Low Noise/Low Power/SPI Bus/256 Taps # X9250 # Quad Digitally Controlled Potentiometers (XDCP™) #### **FEATURES** - Four potentiometers in one package - 256 resistor taps/pot-0.4% resolution - · SPI serial interface - Wiper resistance, 40Ω typical @ $V_{CC} = 5V$ - · Four nonvolatile data registers for each pot - · Nonvolatile storage of wiper position - Standby current < 5µA max (total package) - Power supplies - $-V_{CC} = 2.7V \text{ to } 5.5V$ - -V+ = 2.7V to 5.5V - --V- = -2.7V to -5.5V - 100K Ω , 50K Ω total pot resistance - High reliability - Endurance 100,000 data changes per bit per register - -Register data retention 100 years - 24-lead SOIC, 24-lead TSSOP, 24-lead CSP (Chip Scale Package) - Dual supply version of X9251 #### **DESCRIPTION** The X9250 integrates 4 digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated circuit. The digitally controlled potentiometer is implemented using 255 resistive elements in a series array. Between each element are tap points connected to the wiper terminal through switches. The position of the wiper on the array is controlled by the user through the SPI bus interface. Each potentiometer has associated with it a volatile Wiper Counter Register (WCR) and 4 nonvolatile Data Registers (DR0:DR3) that can be directly written to and read by the user. The contents of the WCR controls the position of the wiper on the resistor array though the switches. Power up recalls the contents of DR0 to the WCR. The XDCP can be used as a three-terminal potentiometer or as a two-terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing. #### **BLOCK DIAGRAM** #### PIN DESCRIPTIONS #### Serial Output (SO) SO is a serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock. #### **Serial Input** SI is the serial data input pin. All opcodes, byte addresses and data to be written to the pots and pot registers are input on this pin. Data is latched by the rising edge of the serial clock. #### Serial Clock (SCK) The SCK input is used to clock data into and out of the X9250. #### Chip Select (CS) When $\overline{\text{CS}}$ is HIGH, the X9250 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device will be in the standby state. $\overline{\text{CS}}$ LOW enables the X9250, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on $\overline{\text{CS}}$ is required prior to the start of any operation. #### Hold (HOLD) HOLD is used in conjunction with the $\overline{\text{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, $\overline{\text{HOLD}}$ may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, $\overline{\text{HOLD}}$ must be brought LOW while SCK is LOW. To resume communication, $\overline{\text{HOLD}}$ is brought HIGH, again while SCK is LOW. If the pause feature is not used, $\overline{\text{HOLD}}$ should be held HIGH at all times. #### Device Address (A_0-A_1) The address inputs are used to set the least significant 2 bits of the 8-bit slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9250. A maximum of 4 devices may occupy the SPI serial bus. #### **Potentiometer Pins** ## V_{H}/R_{H} ($V_{H0}/R_{H0}-V_{H3}/R_{H3}$), V_{L}/R_{L} ($V_{L0}/R_{L0}-V_{L3}/R_{L3}$) The R_H and R_L pins are equivalent to the terminal connections on a mechanical potentiometer. ## $V_W/R_W (V_{W0}/R_{W0}-V_{W3}/R_{W3})$ The wiper pins are equivalent to the wiper terminal of a mechanical potentiometer. #### Hardware Write Protect Input (WP) The WP pin when LOW prevents nonvolatile writes to the Data Registers. #### Analog Supplies (V+, V-) The analog supplies V+, V- are the supply voltages for the XDCP analog section. #### **PIN CONFIGURATION** #### **PIN NAMES** | Symbol | Description | |--|--| | SCK | Serial Clock | | SI, SO | Serial Data | | A ₀ -A ₁ | Device Address | | V _{H0} /R _{H0} _V _{H3} /R _{H3} ,
V _{L0} /R _{L0} _V _{L3} /R _{L3} | Potentiometer Pins (terminal equivalent) | | V _{W0} /R _{W0} _V _{W3} /R _{W3} | Potentiometer Pins (wiper equivalent) | | WP | Hardware Write Protection | | V+,V- | Analog Supplies | | V _{CC} | System Supply Voltage | | V _{SS} | System Ground | | NC | No Connection | #### **DEVICE DESCRIPTION** #### **Serial Interface** The X9250 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in on the rising SCK. $\overline{\text{CS}}$ must be LOW and the $\overline{\text{HOLD}}$ and $\overline{\text{WP}}$ pins must be HIGH during the entire operation. The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count. #### **Array Description** The X9250 is comprised of four resistor arrays. Each array contains 255 discrete resistive segments that are connected in series. The physical ends of each array are equivalent to the fixed terminals of a mechanical potentiometer (V_H/R_H and V_L/R_L inputs). At both ends of each array and between each resistor segment is a CMOS switch connected to the wiper (V_W/R_W) output. Within each individual array only one switch may be turned on at a time. These switches are controlled by a Wiper Counter Register (WCR). The 8 bits of the WCR are decoded to select, and enable, one of 256 switches. #### Wiper Counter Register (WCR) The X9250 contains four Wiper Counter Registers, one for each XDCP potentiometer. The WCR is equivalent to a serial-in, parallel-out register/counter with its outputs decoded to select one of 256 switches along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated Data Registers via the XFR Data Register or Global XFR Data Register instructions (parallel load); it can be modified one step at a time by the increment/decrement instruction. Finally, it is loaded with the contents of its Data Register zero (DR0) upon power-up. The Wiper Counter Register is a volatile register; that is, its contents are lost when the X9250 is powered-down. Although the register is automatically loaded with the value in R0 upon power-up, this may be different from the value present at power-down. #### **Data Registers** Each potentiometer has four 8-bit nonvolatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the associated Wiper Counter Register. All operations changing data in one of the Data Registers is a nonvolatile operation and will take a maximum of 10ms. If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data. #### **Data Register Detail** | (MSB) | | | | | | | (LSB) | |-------|----|----|----|----|----|----|-------| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | NV (One of Four Arrays) Serial Data Path Serial Bus From Interface Input Circuitry С Register 0 Register 1 0 u n Parallel t Bus е Input Wiper Ď Register 2 Register 3 Counter е С Register (WCR) 0 d e Inc/Dec Logic If WCR = 00[H] then $V_W/R_W = V_I/R_I$ UP/DN UP/DN If WCR = FF[H] then $V_W/R_W = V_H/R_H$ Modified SCK CLK V_W/R_W Figure 1. Detailed Potentiometer Block Diagram #### Write in Process The contents of the Data Registers are saved to nonvolatile memory when the \overline{CS} pin goes from LOW to HIGH after a complete write sequence is received by the device. The progress of this internal write operation can be monitored by a write in process bit (WIP). The WIP bit is read with a read status command. #### **INSTRUCTIONS** #### Identification (ID) Byte The first byte sent to the X9250 from the host, following a $\overline{\text{CS}}$ going HIGH to LOW, is called the Identification byte. The most significant four bits of the slave address are a device type identifier, for the X9250 this is fixed as 0101[B] (refer to Figure 2). The two least significant bits in the ID byte select one of four devices on the bus. The physical device address is defined by the state of the A_0 - A_1 input pins. The X9250 compares the serial data stream with the address input state; a successful compare of both address bits is required for the X9250 to successfully continue the command sequence. The A_0 - A_1 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS} . The remaining two bits in the slave byte must be set to 0. Figure 2. Identification Byte Format #### **Instruction Byte** The next byte sent to the X9250 contains the instruction and register pointer information. The four most significant bits are the instruction. The next four bits point to one of the four pots and, when applicable, they point to one of four associated registers. The format is shown below in Figure 3. Figure 3. Instruction Byte Format The four high order bits of the instruction byte specify the operation. The next two bits (R_1 and R_0) select one of the four registers that is to be acted upon when a register oriented instruction is issued. The last two bits (P_1 and P_0) selects which one of the four potentiometers is to be affected by the instruction. Four of the ten instructions are two bytes in length and end with the transmission of the instruction byte. These instructions are: - XFR Data Register to Wiper Counter Register—This transfers the contents of one specified Data Register to the associated Wiper Counter Register. - XFR Wiper Counter Register to Data Register—This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register. - Global XFR Data Register to Wiper Counter Register— This transfers the contents of all specified Data Registers to the associated Wiper Counter Registers. - Global XFR Wiper Counter Register to Data Register— This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers. The basic sequence of the two byte instructions is illustrated in Figure 4. These two-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action will be delayed by twal. A transfer from the WCR (current wiper position), to a Data Register is a write to nonvolatile memory and takes a minimum of twall to complete. The transfer can occur between one of the four potentiometers and one of its associated registers; or it may occur globally, where the transfer occurs between all potentiometers and one associated register. Five instructions require a three-byte sequence to complete. These instructions transfer data between the host and the X9250; either between the host and one of the data registers or directly between the host and the Wiper Counter Register. These instructions are: - Read Wiper Counter Register—read the current wiper position of the selected pot, - Write Wiper Counter Register—change current wiper position of the selected pot, - Read Data Register—read the contents of the selected data register; - Write Data Register—write a new value to the selected data register. - Read Status—This command returns the contents of the WIP bit which indicates if the internal write cycle is in progress. The sequence of these operations is shown in Figure 5 and Figure 6. The final command is Increment/Decrement. It is different from the other commands, because it's length is indeterminate. Once the command is issued, the master can clock the selected wiper up and/or down in one resistor segment steps; thereby, providing a fine tuning capability to the host. For each SCK clock pulse (t_{HIGH}) while SI is HIGH, the selected wiper will move one resistor segment towards the V_{H}/R_{H} terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper will move one resistor segment towards the V_{L}/R_{L} terminal. A detailed illustration of the sequence and timing for this operation are shown in Figure 7 and Figure 8. Figure 4. Two-Byte Instruction Sequence Figure 5. Three-Byte Instruction Sequence (Write) Figure 6. Three-Byte Instruction Sequence (Read) Figure 7. Increment/Decrement Instruction Sequence Figure 8. Increment/Decrement Timing Limits **Table 1. Instruction Set** | | | | Ir | stru | ction | Set | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Instruction | l ₃ | l ₂ | I ₁ | I ₀ | R ₁ | R ₀ | P ₁ | P ₀ | Operation | | Read Wiper Counter
Register | 1 | 0 | 0 | 1 | 0 | 0 | P ₁ | P ₀ | Read the contents of the Wiper Counter
Register pointed to by P ₁ -P ₀ | | Write Wiper Counter
Register | 1 | 0 | 1 | 0 | 0 | 0 | P ₁ | P ₀ | Write new value to the Wiper Counter Register pointed to by P ₁ -P ₀ | | Read Data Register | 1 | 0 | 1 | 1 | R ₁ | R ₀ | P ₁ | P ₀ | Read the contents of the Data Register pointed to by P_1 - P_0 and R_1 - R_0 | | Write Data Register | 1 | 1 | 0 | 0 | R ₁ | R ₀ | P ₁ | P ₀ | Write new value to the Data Register pointed to by P_1 - P_0 and R_1 - R_0 | | XFR Data Register to
Wiper Counter Register | 1 | 1 | 0 | 1 | R ₁ | R ₀ | P ₁ | P ₀ | Transfer the contents of the Data Register pointed to by R ₁ –R ₀ to the Wiper Counter Register pointed to by P ₁ -P ₀ | | XFR Wiper Counter
Register to Data Register | 1 | 1 | 1 | 0 | R ₁ | R ₀ | P ₁ | P ₀ | Transfer the contents of the Wiper Counter Register pointed to by P_1 - P_0 to the Register pointed to by R_1 - R_0 | | Global XFR Data Register
to Wiper Counter Register | 0 | 0 | 0 | 1 | R ₁ | R ₀ | 0 | 0 | Transfer the contents of the Data Registers pointed to by R ₁ –R ₀ of all four pots to their respective Wiper Counter Register | | Global XFR Wiper Counter
Register to Data Register | 1 | 0 | 0 | 0 | R ₁ | R ₀ | 0 | 0 | Transfer the contents of all Wiper Counter Registers to their respective data Registers pointed to by R ₁ –R ₀ of all four pots | | Increment/Decrement
Wiper Counter Register | 0 | 0 | 1 | 0 | 0 | 0 | P ₁ | P ₀ | Enable Increment/decrement of the Wiper Counter Register pointed to by P ₁ -P ₀ | | Read Status (WIP bit) | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | Read the status of the internal write cycle, by checking the WIP bit. | #### **Instruction Format** Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master. - (2) WPx refers to wiper position data in the Counter Register - (2) "I": stands for the increment operation, SI held HIGH during active SCK phase (high). - (3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high). ## Read Wiper Counter Register(WCR) | | | | e ty | | | dev | /ice | | in | stru | ıctic | n | | W | CR | | | | • | • | osi | | | | | |-----------------|---|-----|-------|---|---|------|--------|--------|----|------|-------|----------|---|------|--------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------| | CS | i | den | tifie | r | a | ddre | esse | es | | opc | ode | ! | a | ddre | esse | es | (5 | sent | by | X9 | 250 | on | SC |)) | CS | | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 0 | 1 | 0 | 0 | P
1 | P
0 | W
P
7 | W
P
6 | W
P
5 | W
P
4 | W
P
3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | ## Write Wiper Counter Register (WCR) | CS | | | e ty | • | | | /ice | | | stru
opc | | | a | | CR
esse | es | | (se | | | Byt
lost | | SI) | | CS | |-----------------|---|---|------|---|---|---|--------|--------|---|-------------|---|---|---|---|------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 1 | 0 | 0 | 0 | P
1 | P
0 | W
P
7 | W
P
6 | W
P
5 | W
P
4 | W
P
3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | ## Read Data Register (DR) | <u>CS</u> | | | e ty
tifie | • | | | ice
esse | | | stru
opc | | | | and
ddre | | | | sent | | | By1
250 | | SC |)) | CS | |-----------------|---|---|---------------|---|---|---|-------------|--------|---|-------------|---|---|--------|-------------|--------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 1 | 1 | R
1 | R
0 | P
1 | P
0 | W
P
7 | W
P
6 | W
P
5 | W
P
4 | W
P
3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | ## Write Data Register (DR) | | | evic | , | • | | dev | | | in | stru | ıctio | on | DF | R and | d W | CR | | | | ata | , | | | | | | |-----------------|---|------|--------|----|----|------|--------|--------|----|------|-------|----|--------|--------|--------|--------|-------------|-------------|-------------|-------------|-----|-------------|-------------|-------------|----------------|--------------| | CS | | ider | ntifie | er | ac | ddre | esse | es | (| opc | ode |) | а | ıddre | esse | S | | (se | nt b | y h | ost | on | SI) | | CS | HIGH-VOLTAGE | | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 0 | 0 | R
1 | R
0 | P
1 | P
0 | W
P
7 | W
P
6 | W
P
5 | W
P
4 | WР3 | W
P
2 | W
P
1 | W
P
0 | Rising
Edge | WRITE CYCLE | ## Transfer Data Register (DR) to Wiper Counter Register (WCR) | CS
Falling | de
id | vic
den | • | • | | | vice
esse | | | | ode | | | and
ddre | | | CS
Rising | |---------------|----------|------------|---|---|---|---|--------------|--------|---|---|-----|---|--------|-------------|--------|--------|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 0 | 1 | R
1 | R
0 | P
1 | P
0 | Edge | # Transfer Wiper Counter Register (WCR) to Data Register (DR) | | | de | vic | e ty | ре | | dev | /ice | | in | stru | ıctic | on | DR | and | d W | CR | | | |----|---------------|----|-----|-------|----|----|------|--------|--------|----|------|-------|----|--------|--------|--------|--------|--------------|--------------| | ı | CS
Falling | į | den | tifie | r | ac | ddre | esse | es | (| орс | ode |) | а | ddre | esse | s | CS
Rising | HIGH-VOLTAGE | | ١ | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 1 | 1 | 0 | R
1 | R
0 | P
1 | P
0 | Edge | WRITE CYCLE | | -1 | | | | | | | | ٠. | | | | | | ١. | • | ١. | " | | | ## **Increment/Decrement Wiper Counter Register (WCR)** | <u>CS</u> | | | e ty
tifie | • | | de\
ddre | /ice
esse | | | stru
opc | | | a | W(
ddre | CR
esse | es | | | | | nent
n SI) | | <u>CS</u> | |-----------------|---|---|---------------|---|---|-------------|--------------|--------|---|-------------|---|---|---|------------|------------|--------|-----|-----|--|--|---------------|-----|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 0 | 1 | 0 | Х | Х | P
1 | P
0 | I/D | I/D | | | I/D | I/D | Rising
Edge | ## Global Transfer Data Register (DR) to Wiper Counter Register (WCR) | CS
Falling | | | e ty _l
tifie | • | | de\
ddre | | | | | ode | | a | D
ddre | R
esse | es | CS
Rising | |---------------|---|---|----------------------------|---|---|-------------|--------|--------|---|---|-----|---|--------|-----------|-----------|----|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 0 | 0 | 1 | R
1 | R
0 | 0 | 0 | Edge | # Global Transfer Wiper Counter Register (WCR) to Data Register (DR) | CS
Falling | | | e ty
tifie | | | | vice
esse | | | stru
opc | - | | ac | D
ddre | | es | CS
Risina | HIGH-VOLTAGE | |---------------|---|---|---------------|---|---|---|--------------|--------|---|-------------|---|---|--------|-----------|---|----|--------------|--------------| | Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 1 | 0 | 0 | 0 | R
1 | R
0 | 0 | 0 | Edge | WRITE CYCLE | ## **Read Status** | CS | | | e ty
tifie | • | device instruction Data Byte addresses opcode (sent by X9250 on SO) |)) | CS |-----------------|---|---|---------------|---|---|----|---------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------------|----------------| | Falling
Edge | 0 | 1 | 0 | 1 | 0 | 0 | A
1 | A
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | W
I
P | Rising
Edge | #### **ABSOLUTE MAXIMUM RATINGS** | Temperature under bias | 65 to +135°C | |--|--------------| | Storage temperature | 65 to +150°C | | Voltage on SCK, SCL or any address input | ut | | with respect to V _{SS} | 1V to +7V | | Voltage on V+ (referenced to V _{SS}) | 10V | | Voltage on V- (referenced to V _{SS}) | 10V | | (V+) – (V-) | 12V | | Any V _H /R _H | V+ | | Any V _L /R _L | V- | | Lead temperature (soldering, 10 seconds | s) 300°C | | I _W (10 seconds) | ±15mA | | | | #### **COMMENT** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### RECOMMENDED OPERATING CONDITIONS | Temperature | Min. | Max. | |-------------|-------|-------| | Commercial | 0°C | +70°C | | Industrial | -40°C | +85°C | | Device | Supply Voltage (V _{CC}) Limits | |-----------|--| | X9250 | 5V ±10% | | X9250-2.7 | 2.7V to 5.5V | ## POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.) | | | | Limits | | | | | |--|---|---------------------------------------|--------|----------|------|-------------------|--| | Symbol | Paramet | er | Min. | Тур. | Max. | Unit | Test Conditions | | | End to end resistance | tolerance | | | ±20 | % | | | | Power rating | | | | 50 | mW | 25°C, each pot | | I _W | Wiper current | | | | ±7.5 | mA | | | R _W | Wiper resistance | | | 150 | 250 | Ω | Wiper current = ± 1mA | | Vv+ | Voltage on V+ pin | X9250 | +4.5 | | +5.5 | V | | | | | X9250-2.7 | +2.7 | | +5.5 | | | | Vv- | Voltage on V- pin | X9250 | -5.5 | | -4.5 | V | | | | | X9250-2.7 | -5.5 | | -2.7 | | | | V _{TERM} | Voltage on any V _H /R _I | or V _L /R _L pin | V- | | V+ | V | | | | Noise | | | -120 | | dBV | Ref: 1kHz | | | Resolution (4) | | | 0.6 | | % | | | | Absolute linearity (1) | | | | ±1 | MI ⁽³⁾ | V _{w(n)(actual)} -V _{w(n)(expected)} | | | Relative linearity (2) | | | | ±0.6 | MI ⁽³⁾ | $V_{w(n + 1)} - [V_{w(n) + MI}]$ | | | Temperature coefficie | ent of R _{TOTAL} | | ±300 | | ppm/°C | | | | Ratiometric Tempera
Coefficient | ture | | | ±20 | ppm/°C | | | C _H /C _L /C _W | Potentiometer Capac | itances | | 10/10/25 | | pF | See Circuit #3 | **Notes:** (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer. - (2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size. - (3) MI = RTOT/255 or $(V_H/R_H-V_L/R_L)/255$, single pot - (4) Individual array resolutions. #### D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.) | | | Limits | | | | | |------------------|--|-----------------------|------|-----------------------|------|---| | Symbol | Parameter | Min. | Тур. | Max. | Unit | Test Conditions | | I _{CC1} | V _{CC} supply current (active) | | | 400 | μΑ | f _{SCK} = 2MHz, SO = Open,
Other Inputs = V _{SS} | | I _{CC2} | V _{CC} supply current (nonvolatile write) | | | 1 | mA | f _{SCK} = 2MHz, SO = Open,
Other Inputs = V _{SS} | | I _{SB} | V _{CC} current (standby) | | | 5 | μΑ | SCK = SI = V _{SS} , Addr. = V _{SS} | | I _{LI} | Input leakage current | | | 10 | μΑ | $V_{IN} = V_{SS}$ to V_{CC} | | I _{LO} | Output leakage current | | | 10 | μΑ | $V_{OUT} = V_{SS}$ to V_{CC} | | V _{IH} | Input HIGH voltage | V _{CC} x 0.7 | | V _{CC} + 0.1 | V | | | V _{IL} | Input LOW voltage | -0.5 | | V _{CC} x 0.3 | V | | | V _{OL} | Output LOW voltage | | | 0.4 | V | I _{OL} = 3mA | #### **ENDURANCE AND DATA RETENTION** | Parameter | Parameter Min. Unit | | | | |-------------------|---------------------|-----------------------------------|--|--| | Minimum endurance | 100,000 | Data changes per bit per register | | | | Data retention | 100 | Years | | | #### **CAPACITANCE** | Symbol | Test | Max. | Unit | Test Conditions | |---------------------------------|---|------|------|-----------------------| | C _{OUT} ⁽⁵⁾ | Output capacitance (SO) | 8 | pF | V _{OUT} = 0V | | C _{IN} ⁽⁵⁾ | Input capacitance (A0, A1, SI, and SCK, CS) | 6 | pF | V _{IN} = 0V | #### **POWER-UP TIMING** | Symbol | Parameter | Min. | Max. | Unit | |---|---|------|------|--------| | t _{PUR} ⁽⁶⁾ | Power-up to initiation of read operation | | 1 | ms | | t _{PUW} ⁽⁶⁾ | Power-up to initiation of write operation | | 5 | ms | | t _R V _{CC} ⁽⁷⁾ | V _{CC} power up ramp rate | 0.2 | 50 | V/msec | #### POWER UP AND DOWN REQUIREMENT The are no restrictions on the sequencing of the bias supplies V_{CC} , V_{+} , and V_{-} provided that all three supplies reach their final values within 1msec of each other. At all times, the voltages on the potentiometer pins must be less than V_{+} and more than V_{-} . The recall of the wiper position from nonvolatile memory is not in effect until all supplies reach their final value. The V_{CC} ramp rate spec is always in effect. Notes: (5) This parameter is periodically sampled and not 100% tested - (6) t_{PUR} and t_{PUW} are the delays required from the time the third (last) power supply (V_{CC}, V+ or V-) is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested. - (7) Sample tested only. #### **A.C. TEST CONDITIONS** | Input pulse levels | V _{CC} x 0.1 to V _{CC} x 0.9 | |-------------------------------|--| | Input rise and fall times | 10ns | | Input and output timing level | V _{CC} x 0.5 | # **Circuit #3 SPICE Macro Model** ## **EQUIVALENT A.C. LOAD CIRCUIT** ## **AC TIMING** | Symbol | Parameter | Min. | Max. | Unit | |--------------------|--|------|------|------| | f _{SCK} | SSI/SPI clock frequency | | 2.0 | MHz | | tcyc | SSI/SPI clock cycle time | 500 | | ns | | t _{WH} | SSI/SPI clock high time | 200 | | ns | | t _{WL} | SSI/SPI clock low time | 200 | | ns | | t _{LEAD} | Lead time | 250 | | ns | | t _{LAG} | Lag time | 250 | | ns | | t _{SU} | SI, SCK, HOLD and CS input setup time | 50 | | ns | | t _H | SI, SCK, HOLD and CS input hold time | 75 | | ns | | t _{RI} | SI, SCK, HOLD and CS input rise time | | 2 | μs | | t _{Fl} | SI, SCK, HOLD and CS input fall time | | 2 | μs | | t _{DIS} | SO output disable Time | 0 | 500 | ns | | t _V | SO output valid time | | 100 | ns | | t _{HO} | SO output hold time | 0 | | ns | | t _{RO} | SO output rise time | | 50 | ns | | t _{FO} | SO output fall time | | 50 | ns | | t _{HOLD} | HOLD time | 400 | | ns | | t _{HSU} | HOLD setup time | 100 | | ns | | t _{HH} | HOLD hold time | 100 | | ns | | t _{HZ} | HOLD low to output in high Z | | 100 | ns | | t_{LZ} | HOLD high to output in low Z | | 100 | ns | | T _I | Noise suppression time constant at SI, SCK, HOLD and CS inputs | | TBD | ns | | t _{CS} | CS deselect time | 2 | | μs | | t _{WPASU} | WP, A0 and A1 setup time | 0 | | ns | | t _{WPAH} | WP, A0 and A1 hold time | 0 | | ns | ## **HIGH-VOLTAGE WRITE CYCLE TIMING** | Symbol | Parameter | Тур. | Max. | Unit | |-----------------|--|------|------|------| | t _{WR} | High-voltage write cycle time (store instructions) | 5 | 10 | ms | ## **XDCP TIMING** | Symbol | Parameter | Min. | Max. | Unit | |-------------------|---|------|------|------| | t _{WRPO} | Wiper response time after the third (last) power supply is stable | | 10 | μs | | t _{WRL} | Wiper response time after instruction issued (all load instructions) | | 10 | μs | | t _{WRID} | Wiper response time from an active SCL/SCK edge (increment/decrement instruction) | | 40 | μs | #### **SYMBOL TABLE** | WAVEFORM | INPUTS | OUTPUTS | |----------|-----------------------------------|------------------------------------| | | Must be steady | Will be steady | | | May change
from Low to
High | Will change
from Low to
High | | | May change
from High to
Low | Will change
from High to
Low | | | Don't Care:
Changes
Allowed | Changing:
State Not
Known | | | N/A | Center Line is High Impedance | ## **TIMING DIAGRAMS** # **Input Timing** REV 1.2 4/13/04 Characteristics subject to change without notice. # **Output Timing** # **Hold Timing** # **XDCP Timing (for all Load Instructions)** # **XDCP Timing (for Increment/Decrement Instruction)** ## **Write Protect and Device Address Pins Timing** #### **APPLICATIONS INFORMATION** ## **Basic Configurations of Electronic Potentiometers** Three terminal Potentiometer; Variable voltage divider Two terminal Variable Resistor; Variable current ## **Application Circuits** #### **Noninverting Amplifier** ## Offset Voltage Adjustment #### **Voltage Regulator** $$V_{O}(REG) = 1.25V (1+R_{2}/R_{1})+I_{adj} R_{2}$$ #### **Comparator with Hysterisis** $$\begin{aligned} &V_{UL} = \{R_1/(R_1 + R_2) \ V_O(max) \\ &V_{LL} = \{R_1/(R_1 + R_2) \ V_O(min) \end{aligned}$$ ## **Application Circuits (continued)** #### Attenuator $V_O = G V_S$ -1/2 \le G \le +1/2 #### **Inverting Amplifier** #### Filter #### **Equivalent L-R Circuit** $$\begin{split} Z_{IN} = R_2 + s \; R_2 \; (R_1 + R_3) \; C_1 = R_2 + s \; \text{Leq} \\ (R_1 + R_3) >> R_2 \end{split}$$ $\begin{array}{l} \text{frequency} \propto R_1, \, R_2, \, C \\ \text{amplitude} \propto R_A, \, R_B \end{array}$ #### **PACKAGING INFORMATION** # 24-Bump Chip Scale Package (CSP B24) Package Outline Drawing ## **Package Dimensions** | | | Millimeters | | | |-------------------------------|--------|-------------|---------|-------| | | Symbol | Min | Nominal | Max | | Package Width | а | 2.771 | 2.801 | 2.831 | | Package Length | b | 4.549 | 4.579 | 4.609 | | Package Height | С | 0.644 | 0.677 | 0.710 | | Body Thickness | d | 0.444 | 0.457 | 0.470 | | Ball Height | е | 0.220 | 0.240 | 0.260 | | Ball Diameter | f | 0.310 | 0.330 | 0.350 | | Ball Pitch – Width | j | | 0.5 | | | Ball Pitch – Length | k | | 0.5 | | | Ball to Edge Spacing – Width | I | 0.626 | 0.651 | 0.676 | | Ball to Edge Spacing – Length | m | 1.015 | 1.040 | 1.065 | ## **Ball Matrix:** | | 4 | 3 | 2 | 1 | |---|-----------------|-----------------|-----------------|-----------------| | Α | R _{L1} | A1 | CS | R _{W0} | | В | R _{W1} | SI | WP | R _{L0} | | С | VSS | R _{H1} | R _{H0} | VCC | | D | V- | RH2 | R _{H3} | V+ | | E | R _{W2} | HOLD | SO | R _{L3} | | F | R _{L2} | SCK | A0 | R _{W3} | Characteristics subject to change without notice. #### **PACKAGING INFORMATION** ## 24-Lead Plastic, TSSOP, Package Code V24 NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) #### **PACKAGING INFORMATION** ## 24-Lead Plastic, SOIC, Package Code S24 NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) ## **Ordering Information** #### S & V Package Marking LIMITED WARRANTY ©Xicor, Inc. 2003 Patents Pending Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice. Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied. #### COPYRIGHTS AND TRADEMARKS Xicor, Inc., the Xicor logo, E²POT, XDCP, XBGA, AUTOSTORE, Direct Write cell, Concurrent Read-Write, PASS, MPS, PushPOT, Block Lock, IdentiPROM, E²KEY, X24C16, SecureFlash, and SerialFlash are all trademarks or registered trademarks of Xicor, Inc. All other brand and product names mentioned herein are used for identification purposes only, and are trademarks or registered trademarks of their respective holders. #### **U.S. PATENTS** Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691; 5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending. #### LIFE RELATED POLICY In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence. Xicor's products are not authorized for use in critical components in life support devices or systems. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.