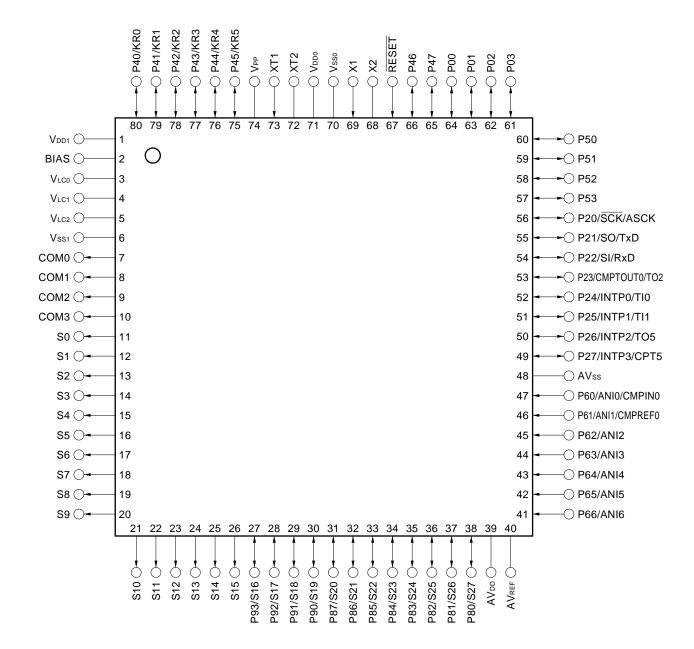
78K/0S SERIES LINEUP

The major functional differences among the subseries are listed below.

	Function	ROM	8-Bit	16-Bit	Watch	WDT	8-Bit	10-Bit	Serial Interface	I/O	V _{DD}	Remark
		Capacity					A/D	A/D			MIN.	
Subseries	s Name										Value	
Small-	Z789046	16 K	1 ch	1 ch	1 ch	1 ch	-	-	1 ch (UART: 1 ch)	34	1.8 V	-
scale general- purpose	Z789026	4 K to 16 K			_							
applica-	Z789014	2 K to 4 K	2 ch	Π						22		
Small-	Z789177	16 K to	3 ch	1 ch	1 ch		-	8 ch	1 ch (UART: 1 ch)	31		_
scale general-	Z789167	24 K					8 ch	_				
purpose	Z789156	8 K to	1 ch		-		_	4 ch		20		On-chip
applica-	Z789146	16 K					4 ch	_				EEPROM
tions and A/D	Z789134A	2 K to					-	4 ch				RC oscillation
function	Z789124A	8 K					4 ch	_				version
	Z789114A						_	4 ch				_
	Z789104A						4 ch	_				
Inverter control	Z789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	-	1 ch (UART: 1 ch)	30	4.0 V	-
LCD	Z789417A	12 K to	3 ch	1 ch	1 ch	1 ch	ı	7 ch	1 ch (UART: 1 ch)	43	1.8 V	_
driving	Z789407A	24 K					7 ch	1				
	Z789456	12 K to	2 ch				-	6 ch		30		
	Z789446	16 K					6 ch	_				
	Z789436						-	6 ch		40		
	Z789426						6 ch	1				
	Z789316	8 K to 16 K					ı		2 ch (UART: 1 ch)	23		RC oscillation version
	Z789306											_
Dot LCD driving	Z789835	24 K to 60 K	6 ch	-	1 ch	1 ch	2 ch	1	1 ch	27	1.8 V	-
9	Z789830	24 K	1 ch	1 ch			-		1 ch (UART: 1 ch)	30	2.7 V	
ASSP	Z789467	4 K to	2 ch	_	1 ch	1 ch	1 ch	_	_	18	1.8 V	On-chip LCD
	Z789327	24 K	3 ch				-		1 ch			
	Z789800	8 K	2 ch	1 ch	_	1 ch	-		2 ch (USB: 1 ch)	31	4.0 V	_
	Z789840						4 ch		1 ch	29	2.8 V	
	Z789861	4 K		-			-		-	14	1.8 V	RC oscillation version, on- chip EEPROM
	Z789860											On-chip EEPROM

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS


	Item	Function		
Internal memory	Flash memory	32 KB		
	High-speed RAM	512 bytes		
	LCD display RAM	28 bytes		
Minimum instruction	execution time	0.4 μs/1.6 μs (@5.0 MHz operation with main system clock) 122 μs (@32.768 kHz operation with subsystem clock)		
General-purpose reg	ister	8 bits × 8 registers		
Instruction set		16-bit operation Bit manipulation (set, reset, test), etc.		
I/O port		Total: 43 pins • CMOS input: 7 pins • CMOS I/O: 32 pins • N-ch open drain (12 V): 4 pins		
A/D converter		10-bit resolution × 7 channels		
Comparator		Timer output controllable		
Serial interface		3-wire serial I/O mode/UART mode selectable: 1 channel		
LCD controller/driver		 Segment signal output: 28 pins MAX. Common signal output: 4 pins MAX. 1/2 or 1/3 bias selectable 		
Timer		 16-bit timer: 8-bit timer: 8-bit timer/event counter: 8-bit timer/event counter: Channels Watch timer: 1 channel Watchdog timer: 1 channel 		
Timer output		2 pins		
Vectored interrupt	Maskable	Internal: 12, external: 4		
source Non-maskable		Internal: 1		
Supply voltage		V _{DD} = 1.8 to 5.5 V		
Operating ambient to	emperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$		
Package		80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)		

CONTENTS

1.	PIN CONFIGURATION (Top View)	6
2.	BLOCK DIAGRAM	8
3.	PIN FUNCTIONS	9
	3.1 Port Pins	
	3.2 Non-Port Pins	
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	12
4.	MEMORY SPACE	15
5.	FLASH MEMORY PROGRAMMING	16
	5.1 Selecting Communication Mode	16
	5.2 Function of Flash Memory Programming	
	5.3 Connecting Flashpro III	
	5.4 Example of Settings for Flashpro III (PG-FP3)	19
6.	OUTLINE OF INSTRUCTION SET	_
	6.1 Conventions	
	6.2 Operation List	22
7.	ELECTRICAL SPECIFICATIONS	27
8.	CHARACTERISTIC CURVE	40
9.	PACKAGE DRAWINGS	41
10	RECOMMENDED SOLDERING CONDITIONS	43
ΑI	PPENDIX A. DIFFERENCES BETWEEN Z78F9418A AND MASK ROM VERSIONS	44
ΑI	PPENDIX B. DEVELOPMENT TOOLS	45
ΑI	PPENDIX C. RELATED DOCUMENTS	47

1. PIN CONFIGURATION (Top View)

• 80-pin plastic QFP (14 x 14 mm) Z78F9418AGC-8BT ullet 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) Z78F9418AGK-9EU

Caution Connect the VPP pin directly to the Vsso or Vss1 pin in normal operation mode.

Z78F9418A

Receive Data

P60 to P66: Port 6 ANI0 to ANI6: **Analog Input** ASCK: Asynchronous Serial Input P80 to P87: Port 8 AV_{DD}: P90 to P93: Port 9 **Analog Power Supply** AVREF: Analog Reference Voltage RESET: Reset

AVss: Analog Ground

BIAS: LCD Power Supply Bias Control S0 to S27: Segment Output SCK: CMPIN0: Comparator Input Serial Clock CMPREF0: Comparator Reference SI: Serial Input CMPTOUT0: SO: Serial Output Comparator Output COM0 to COM3: Common Output TI0, TI1: Timer Input CPT5: Capture Trigger Input TO2, TO5: **Timer Output** INTP0 to INTP3: Interrupt from Peripherals TxD: Transmit Data

INTP0 to INTP3: Interrupt from Peripherals IxD: Transmit Data

KR0 to KR5: Key Return VDD0, VDD1: Power Supply

P00 to P03: Port 0 VLc2: LCD Power Supply

P20 to P27: Port 2 VPP: Programming Power Supply

P40 to P47: Port 4 Vsso, Vss1: Ground

P50 to P53: Port 5 X1, X2: Crystal (Main System Clock)
XT1, XT2: Crystal (Subsystem Clock)

RxD:

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to	I/O	Port 0.	Input	-
P03		4-bit I/O port.		
		Input/output can be specified in 1-bit units.		
		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		
P20	I/O	Port 2.	Input	SCK/ASCK
P21		8-bit I/O port.		SO/TxD
P22		Input/output can be specified in 1-bit units.		SI/RxD
P23		When used as an input port, an on-chip pull-up resistor can be specified		CMPTOUT0/TO2
P24		by means of software.		INTP0/TI0
P25				INTP1/TI1
P26				INTP2/TO5
P27				INTP3/CPT5
P40 to	I/O	Port 4.	Input	KR0 to KR5
P45		8-bit I/O port.		
P46, P47		Input/output can be specified in 1-bit units.		
P40, P47		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		_
P50 to	I/O	Port 5.	Input	_
P53		4-bit N-ch open-drain I/O port.		
		Input/output can be specified in 1-bit units.		
P60	Input	Port 6.	Input	ANIO/CMPINO
P61		7-bit input only port.		ANI1/CMPREF0
P62 to P66				ANI2 to ANI6
P80 to	I/O	Port 8.	Input	S27 to S20
P87		8-bit I/O port.		
		Input/output can be specified in 1-bit units.		
		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		
P90 to	I/O	Port 9.	Input	S19 to S16
P93		4-bit I/O port.		
		Input/output can be specified in 1-bit units.		
		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt input for which the valid edge (rising, falling, or	Input	P24/TI0
INTP1		both rising and falling edges) can be specified		P25/TI1
INTP2				P26/TO5
INTP3				P27/CPT5
KR0 to KR5	Input	Key return signal detection	Input	P40 to P45
SI	Input	Serial interface serial data input	Input	P22/RxD
SO	Output	Serial interface serial data output	Input	P21/TxD
SCK	I/O	Serial interface serial clock input/output	Input	P20/ASCK
ASCK	Input	Serial clock input for asynchronous serial interface	Input	P20/SCK
RxD	Input	Serial data input for asynchronous serial interface	Input	P22/SI
TxD	Output	Serial data output for asynchronous serial interface	Input	P21/SO
TI0	Input	External count clock input to 8-bit timer (TM00)	Input	P24/INTP0
TI1	Input	External count clock input to 8-bit timer (TM01)	Input	P25/INTP1
TO2	Output	8-bit timer (TM02) output	Input	P23/CMPTOUT0
TO5	Output	16-bit timer (TM50) output	Input	P26/INTP2
CPT5	Input	Capture edge input	Input	P27/INTP3
CMPTOUT0	Output	Comparator output	Input	P23/TO2
CMPIN0	Input	Comparator input	Input	P60/ANI0
CMPREF0	Input	Comparator reference voltage input	Input	P61/ANI1
ANI0	Input	Analog input for A/D converter	Input	P60/CMPIN0
ANI1				P61/CMPREF0
ANI2 to ANI6				P62 to P66
AVREF	_	Reference voltage for A/D converter	-	-
AVss	-	Ground potential for A/D converter	-	-
AV _{DD}	-	Analog power supply for A/D converter	-	_
S0 to S15	Output	Segment signal output of LCD controller/driver	Output	-
S16 to S19			Input	P93 to P90
S20 to S27				P87 to P80
COM0 to COM3	Output	Common signal output of LCD controller/driver	Output	_
VLC0 to VLC2	_	LCD driving voltage	-	-
BIAS	_	Supply voltage for LCD driving	-	-
X1	Input	Connecting crystal resonator for main system clock oscillation	-	-
X2	_		-	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	-
XT2	_		-	-
RESET	Input	System reset input	Input	-

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
V _{DD0}	-	Positive power supply for ports	-	-
V _{DD1}	-	Positive power supply (except ports)	-	-
Vsso	-	Ground potential for ports	-	-
Vss1	-	Ground potential (except ports)	-	-
Vpp	-	Flash memory programming mode setting. High-voltage application for program write/verify. In normal operation mode, connect directly to Vsso or Vsso.		_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P03	5-H	I/O	Input: Independently connect to VDDD, VDD1, VSS0, or VSS1 via a resistor.
P20/SCK/ASCK	8-C		Output: Leave open.
P21/SO/TxD			
P22/SI/RxD			
P23/CMPTOUT0/TO2	10-B		
P24/INTP0/TI0	8-C		
P25/INTP1/TI1			
P26/INTP2/TO5]		
P27/INTP3/CPT5			
P40/KR0 to P45/KR5]		
P46, P47	5-H		
P50 to P53	13-T		Input: Independently connect to VDD0 or VDD1 via a resistor.
			Output: Leave open.
P60/ANI0/CMPIN0	9-D	Input	Connect directly to VDD0, VDD1, VSS0, or VSS1.
P61/ANI1/CMPREF0			
P62/ANI2 to P66/ANI6	9-C		
P80/S27 to P87/S20	17-F	I/O	Input: Independently connect to VDDD, VDD1, VSS0, or VSS1 via a resistor.
P90/S19 to P93/S16			Output: Leave open.
S0 to S15	17-B	Output	Leave open.
COM0 to COM3	18-A		
VLC0 to VLC2	-	-	
BIAS			Leave open (If all VLco through VLc2 are unused, however, independently
			connect them to Vsso or Vsst via a resistor).
XT1		Input	Connect to Vsso or Vss1.
XT2		-	Leave open.
RESET	2	Input	-
VPP	-	=	Connect directly to Vsso or Vss1.

Type 2 Type 9-D VREF (Threshold voltage) Input Schmitt-triggered input with hysteresis characteristics enable Comparator Type 5-H Type 10-B V_{DD0} V_{DD0} Pull-up Pull-up enable enable V_{DD0} Data Data P-ch ○ IN/OUT -OIN/OUT Output **-** N-ch Open drain Output disable disable N-ch Vsso 1/// Vsso | Input enable Type 13-T Type 8-C VDD0 Pull-up P-ch enable -O IN/OUT V_{DD0} Output data Output disable Data O IN/OUT Output Input enable Middle-voltage disable input buffer Type 9-C Type 17-B V_{LC0} Comparator IN O V_{LC1} P-ch V_{REF} SEG -○ OUT (Threshold voltage) data N-ch Input V_{LC2} enable

Figure 3-1. Pin I/O Circuits (1/2)

Vss₁ ///

V_{DD0} Type 18-A Type 17-F Pull-up P-ch V_{LC0} enable V_{DD0} Data V_{LC1} P-ch N-ch O IN/OUT P-ch N-ch N-ch Output OUT N-ch disable COM Vsso /// data Input V_{LC2} enable $V_{\text{\tiny LC0}}$ Vssı 卅 P-ch — V_{LC1} SEG – ► P-ch data SEG N-ch output disable V_{LC2} N-ch

Figure 3-1. Pin I/O Circuits (2/2)

4. MEMORY SPACE

The Z78F9418A can access 64 KB of memory space. Figure 4-1 shows the memory map.

FFFFH Special function register 256×8 bits F F 0 0 H FEFFH Internal high-speed RAM 512×8 bits FD00H FCFFH Reserved FA1CH FA1BH LCD display RAM space 28×8 bits Data memory space F A 0 0 H F9FFH Reserved 7 F F F H 8000H 7 F F F H Program area 0080H Program memory Internal flash memory 007FH space 32768×8 bits CALLT table area 0 0 4 0 H 003FH Program area 0 0 2 4 H 0023H Vector table area 0 0 0 0 H $0\ 0\ 0\ 0\ H$

Figure 4-1. Memory Map

5. FLASH MEMORY PROGRAMMING

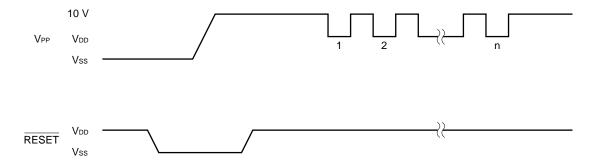
The program memory that is incorporated in the Z78F9418A is flash memory.

With flash memory, it is possible to write programs on-board. Writing is performed by connecting a dedicated flash programmer (Flashpro III (Part No. FL-PR3, PG-FP3)) to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

5.1 Selecting Communication Mode

Writing to flash memory is performed using the Flashpro III in a serial communication mode. Select one of the communication modes in Table 5-1. The selection of the communication mode is made by using the format shown in Figure 5-1. Each communication mode is selected using the number of VPP pulses shown in Table 5-1.


Table 5-1. List of Communication Mode

Communication Mode	Pins	V _{PP} Pulses
3-wire serial I/O	SCK/ASCK/P20 SO/TxD/P21 SI/RxD/P22	0
UART	TxD/SO/P21 RxD/SI/P22	8
Pseudo 3-wire ^{Note}	P00 (Serial clock input) P01 (Serial data output) P02 (Serial data input)	12
	P40/KR0 (Serial clock input) P41/KR1 (Serial data output) P42/KR2 (Serial data input)	13

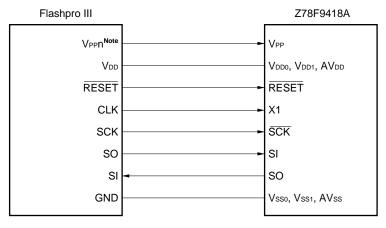
Note Serial transfer is carried out by controlling ports with software.

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 5-1.

Figure 5-1. Format of Communication Mode Selection

5.2 Function of Flash Memory Programming

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 5-2 shows the major functions of flash memory programming.

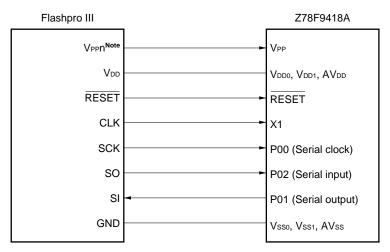

Table 5-2. Major Function of Flash Memory Programming

Function	Description
Batch erase	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
Data write	Performs a write operation to the flash memory based on the write start address and the number of data to be written (number of bytes).
Batch verify	Compares the entire memory contents with the input data.

5.3 Connecting Flashpro III

The connection of the Flashpro III and the Z78F9418A differs according to the communication mode (3-wire serial I/O, UART, and pseudo 3-wire). The connections for each communication mode are shown in Figures 5-2, 5-3, and 5-4, respectively.

Figure 5-2. Connection Example of Flashpro III When Using 3-Wire Serial I/O Mode


Note n = 1, 2

Flashpro III Z78F9418A V_{PP}n^{Note} V_{PP} $V_{DD0},\,V_{DD1},\,AV_{DD}$ V_{DD} RESET RESET CLK X1 SO RxD SI TxD GND Vsso, Vss1, AVss

Figure 5-3. Connection Example of Flashpro III When Using UART Mode

Note n = 1, 2

Figure 5-4. Connection Example of Flashpro III When Using Pseudo 3-Wire (When P0 Is Used)

Note n = 1, 2

5.4 Example of Settings for Flashpro III (PG-FP3)

When writing to flash memory using Flashpro III (PG-FP3), make the following settings.

- <1> Load a parameter file.
- <2> Select the mode of serial communication and serial clock with a type command.
- <3> Make the settings according to the example of settings for PG-FP3 shown below.

Table 5-3. Example of Settings for PG-FP3

Communication Mode	Example of Settings for PG	-FP3	VPP Pulse NumberNote1
3-wire serial I/O	COMM PORT	SIO-ch0	0
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	
UART	COMM PORT	UART-ch0	8
	CPU CLK	On Target Board	
	On Target Board	4.1943 MHz	
	UART BPS	9600 bps ^{Note 2}	
Pseudo 3-wire	COMM PORT	Port A/B	12/13
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 kHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 kHz	

- **Notes 1.** This is the number of VPP pulses that are supplied by the Flashpro III at serial communication initialization. The pins that will be used for communication are determined according to this number.
 - 2. Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps.

Remark COMM PORT: Serial port selection

SIO CLK: Serial clock frequency selection
CPU CLK: Input CPU clock source selection

6. OUTLINE OF INSTRUCTION SET

This section shows a list of the instructions of the Z78F9418A.

6.1 Conventions

6.1.1 Operand formats and syntax

One or more operands are written in the operand field of each instruction in accordance with the operand format and syntax of that instruction (for details, refer to the assembler specifications). If two or more operands are shown, select one of them. The uppercase characters, and the symbols #, !, \$, [, and] are keywords and must be written as shown. The meanings of these symbols are as follows:

- #: Specifies immediate data.
- \$: Specifies a relative address.
- !: Specifies an absolute address.
- []: Specifies an indirect address.

To specify immediate data, write an appropriate value or label. When using a label, be sure to use the symbols #, !, \$, [, and].

The register syntax operands r and rp can be specified as either a function name (such as X, A, and C) or an absolute name (such as R0, R1, and R2 as shown in the parentheses in the table below).

Table 6-1. Operand Formats and Syntax

Format	Syntax				
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)				
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)				
sfr	Special function register symbol				
saddr	FE20H to FF1FH Immediate data or label				
saddrp	FE20H to FF1FH Immediate data or label (even address only)				
addr16	0000H to FFFFH Immediate data or label (even address only when 16-bit data transfer instruction is used)				
addr5	0040H to 007FH Immediate data or label (even address only)				
word	16-bit immediate data or label				
byte	8-bit immediate data or label				
bit	3-bit immediate data or label				

6.1.2 Explanation of symbols in operation field

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Non-maskable interrupt processing flag

(): Contents of memory addressed by address or register contents in ()

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

.: Logical product (AND)

v: Logical sum (OR)

---- : Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

6.1.3 Explanation of symbols in flag operation field

(Blank): Not affected

0: Cleared to 0

1: Set to 1

x: Set or cleared depending on resultR: Previously saved value is stored

6.2 Operation List

Mnemonic	Operand		Bytes	Clocks	Operation	-	Flag	
			,			Z	AC	CY
MOV	r, #byte		3	6	r←byte			
	saddr, #byte		3	6	(saddr)←byte			
	sfr, #byte		3	6	sfr←byte			
	A, r	Note 1	2	4	A←r			
	r, A	Note 1	2	4	r←A			
	A, saddr		2	4	A←(saddr)			
	saddr, A		2	4	(saddr)←A			
	A, sfr		2	4	A←sfr			
	sfr, A		2	4	sfr←A			
	A, !addr16		3	8	A←(addr16)			
	!addr16, A		3	8	(addr16)←A			
	PSW, #byte		3	6	PSW←byte	×	×	×
	A, PSW		2	4	A←PSW			
	PSW, A		2	4	PSW←A	×	×	×
	A, [DE]		1	6	A←(DE)			
	[DE], A		1	6	(DE)←A			
	A, [HL]		1	6	A←(HL)			
	[HL], A		1	6	(HL)←A			
	A, [HL+byte]		2	6	A←(HL+byte)			
	[HL+byte], A		2	6	(HL+byte)←A			
XCH	A, X		1	4	$A \leftrightarrow X$			
	A, r	Note 2	2	6	A↔r			
	A, saddr		2	6	A↔(saddr)			
	A, sfr		2	6	A↔(sfr)			
	A, [DE]		1	8	A↔(DE)			
	A, [HL]		1	8	A↔(HL)			
	A, [HL+byte]		2	8	A↔(HL+byte)			
MOVW	rp, #word		3	6	rp←word			
	AX, saddrp		2	6	AX←(saddrp)			
	saddrp, AX		2	8	(saddrp)←AX			
	AX, rp	Note 3	1	4	AX←rp			
	rp, AX	Note 3	1	4	rp←AX			
XCHW	AX, rp	Note 3	1	8	AX↔rp			

Notes 1. Except r = A

2. Except r = A, X

3. rp = BC, DE, or HL only

Maamania	Operand	Duton	Clocks	Operation		Fla	ıg
Mnemonic	Operand	Bytes	Clocks	Operation	Z	AC	CY
ADD	A, #byte	2	4	A, CY←A+byte	×	×	×
	saddr, #byte	3	6	(saddr), CY←(saddr)+byte	×	×	×
	A, r	2	4	A, CY←A+r	×	×	×
	A, saddr	2	4	A, CY←A+(saddr)	×	×	×
	A, !addr16	3	8	A, CY←A+(addr16)	×	×	×
	A, [HL]	1	6	A, CY←A+(HL)	×	×	×
	A, [HL+byte]	2	6	A, CY←A+(HL+byte)	×	×	×
ADDC	A, #byte	2	4	A, CY←A+byte+CY	×	×	×
	saddr, #byte	3	6	(saddr), CY←(saddr)+byte+CY	×	×	×
	A, r	2	4	A, CY←A+r+CY	×	×	×
	A, saddr	2	4	A, CY←A+(saddr)+CY	×	×	×
	A, !addr16	3	8	A, CY←A+(addr16)+CY	×	×	×
	A, [HL]	1	6	A, CY←A+(HL)+CY	×	×	×
	A, [HL+byte]	2	6	A, CY←A+(HL+byte)+CY	×	×	×
SUB	A, #byte	2	4	A, CY←A-byte	×	×	×
	saddr, #byte	3	6	(saddr), CY←(saddr)-byte	×	×	×
	A, r	2	4	A, C←A−r	×	×	×
	A, saddr	2	4	A, CY←A-(saddr)	×	×	×
	A, !addr16	3	8	A, CY← A–(addr16)	×	×	×
	A, [HL]	1	6	A, CY←A−(HL)	×	×	×
	A, [HL+byte]	2	6	A, CY←A−(HL+byte)	×	×	×
SUBC	A, #byte	2	4	A, CY←A-byte-CY	×	×	×
	saddr, #byte	3	6	(saddr), CY←(saddr)-byte-CY	×	×	×
	A, r	2	4	A, CY←A−r−CY	×	×	×
	A, saddr	2	4	A, CY←A-(saddr)-CY	×	×	×
	A, !addr16	3	8	A, CY←A-(addr16)-CY	×	×	×
	A, [HL]	1	6	A, CY←A−(HL)−CY	×	X	×
	A, [HL+byte]	2	6	A, CY←A-(HL+byte)-CY	×	×	×
AND	A, #byte	2	4	A←A∧byte	×		
	saddr, #byte	3	6	(saddr)←(saddr)∧byte	×		
	A, r	2	4	A←A∧r	×		
	A, saddr	2	4	A←A∧(saddr)	×		
	A, !addr16	3	8	A←A∧(addr16)	×		
	A, [HL]	1	6	A←A∧(HL)	×		
	A, [HL+byte]	2	6	$A \leftarrow A \land (HL + byte)$	×		

Maaaaaaia	On area d	Dutaa	Clasks	On anation	Flag
Mnemonic	Operand	Bytes	Clocks	Operation	Z AC CY
OR	A, #byte	2	4	A←A√byte	×
	saddr, #byte	3	6	(saddr)←(saddr)√byte	×
	A, r	2	4	A←A∨r	×
	A, saddr	2	4	A←A∨ (saddr)	×
	A, !addr16	3	8	A←A∨(addr16)	×
	A, [HL]	1	6	A←A∨(HL)	×
	A, [HL+byte]	2	6	A←A∨(HL+byte)	×
XOR	A, #byte	2	4	A←A ∨ byte	×
	saddr, #byte	3	6	(saddr)←(saddr)→byte	×
	A, r	2	4	A←A∀r	×
	A, saddr	2	4	A←A∀(saddr)	×
	A, !addr16	3	8	A←A⊬(addr16)	×
	A, [HL]	1	6	A←A⊬(HL)	×
	A, [HL+byte]	2	6	A←A∀(HL+byte)	×
CMP	A, #byte	2	4	A-byte	× × ×
	saddr, #byte	3	6	(saddr)-byte	× × ×
	A, r	2	4	A-r	× × ×
	A, saddr	2	4	A-(saddr)	× × ×
	A, !addr16	3	8	A-(addr16)	× × ×
	A, [HL]	1	6	A-(HL)	× × ×
	A, [HL+byte]	2	6	A-(HL+byte)	× × ×
ADDW	AX, #word	3	6	AX, CY←AX+word	× × ×
SUBW	AX, #word	3	6	AX, CY←AX-word	× × ×
CMPW	AX, #word	3	6	AX-word	× × ×
INC	r	2	4	r←r+1	× ×
	saddr	2	4	(saddr)←(saddr)+1	× ×
DEC	r	2	4	r←r–1	× ×
	saddr	2	4	(saddr)←(saddr)-1	× ×
INCW	гр	1	4	rp←rp+1	
DECW	rp	1	4	rp←rp–1	
ROR	A, 1	1	2	(CY, A7←A ₀ , A _{m-1} ←A _m) × 1	×
ROL	A, 1	1	2	(CY, A ₀ ←A ₇ , A _{m+1} ←A _m) × 1	×
RORC	A, 1	1	2	(CY←A₀, A७←CY, Am-1←Am) × 1	×
ROLC	A, 1	1	2	(CY←A ₇ , A ₀ ←CY, A _m + ₁ ←A _m) × 1	×

Mnemonic	Operand	Bytes	Clocks	Operation		Fla	g
WITCHIOTIC	Operanu	Dytes	Olocka	Орегация	Z	AC	CY
SET1	saddr. bit	3	6	(saddr. bit)←1			
	sfr. bit	3	6	sfr. bit←1			
	A. bit	2	4	A. bit←1			
	PSW. bit	3	6	PSW. bit←1	×	×	×
	[HL]. bit	2	10	(HL). bit←1			
CLR1	saddr. bit	3	6	(saddr. bit)←0			
	sfr. bit	3	6	sfr. bit←0			
	A. bit	2	4	A. bit←0			
	PSW. bit	3	6	PSW. bit←0	×	×	×
	[HL]. bit	2	10	(HL). bit←0			
SET1	CY	1	2	CY←1			1
CLR1	CY	1	2	CY←0			0
NOT1	CY	1	2	CY←CY			×
CALL	!addr16	3	6	(SP-1)←(PC+3) _H , (SP-2)←(PC+3) _L ,			
				PC←addr16, SP←SP-2			
CALLT	[addr5]	1	8	(SP-1)←(PC+1) _H , (SP-2)←(PC+1) _L ,			
				PCн←(00000000, addr5+1),			
				PC∟←(00000000, addr5),			
				SP←SP-2			
RET		1	6	PC _H ← (SP+1), PC _L ←(SP),			
				SP←SP+2			
RETI		1	8	PC _H ← (SP+1), PC _L ←(SP),	R	R	R
				PSW←(SP+2), SP←SP+3,			
				NMIS←0			
PUSH	PSW	1	2	(SP-1)←PSW, SP←SP-1			
	rp	1	4	(SP-1)←rрн, (SP-2)←rp∟,			
				SP←SP-2			
POP	PSW	1	4	PSW←(SP), SP←SP+1	R	R	R
	rp	1	6	грн←(SP+1), гр∟← (SP),			
				SP←SP+2			
MOVW	SP, AX	2	8	SP←AX			
	AX, SP	2	6	AX←SP			
BR	!addr16	3	6	PC←addr16			
	\$addr16	2	6	PC←PC+2+jdisp8			
	AX	1	6	PCH←A, PCL←X			

Maamania	Operand	Durton	Clooks	Operation		Flag	g
Mnemonic	Operand	Bytes	Clocks	Operation	Z	. AC	CY
ВС	\$addr16	2	6	PC←PC+2+jdisp8 if CY = 1			
BNC	\$addr16	2	6	PC←PC+2+jdisp8 if CY = 0			
BZ	\$addr16	2	6	PC←PC+2+jdisp8 if Z = 1			
BNZ	\$addr16	2	6	PC←PC+2+jdisp8 if Z = 0			
ВТ	saddr. bit, \$addr16	4	10	PC←PC+4+jdisp8			
				if (saddr. bit) = 1			
	sfr. bit, \$addr16	4	10	PC←PC+4+jdisp8 if sfr. bit = 1			
	A. bit, \$addr16	3	8	PC←PC+3+jdisp8 if A. bit = 1			
	PSW. bit, \$addr16	4	10	PC←PC+4+jdisp8 if PSW. bit = 1			
BF	saddr. bit, \$addr16	4	10	PC←PC+4+jdisp8			
				if (saddr. bit) = 0			
	sfr. bit, \$addr16	4	10	PC←PC+4+jdisp8 if sfr. bit = 0			
	A. bit, \$addr16	3	8	PC←PC+3+jdisp8 if A. bit = 0			
	PSW. bit, \$addr16	4	10	PC←PC+4+jdisp8 if PSW. bit = 0			
DBNZ	B, \$addr16	2	6	B←B–1, then			
				PC←PC+2+jdisp8 if B ≠ 0			
	C, \$addr16	2	6	C←C-1, then			
				PC←PC+2+jdisp8 if C ≠ 0			
	saddr, \$addr16	3	8	(saddr)←(saddr)-1, then			
				PC←PC+3+jdisp8 if (saddr) ≠ 0			
NOP		1	2	No Operation			
EI		3	6	IE←1 (Enable Interrupt)			
DI		3	6	IE←0 (Disable Interrupt)			
HALT		1	2	Set HALT Mode			
STOP		1	2	Set STOP Mode			

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}	$AV_{DD}-0.3~V \leq V_{DD}$	≤ AV _{DD} + 0.3 V	-0.3 to +6.5	V
	AV _{DD}	$AV_{REF} \le V_{DD} + 0.3 V$			
	AVREF	$AV_{REF} \le AV_{DD} + 0.3$	V		
Input voltage	VII	Pins other than P50	to P53	-0.3 to V _{DD} + 0.3	V
	V ₁₂	P50 to P53	N-ch open drain	-0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, high	Іон	1 pin		-10	mA
		Total for all pins		-30	mA
Output current, low	loL	1 pin		30	mA
		Total for all pins		160	mA
Operating ambient	TA	In normal operation	mode	-40 to +85	°C
temperature		During flash memor	y programming	10 to 40	°C
Storage temperature	T _{stg}			-40 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VPP X1 X2	Oscillation frequency (fx) ^{Note 1}	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
	C1 C2 C2	Oscillation stabilization time ^{Note 2}	After V _{DD} has reached MIN. of oscillation start voltage			4	ms
Crystal resonator	VPP X1 X2	Oscillation frequency $(fx)^{Note 1}$		1.0		5.0	MHz
	C1= C2=	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
	 	time ^{Note 2}				30	ms
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
		X1 input high-/low-level widths (txH, txL)		85		500	ns
	X1 X2	X1 input frequency (fx) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		5.0	MHz
	OPEN	X1 input high-/low-level widths (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - **2.** Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation is stabilized within the oscillation wait time.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vsso.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	VPP XT1 XT2	Oscillation frequency (fxt) ^{Note 1}		32	32.768	35	kHz
	C3= C4=	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	- 	time ^{Note 2}				10	s
External clock	XT1 XT2	XT1 input frequency (fxt) ^{Note 1}		32		35	kHz
	4	XT1 input high-/low- level widths (txтн, txть)		14.3		15.6	μS

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation is stabilized within the oscillation wait time.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vsso.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V) (1/2)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin					-1	mA
		Total for a	II pins				-15	mA
Output current, low	loL	Per pin					10	mA
		Total for a	II pins				80	mA
Input voltage, high	V _{IH1}	P00 to P0	3, P46, P47, P60 to P66,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
		P80 to P8	7, P90 to P93		0.9V _{DD}		V _{DD}	V
	V _{IH2}	P50 to	N-ch open drain	V _{DD} = 2.7 to 5.5 V	0.7Vdd		12	V
		P53			0.9Vdd		12	V
	V _{IH3}	RESET, F	20 to P27, P40 to P45	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
					0.9Vdd		V _{DD}	V
	V _{IH4}	X1, X2, X	Γ1, XT2		V _{DD} -0.1		V _{DD}	٧
Input voltage, low	VIL1	P00 to P0	3, P46, P47, P60 to P66,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P80 to P8	7, P90 to P93		0		0.1V _{DD}	V
	V _{IL2}	P50 to P5	3	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
					0		0.1V _{DD}	V
	V _{IL3}	RESET, F	20 to P27, P40 to P45	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2V _{DD}	V
					0		0.1V _{DD}	V
	V _{IL4}	X1, X2, X	T1, XT2	1	0		0.1	V
Output voltage, high	Vон	V _{DD} = 4.5	to 5.5 V, Iон = -1 mA		V _{DD} -1.0			V
		V _{DD} = 1.8	to 5.5 V, Ioн = -100 μA		V _{DD} -0.5			٧
Output voltage, low	V _{OL1}		than P50 to P53	V _{DD} = 4.5 to 5.5 V			1.0	V
				IoL = 10 mA				
				$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$			0.5	V
				IoL = 400 μA				
	V _{OL2}	P50 to P5	3	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$			1.0	V
				IoL = 10 mA				
				$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$			0.4	V
				IoL = 1.6 mA				
Input leakage	Ішнт	$V_I = V_{DD}$		Pins other than			3	μA
current, high				P50 to P53 (N-ch open drain), X1,				
				X2, XT1, and XT2				
	I _{LIH2}			X1, X2, XT1, XT2			20	μA
	Ішнз	Vı = 12 V		P50 to P53 (N-ch			20	μA
	TENTO	V1 - 12 V		open drain)			20	μ
Input leakage	ILIL1	Vı = 0 V		Pins other than			-3	μA
current, low				P50 to P53 (N-ch				,
				open drain), X1,				
		_		X2, XT1, and XT2				
	ILIL2			X1, X2, XT1, XT2			-20	μA
	Ішз			P50 to P53 (N-ch			-3 ^{Note}	μA
				open drain)				

Note When P50 to P53 are set in the input mode, a low-level input leakage current of $-30 \mu A$ (MAX.) flows only for the duration of one cycle time if an instruction to read P50 to P53 is executed. Otherwise, the leakage current of $-3 \mu A$ (MAX.) flows.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V) (2/2)

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Output leakage current, high	Ісон	Vo = V _{DD}				3	μΑ
Output leakage current, low	ILOL	Vo = 0 V				-3	μΑ
Software pull-up resistor	R ₁	V _I = 0 V, pins other than P50 to P5	53	50	100	200	kΩ
Supply current	IDD1 Note 1	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$		5.0	14.0	mA
		operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 5}}$		2.0	5.0	mA
	IDD2 ^{Note 1}	(C1 = C2 = 22 pF)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 5}}$		1.5	3.0	mA
		5.0 MHz crystal oscillation HALT	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$		2.0	6.0	mA
		mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 5}}$		1.0	3.0	mA
		(C1 = C2 = 22 pF)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 5}}$		0.7	2.0	mA
	IDD3 ^{Note 1}	Note 3	$V_{DD} = 5.0 \text{ V} \pm 10\%$		200	600	μA
			$V_{DD} = 3.0 \text{ V} \pm 10\%$		150	450	μA
		$(C3 = C4 = 22 \text{ pF}, R1 = 220 \text{ k}\Omega)$	V _{DD} = 2.0 V ±10%		100	300	μA
	IDD4 ^{Note 1}	32.768 kHz crystal oscillation	V _{DD} = 5.0 V ±10%		50	150	μА
		HALT mode Note 3	V _{DD} = 3.0 V ±10%		30	90	μА
		$(C3 = C4 = 22 pF, R1 = 220 k\Omega)$	V _{DD} = 2.0 V ±10%		20	60	μА
	IDD5 ^{Note 1}	32.768 kHz crystal oscillation	V _{DD} = 5.0 V ±10%		0.1	10	μА
		STOP mode	V _{DD} = 3.0 V ±10%		0.05	5.0	μА
			T _A = 25°C		0.05	3.0	μА
			V _{DD} = 2.0 V ±10%		0.05	3.0	μА
	IDD6 ^{Notes 1, 2}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$		6.0	16.0	mA
		A/D operation mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 5}}$		3.0	7.0	mA
		(C1 = C2 = 22 pF)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 5}}$		2.5	5.0	mA

Notes 1. The current flowing to the AVREFON (ADCS0 (bit 7 of A/D converter mode register 0 (ADM0)) = 1) current, AVDD current, and port current (including the current flowing through the on-chip pull-up resistors) is not included.

- 2. For the current flowing into AVREF, refer to 10-Bit A/D Converter Characteristics.
- 3. When main system clock is stopped
- 4. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- **5.** Low-speed mode operation (when PCC is set to 02H)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

LCD Characteristics (T_A = -40 to +85°C, V_{DD} = 2.2 to 5.5 V)

Parameter	Symbol		Conditions			MAX.	Unit
LCD drive voltage	VLCD	VAON20 = 1	NON20 = 1				٧
		VAON20 = 0 ^{Note 1}	At 1/3 bias	2.7		V _{DD}	V
			At 1/2 bias	3.0		V _{DD}	V
LCD output voltage deviation Note 2 (common)	Vodc	$Io = \pm 5 \mu A$	VLCD0 = VLCD VLCD1 = VLCD × 2/3	0		±0.2	٧
LCD output voltage deviation ^{Note 2} (segment)	Vods	Io = ±1 μA	$2.2 \text{ V} \leq \text{V}_{\text{LCD}} \leq \text{V}_{\text{DD}}$ $\text{V}_{\text{LCD2}} = \text{V}_{\text{LCD}} \times 1/3^{\text{Note 1}}$	0		±0.2	V

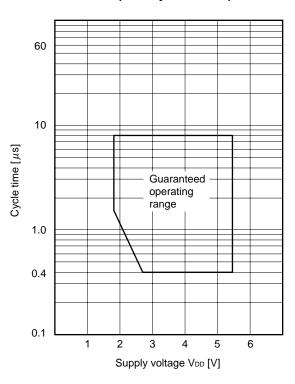
Notes 1. $T_A = -10$ to $+85^{\circ}C$ in the normal mode (VAON20 = 0)

2. Voltage deviation is the voltage difference between the ideal value of a segment or the common output (VLCDn: n = 0 to 2) and output voltage.

Flash Memory Write/Erase Characteristics

(TA = 10 to 40°C, VDD = 1.8 to 5.5 V, in 5.0 MHz crystal oscillation operating mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Write current ^{Note} (V _{DD} pin)	Iddw	When VPP supply voltage = VPP1			18	mA
Write current ^{Note} (VPP pin)	IPPW	When VPP supply voltage = VPP1			22.5	mA
Erase current ^{Note} (V _{DD} pin)	IDDE	When VPP supply voltage = VPP1			18	mA
Erase current ^{Note} (VPP pin)	Ірре	When VPP supply voltage = VPP1			115	mA
Unit erase time	ter		0.5	1	1	S
Total erase time	tera				20	S
Write count		Erase/write are regarded as 1 cycle			20	Times
V _{PP} supply voltage	V _{PP0}	In normal operation	0		0.2V _{DD}	V
	V _{PP1}	During flash memory programming	9.7	10.0	10.3	V


Note The current flowing to the ports (including the current flowing through the on-chip pull-up resistors) is not included.

AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Cycle time (minimum instruction execution	Тсч	Operating with main system clock	V _{DD} = 2.7 to 5.5 V	0.4		8	μS
				1.6		8	μS
time)		Operating with subsystem clock		114	122	125	μS
TI0, TI1 input frequency	f⊤ı	V _{DD} = 2.7 to 5.5 V		0		4	MHz
				0		275	kHz
TI0, TI1 input high-/ low-level widths	tтін, tті∟	V _{DD} = 2.7 to 5.5 V		0.1			μS
				1.8			μS
Interrupt input high-/ low-level widths	tinth, tintl	INTP0 to INTP3		10			μS
RESET input low-level width	trsl			10			μs

Tcy vs VDD (Main system clock)

(2) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (SCK ... Internal clock output)

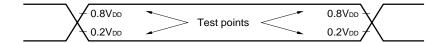
Parameter	Symbol	Condi	MIN.	TYP.	MAX.	Unit	
SCK cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V	800			ns	
				3200			ns
SCK high-/low-level	tkh1, tkl1	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
widths	widths						ns
SI setup time	tsıĸ1	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$		150			ns
(to SCK ↑)				500			ns
SI hold time	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK↑)				600			ns
SO output delay time	tkso1	R = 1 k ,	V _{DD} = 2.7 to 5.5 V	0		250	ns
from SCK↓		C = 100 pF ^{Note}	-	0		1000	ns

Note R and C are the load resistance and load capacitance of the SO output line.

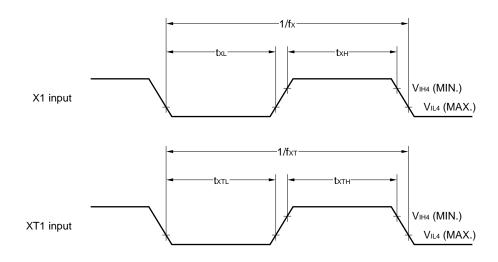
(b) 3-wire serial I/O mode ($\overline{\text{SCK}}$... External clock input)

Parameter	Symbol	Condi	MIN.	TYP.	MAX.	Unit	
SCK cycle time	tkcy2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$		900			ns
				3500			ns
SCK high-/low-level	t KH2, t KL2	V _{DD} = 2.7 to 5.5 V		400			ns
widths				1600			ns
SI setup time	tsik2	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK ↑)				150			ns
SI hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK↑)				600			ns
SO output delay time	t KSO2	R = 1 k ,	V _{DD} = 2.7 to 5.5 V	0		300	ns
from SCK ↓		C = 100 pF ^{Note}		0		1000	ns

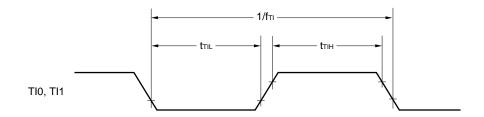
Note R and C are the load resistance and load capacitance of the SO output line.

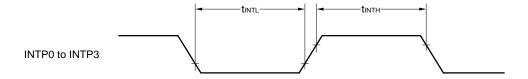

(c) UART mode (Dedicated baud rate generator output)

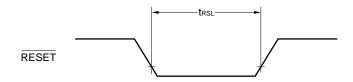
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
					19531	bps


(d) UART mode (External clock input)

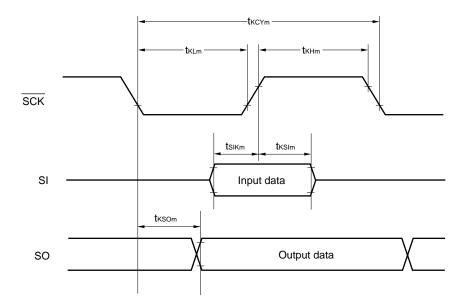
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t KCY3	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	900			ns
			3500			ns
ASCK high-/low-level	t кнз, t кLз	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	400			ns
widths			1600			ns
Transfer rate		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$			39063	bps
					9766	bps
ASCK rise/fall times	tr, tr				1	μS


AC Timing Test Points (excluding X1 and XT1 inputs)

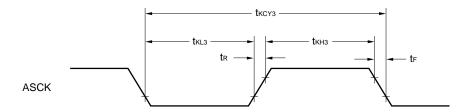

Clock Timing


TI Timing

Interrupt Input Timing



RESET Input Timing


Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1 or 2

UART mode (external clock input):

10-Bit A/D Converter Characteristics

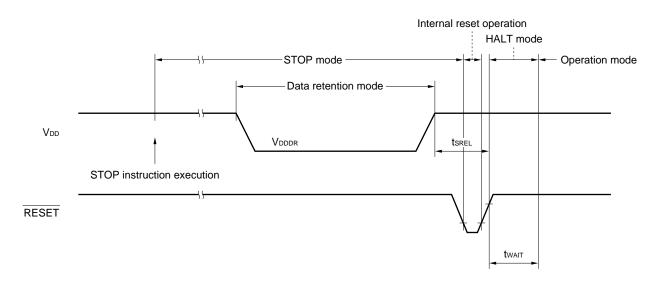
(Ta = -40 to $+85^{\circ}$ C, 1.8 V \leq AVref \leq AVdd = Vdd \leq 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		4.5 V AVREF AVDD 5.5 V		0.2	0.4	%FSR
		2.7 V AVREF AVDD 5.5 V		0.4	0.6	%FSR
		1.8 V AVREF AVDD 5.5 V		0.8	1.2	%FSR
Conversion time	tconv	4.5 V AVREF AVDD 5.5 V	14		100	μS
		2.7 V AVREF AVDD 5.5 V	14		100	μS
		1.8 V AVREF AVDD 5.5 V	28		100	μS
Zero-scale error ^{Note}	AINL	4.5 V AVREF AVDD 5.5 V			0.4	%FSR
		2.7 V AVREF AVDD 5.5 V			0.6	%FSR
		1.8 V AVREF AVDD 5.5 V			1.2	%FSR
Full-scale error ^{Note}	AINL	4.5 V AVREF AVDD 5.5 V			0.4	%FSR
		2.7 V AVREF AVDD 5.5 V			0.6	%FSR
		1.8 V AVREF AVDD 5.5 V			1.2	%FSR
Non-integral linearity Note	INL	4.5 V AVREF AVDD 5.5 V			2.5	LSB
		2.7 V AVREF AVDD 5.5 V			4.5	LSB
		1.8 V AVREF AVDD 5.5 V			8.5	LSB
Non-differential linearity Note	DNL	4.5 V AVREF AVDD 5.5 V			1.5	LSB
		2.7 V AVREF AVDD 5.5 V			2.0	LSB
		1.8 V AVREF AVDD 5.5 V			3.5	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AV _{DD}	V
Resistance between AV _{REF} and AV _{SS}	Radref		20	40		k

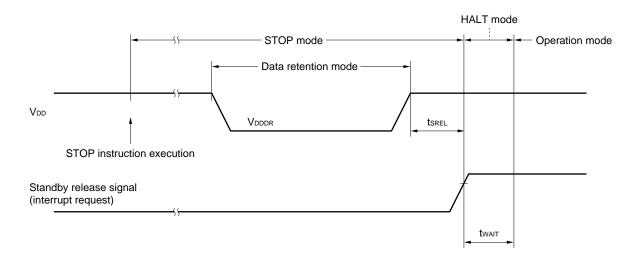
Note Excludes quantization error (±0.05%).

Comparator Characteristics (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

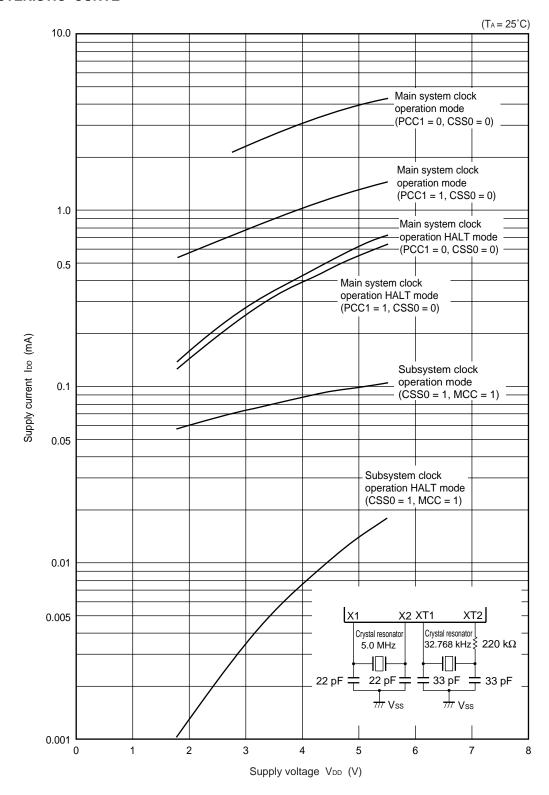
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Analog input range	Vcin		0		V _{DD}	V
Reference voltage input	VCREF	V _{DD} = 2.7 to 5.5 V	1.35	1.6	1.85	V
range			1.35	1.4	1.45	V
Accuracy					100	mV


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

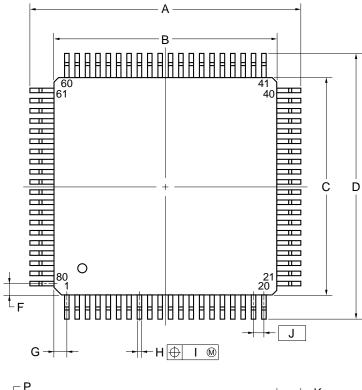
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	V
Release signal set time	tsrel		0			μs
Oscillation stabilization wait	twait	Release by RESET		2 ¹⁵ /fx		ms
time ^{Note 1}		Release by interrupt request		Note 2		ms


- **Notes 1.** The oscillation stabilization wait time is the time after oscillation has started during which the CPU is stopped to prevent unstable operation.
 - **2.** Selection of $2^{12}/fx$, $2^{15}/fx$, or $2^{17}/fx$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

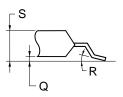
Remark fx: Main system clock oscillation frequency

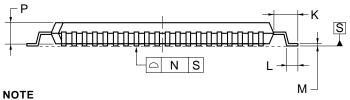

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)



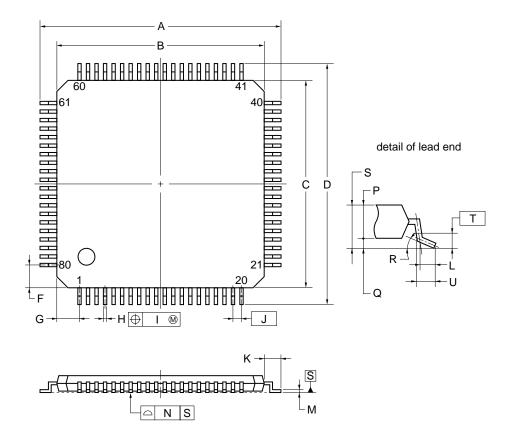
8. CHARACTERISTIC CURVE




9. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

detail of lead end



Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3°+7°
S	1.70 MAX.
	P80GC-65-8RT-

P80GC-65-8BT-1

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
- 1	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	0.145±0.05
N	0.08
Р	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
Т	0.25
U	0.6±0.15

P80GK-50-9EU-1

10. RECOMMENDED SOLDERING CONDITIONS

The Z78F9418A should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 10-1. Surface Mounting Type Soldering Conditions (1/2)

Z78F9418AGC-8BT: 80-pin plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 C, Time: 30 sec. MAX. (at 210 C or higher), Count: two times or less	IR35-00-2
VPS	Package peak temperature: 215 C, Time: 40 sec. MAX. (at 200 C or higher), Count: two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260 C MAX., Time: 10 sec. MAX., Count: once, Preheating temperature: 120 C MAX. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 C MAX., Time: 3 sec. MAX. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

Table 10-1. Surface Mounting Type Soldering Conditions (2/2)

Z78F9418AGK-9EU: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 C, Time: 30 sec. MAX. (at 210 C or higher), Count: two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125 C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215 C, Time: 40 sec. MAX. (at 200 C or higher), Count: two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125 C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300 C MAX., Time: 3 sec. MAX. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DIFFERENCES BETWEEN Z78F9418A AND MASK ROM VERSIONS

The Z78F9418A has flash memory in place of the internal ROM of the mask ROM versions (Z789415A, Z789416A, and Z789417A). Differences between the Z78F9418A and mask ROM versions are shown in Table A-1.

Table A-1. Differences Between Z78F9418A and Mask ROM Versions

	Parameter	Flash Memory Version	N	Mask ROM Versions	
		Z78F9418A	Z789415A Z789416A Z789417A		
Internal	ROM structure	Flash memory	Mask ROM		
memory	ROM capacity	32 KB	12 KB	16 KB	24 KB
	High-speed RAM capacity	512 bytes			
	LCD display RAM	28 bytes			
Pull-up re	sistor	32 (software control only)	36 (software control	: 32, mask option co	ntrol: 4)
Divider re	sistor for LCD driving	Not available	Can be specified on	-chip by mask option	า
V _{PP} pin		Available	Not available		
IC pin		Not available	Available		
Electrical	specifications	See the relevant data shee	et		

Caution

There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the Z78F9418A.

Language processing software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789418 ^{Notes 1, 2, 3}	Device file for Z789407A and Z789417A Subseries

Flash memory writing tools

Flashpro III	Flash programmer for microcontrollers with flash memory
(Part No. FL-PR3 ^{Note 4} , PG-FP3)	
FA-80GC ^{Note 4}	Flash memory writing adapter for 80-pin plastic QFP (GC-8BT type)
FA-80GK-9EU ^{Note 4}	Flash memory writing adapter for 80-pin plastic TQFP (fine pitch) (GK-9EU type)

Debugging tools

IE-78K0S-NS	In-circuit emulator for debugging the hardware and software of the application system using the
In-circuit emulator	78K/0S Series. Supports the integrated debugger (ID78K0S-NS). Used with an AC adapter,
	emulation probe, and interface adapter that connects the host machine.
IE-70000-MC-PS-B	Adapter that distributes power from an AC 100 to 240 V outlet.
AC adapter	
IE-70000-98-IF-C	Adapter necessary when using a PC-9800 series (except notebook type) as the host machine
Interface adapter	of the IE-78K0S-NS (supports C bus).
IE-70000-CD-IF-A	PC card and interface cable necessary when a notebook type personal computer is used as the
PC card interface	host machine of the IE-78K0S-NS (supports PCMCIA socket).
IE-70000-PC-IF-C	Adapter necessary when an IBM PC/AT TM or compatible machine is used as the host machine
Interface adapter	of the IE-78K0S-NS (supports ISA bus).
IE-70000-PCI-IF	Adapter necessary when using a personal computer with PCI bus is used as the host machine
Interface adapter	of the IE-78K0S-NS.
IE-789418-NS-EM1	Board for emulating device-specific peripheral hardware. Used with an in-circuit emulator.
Emulation board	
NP-80GC ^{Note 4}	Board for connecting an in-circuit emulator and target system.
	For 80-pin plastic QFP (GC-8BT type).
NP-80GK ^{Note 4}	Board for connecting an in-circuit emulator and target system.
	For 80-pin plastic TQFP (fine pitch) (GK-9EU type).
SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series
DF789418 ^{Notes 1, 2}	Device file for Z789407A and Z789417A Subseries

Real-time OS

MX78K0S ^{Notes 1, 2}

- Notes 1. PC-9800 series (Japanese Windows™) based
 - 2. IBM PC/AT or compatible machine (Japanese/English Windows) based
 - **3.** HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™], Solaris[™]) based, NEWS[™] (NEWS-OS[™]) based
 - 4. This is a product of Naito Densei Machida Mfg. Co., Ltd. (Tel: +81-44-822-3813).

Remark The RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789418.

APPENDIX C. RELATED DOCUMENTS

Device-Related Documents

Document Name	Document No.	
Document Name	Japanese	English
Z789405A, Z789406A, Z789407A, Z789415A, Z789416A, Z789417A Product Specification	U14024J	U14024E
Z78F9418A Product Specification	U14595J	U14595E
Z789407A, Z789417A Subseries User's Manual	U13952J	U13952E
78K/0S Series User's Manual Instructions	U11047J	U11047E
78K/0, 78K/0S Series Application Note Flash Memory Write	U14548J	U14548E

Documents on Development Tools (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K0S Assembler Package	Operation	U11622J	U11622E
	Assembly Language	U11599J	U11599E
	Structured Assembly Language	U11623J	U11623E
CC78K0S C Compiler	Operation	U11816J	U11816E
	Language	U11817J	U11817E
SM78K0S System Simulator, Windows-Based	Reference	U11489J	U11489E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K0S-NS Integrated Debugger, Windows-Based	Reference	U12901J	U12901E
IE-78K0S-NS In-Circuit Emulator		U13549J	U13549E
IE-789418-NS-EM1 Emulation Board		U14364J	To be prepared

Documents on Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0S Series OS MX78K0S	Fundamental	U12938J	U12938E

Other Documents

Deciment Name	Document No.	
Document Name	Japanese	English
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Microcomputer-Related Products by Third Party	U11416J	-

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8