YAMAHA L S I

YTD428

IDSU

DSU LSI for the ISDN Terminal Equipment

INTRODUCTION

YTD428 is a LSI which provides the ISDN subscriber interface (two-wire time compression multiplexing operation) and the NT side of the ISDN Basic Rate user-network interface function (digital four-wire time-division full-duplex operation). It is capable of providing the electric characteristics conforming to TTC Standard JT-I430 and JT-G961.

YTD428 incorporates the circuit termination and line termination functions on a single chip allowing the user to easily configure a DSU (Digital Service Unit) that consumes small amount of power at a minimal cost.

In addition, a TTL interface is provided at the T reference point (layer 1 level). This feature is especially effective when combined with YAMAHA's ISDN LSI for S/T reference point interface, YTD423 or YTD418. It allows considerable cost reduction on parts around the pulse transformer when constructing a device with a built-in DSU.

The driver/receiver section of the T reference point interface can be separated from the DSU section and be used independently. The user can enable or disable this feature as necessary.

YAMAHA CORPORATION:

YTD428 CATALOG CATALOG No.:4TD428A2 1998.12

☐ Features

■ Circuit Termination Section

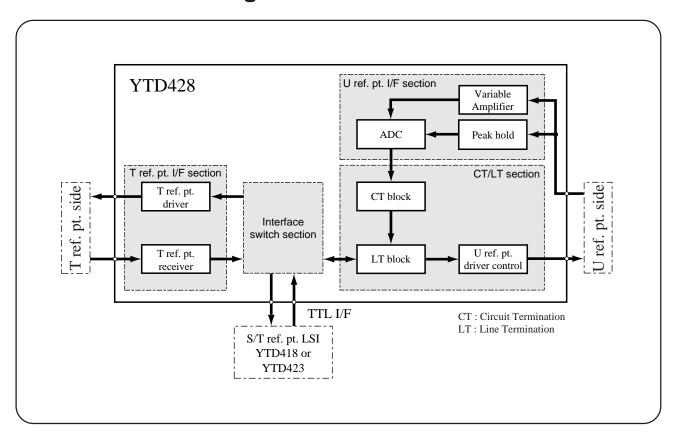
- Conforms to TTC Standard JT-I430 and JT-G961
- Digital four-wire time-division full-duplex operation
- Two-wire time compression multiplexing operation
- Transmission rate at U reference point: 320 kbit/s, at T reference point: 192 kbit/s
- Frame assembling and disassembling function
- State transition control
- Loopback function
- T reference point timing control (switch between short passive bus / extended passive bus, point-to-point)
- U reference point driver control

■ Line Termination Section

- Conforms to TTC Standard JT-G961
- $\bullet \sqrt{f}$ equalizer
- Bridged tap equalizer

■ T Reference Point Interface Section

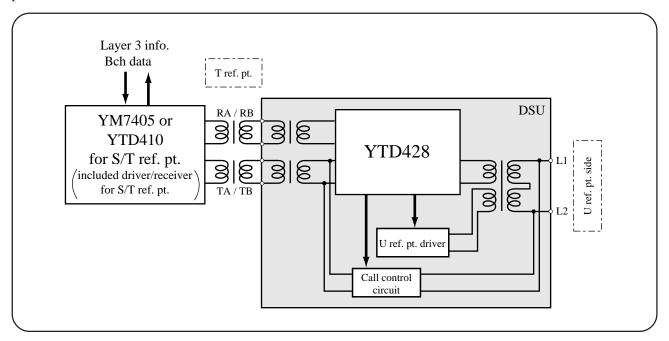
• The T reference point driver / receiver section can be separated from DSU section, and use independently (TE mode). The user can enable or disable this feature as necessary.


■ Others

- +5 V single power supply
- Low power consumption
- 100 pin SQFP

BLOCK DIAGRAM

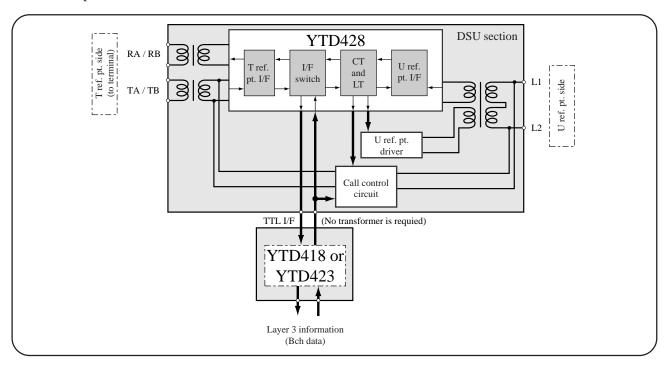
☐ Internal Block Diagram

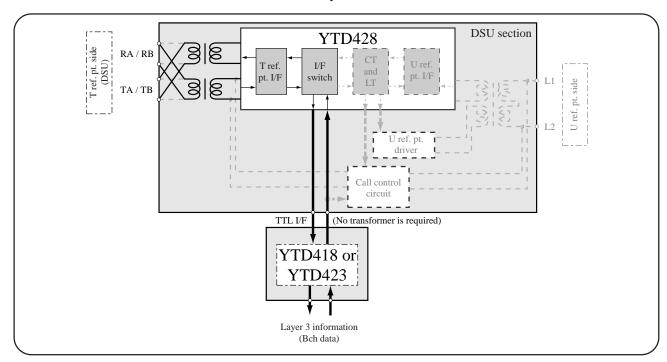


□ DSU Configuration Example

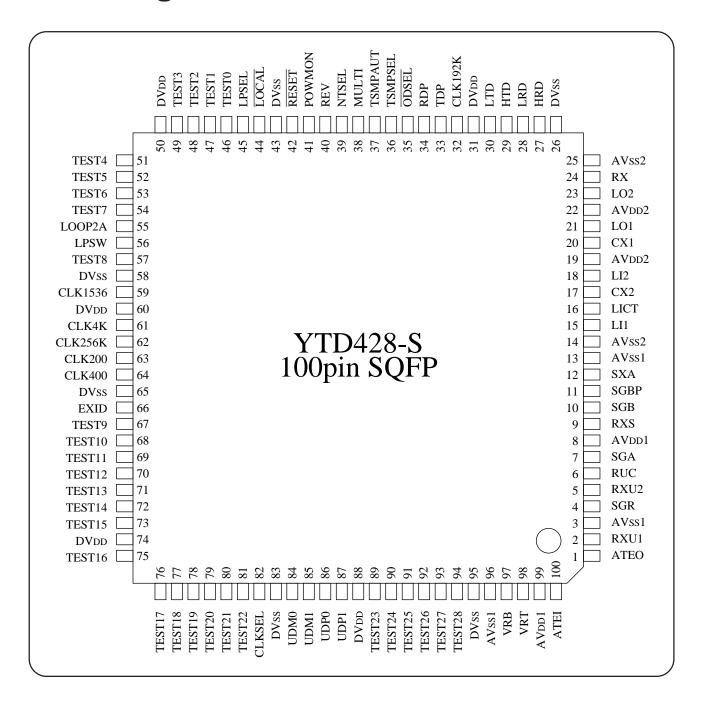
YTD428 incorporates the circuit termination, line termination, T reference point interface and U reference point interface functions on a single chip allowing the user to easily configure a DSU that consumes small amount of power at a minimal cost. The user can select from the two types of configurations. One is the general configuration in which a transformer is used at the T reference point interface. The other is a configuration in which a TTL interface is used to directly connect to the T reference point LSI.

■ Configuration example of a general DSU


Various functions are incorporated on a single chip allowing the user to create a low power-consuming product at a low cost.


■ Configuration example of a device with a built-in DSU that uses a TTL interface at the T ref. pt.

When using YTD428 with YAMAHA'S S/T reference point interface LSI to create a device with a built-in DSU, they can be connected directly through the TTL interface. This results in a reduction of pulse transformer parts.


■ Example of using T reference point driver / receiver section independently

By setting the Interface switch, the drive / receiver of the T reference point interface section can be separated from the circuit termination (CT) and line termination (LT) section and be used independently. The user can enable or disable this feature as necessary.

YAMAHA YTD428

Pin Assignments

ELECTRICAL CHARACTERISTICS

☐ Absolute Maximum Ratings

Parameter	Symbol	Min.	Max	Units
Supply Voltage	V_{DD}	Vss - 0.3	Vss + 7.0	V
Input Voltage	VI	Vss - 0.3	V _{DD} + 0.3	V
Storage Temperature	Tstg	- 50	+ 125	° C

☐ Recommended Operating Conditions

Parameter	Symbol	Range
Supply Voltage	V _{DD}	5.0 V ± 5 %
Operating Temperature	Тор	-20 ~ +70 ° C

□ DC Characteristics

(DVDD = AVDD = 5.0V, DVss = AVss = 0.0 V, Operating Temperature: Top = 25 °C)

]	Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
_	Output Allowable apedance	Zo	Note 1	30			kΩ
	Receive Buffer apedance	Zi1	Note 2	10			МΩ
Analog Voltage	Signal Reference	Vsg	Note 3	2.45	2.50	2.55	V
ADC	Self-Bias VRT	V _{RT}	Note 4	0.7AV _{DD} - 0.1	0.7AV _{DD}	$0.7AV_{\rm DD} + 0.1$	V
ADC	Self-Bias VRB	V _{RB}	Note 5	0.3AV _{DD} - 0.1	0.3AV _{DD}	$0.7AV_{\rm DD} + 0.1$	V

Note 1 With respect to SGR, SXA pins.

Note 2 With respect to RXU1 and RXU2 pins.

Note 3 Set SGR pin to open.

Note 4 With respect to VRT pin.

Note 5 With respect to VRB pin.

 $(DV_{DD} = AV_{DD} = 5.0 \text{ V}, T_{op} = -20 \sim 70 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
High I and I was Walter (TTI)	Vih	(Note 1)	2.2			V
High Level Input Voltage (TTL)	V _{IH}	(Note 2)	3.0			V
Law level Input Voltage (TTI)	VIL	(Note 1)			0.8	V
Low level Input Voltage (TTL)	VIL	(Note 2)			0.8	V
High Level Input Voltage (CMOS)	V _{IH}	(Note 3)	3.5			V
Low Level Input Voltage (COMS)	VIL	(Note 3)			1.0	V
TY 1 I I O I I I I I I I I I I I I I I I I	Vон	(Note 4)	DV _{DD} - 1.0			V
High Level Output Voltage (TTL)		(Note 5)	DV _{DD} - 1.0			V
I I Outroot Vales (TTI)	¥7	(Note 4)			DVss + 0.4	V
Low Level Output Voltage (TTL)	Vol	(Note 5)			DVss + 0.4	V
Low Level Output Voltage (Open-D)	Vol	(Note 6)			DVss + 0.4	V
Leak Current	IL		-10		10	μΑ
Idle Condition Leak Current	Ilz		-10		10	μΑ
Power Supply Current	Idd	(Note 7)		36		mA

- Note 1 With respect to the digital pins other than RESET, POWDET, CLK1536 and TEST23 ~ 28 pins
- Note 2 With respect to RESET, POWDET pins
- Note 3 With respect to CLK1536, TEST23 ~ 28 pins
- Note 4 With respect to the pin other than HRD, LRD pins

Test condition: Output Current "H" level (IoH) = -0.2 mA, Output Current "L" level (IoL) = 1.2 mA

- Note 5 With respect to HRD, LRD pins (when ODSEL = "H"), Test condition: IoH = -0.2 mA, IoL = 1.2 mA
- Note 6 With respect to HRD, LRD pins (when $\overline{ODSEL} = "L"$), Test condition: IoL = 1.2 mA
- Note 7 With using T ref. pt. analog interface

□ AC Characteristics

■ T Reference Point Receive Characteristic (NT mode)

 $(V_{DD} = 5.0 \text{ V}, T_{op} = -20 \sim 70 \text{ }^{\circ}\text{C}, \text{Load Capacity: } \text{CL} = 50 \text{ pF})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
Transmit Pulse Width	ttpw		5.00	5.208	5.40	μs
Receive Pulse Width	trpw			5.208		μs
Rise Time	t PR				260	ns
Fall Time	t PF				30	ns
Phase Diffierence between	ttrd	Note 1	10.0		14.0	μs
Tx and Rx signals	ttrd	Note 2	10.0		42.0	μs
Phase Difference between	tрн	Note 1, Note 3			4.0	μs
Rx signals	tрн	Note 2, Note 3			2.0	μs

Note 1 With respect to using the Fixed timing

Note 2 With respect to using the Adaptive timing

Note 3 This value shows the difference between two terminals which are connected with bus system.

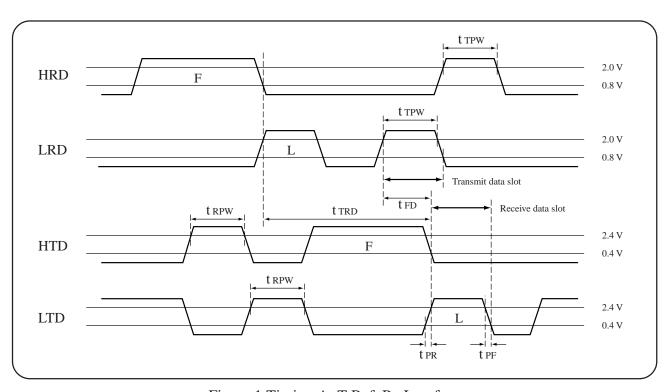


Figure 1 Timing At T Ref. Pt. Interface

■ T Reference Point Receive Characteristic (TE mode)

 $(V_{DD} = 5.0 \text{ V}, T_{op} = -20 \sim 70 \text{ }^{\circ}\text{C}, C_{L} = 50 \text{ pF})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
	trdr				700	ns
Dalay Tima	trdl				200	ns
Delay Time	trdh				700	ns
	trdf				700	ns
Rise Time	trr	Note 1			30	ns
Fall Time	trf	Note 2			30	ns

Note 1 With respect to HRD, LRD pins (ODSEL = "H")

Note 2 With respect to HRD, LRD pins

Note 3 Figure 2 shows the timing when RDP = "H". When RDP = "L", the output signal polarity from HRD and LRD pins are inverted.

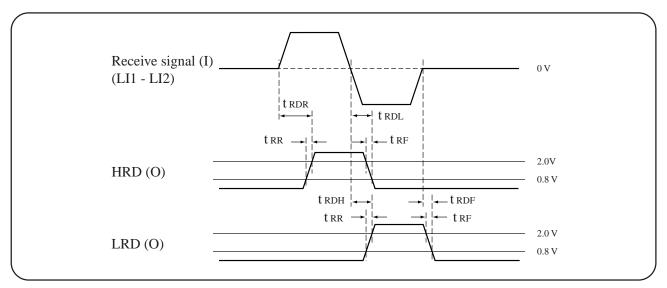


Figure 2 Receive Timing

■ T Reference Point Transmit Characteristic (TE mode)

 $(V_{DD} = 5.0 \text{ V}, T_{op} = -20 \sim 70 \text{ }^{\circ}\text{C}, C_{L} = 50 \text{ pF})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
HTD, LTD Pulse Period	tsw		4.95		5.45	μs
HTD, LTD Pulse Gap	tgap		0		260	ns
HTD, LTD Rise Time	tsr				260	ns
HTD, LTD Fall Time	tsf				30	ns
	tsrl	Note 1	0		490	ns
Transmit Signal	tsrh	Note 1	490		1010	ns
Delay Time	tsfh	Note 1	0		165	ns
	tsfl	Note 1	165		685	ns
Zero Cross Delay Time	tsdz	Note 1	490		1010	ns

Note 1 Measuring with RL voltage drop as shown in Figure 4.

Note 2 Figure 3 shows the timing when TDP = "H". When TDP = "L", the output signal polarity from HRD and LRD pins are inverted.

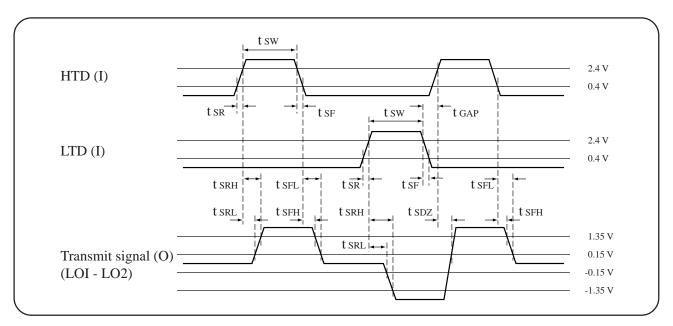


Figure 3 Transmit Timing

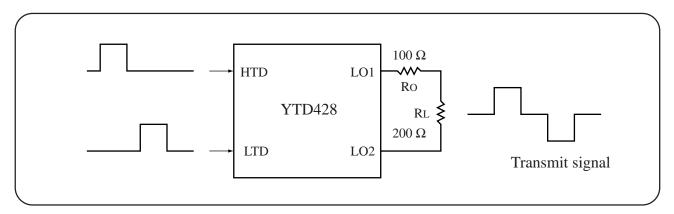
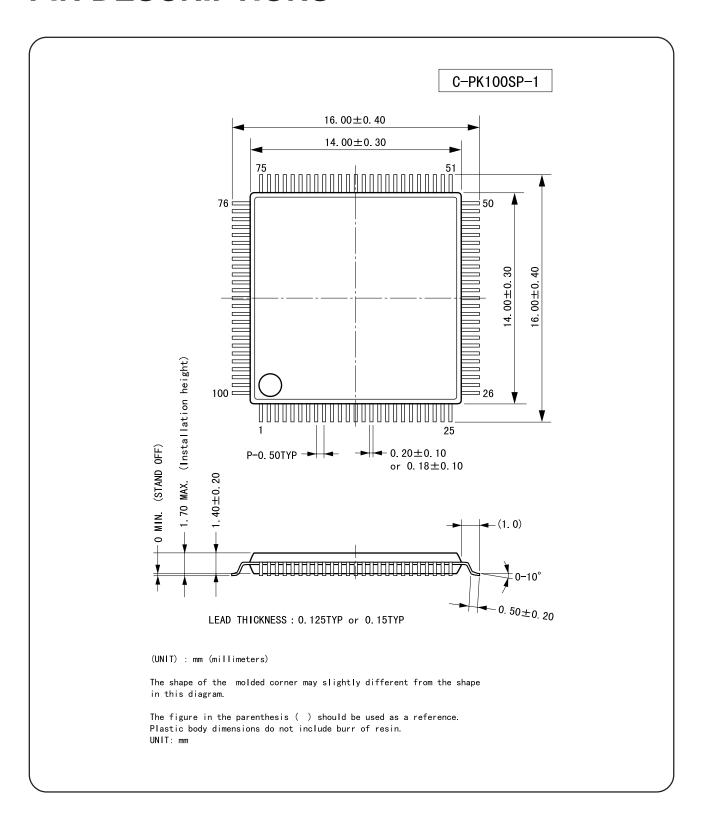


Figure 4 Transmit Block Test Circuit


■ Driver, Receiver I/O Impedance

Parameters	Symbol	Condition	Min.	Тур.	Max.	Units
Receiver Input Impedance	Zli	LI1 - LI2	50			kΩ
Driver Ouput Impedance	Zloi	LO1 - LO2 (Note1)	50			kΩ
Driver Ouput Impedance	ZL00	LO1 - LO2 (Note2)		15		Ω

Note 1 When no pulse is output.

Note 2 When pulse is output.

PIN DESCRIPTIONS

IMPORTANT NOTICE

- Yamaha reserves the right to make changes to its Products and to this document without notice. The information contained in this document has been carefully checked and is believed to be reliable. However, Yamaha assumes no responsibilities for inaccuracies and makes no commitment to update or to keep current the information contained in this document.
- 2. These Yamaha Products are designed only for commercial and normal industrial applications, and are not suitable for other uses, such as medical life support equipment, nuclear facilities, critical care equipment or any other application the failure of which could lead to death, personal injury or environmental or property damage. Use of the Products in any such application is at the customer's sole risk and expense.
- 3. Yamaha assumes no liability for incidental, consequential, or special damages or injury that may result from misapplication or improper use or operation of the Products.
- 4. Yamaha makes no warranty or representation that the Products are subject to intellectual property license from Yamaha or any third party, and Yamaha makes no warranty excludes any liability to the Customer or any third party arising from or related to the Products' infringement of any third party's intellectual property rights, including the patent, copyright, trademark or trade secret rights of any third party.
- 5. Examples of use described herein are merely to indicate the characteristics and performance of Yamaha products. Yamaha assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein. Yamaha makes no warranty with respect to the products, express or implied, including, but not limited to the warranties of merchantability, fitness for a particular use and title.

The specifications of this product are subject to improvement changes without prior notice.

AGENCY———	Address inquiries	IAHA CORPORATION ————————————————————————————————————
	■ Head Office	203, Matsunokijima, Toyooka-mura Iwata-gun, Shizuoka-ken, 438-0192 Electronic Equipment Business section Tel. 81-539-62-4918 Fax. 81-539-62-5054
	■ Tokyo Office	2-17-11, Takanawa, Minato-ku, Tokyo, 108-8568 Tel. 81-3-5488-5431 Fax. 81-3-5488-5088
	■ Osaka Office	Namba Tsujimoto Nissei Bldg, 4F 1-13-17, Namba Naka, Naniwa-ku, Osaka City, Osaka, 556-0011 Tel. 81-6-6633-3690 Fax. 81-6-6633-3691
	■ U.S.A. Office	YAMAHA Systems Technology. 100 Century Center Court, San Jose, CA95112 Tel. 1-408-467-2300 Fax 1-408-437-8791