XICOR

Application Note AN33

Interfacing the X24CO01 to the Motorola 68HC11 Microcontroller

by Applications Staff, July 1992

The following code demonstrates how the Xicor
X24C01 serial E’PROM can be interfaced to the Motorola
68HC11 microcontroller family when connected as
shown in Figure 1. The code uses two pins from port D

to implement the interface. Additional code can be
found on the Xicor web site at http://www.xicor.com that
will implement interfaces between several other Motor-
ola microcontroller families and most Xicor serial

U2
gg XT PA3 i
—29 1 Ex PA4 |
2 PA5 |5
—23q RESET PA6 |
—2q IRQ PA7
—299 xIrQ
16
o PBO [z
—S pao PBL [
L1 pa1 PB2 |3
PA2 PB3
7
17 PB4 M7
1L PEO PB5 (5
2 {PE1 PB6 |5
PE2 PB7 vece
20
PE3 31
- PCO (55
22 VRH PCL (53
VRL PC2
3
PC3 |2
PC4 53
PC5 (5=
PC6 53
PC7 U1
42 5
PDO (72 2 SpA
PD2
75
PD3 (72
PD4 [0 X24C01
PD5
MODA ;i
MODB
27
As [28
rRW |28
68HC11A8

Figure 1. Interfacin g an X24C01 to a 68HC11 microcontroller usin g Port D

AN33-1

Xicor Application Note AN33

devices.

AN33-2

Xicor Application Note AN33

*

* THIS CODE WAS DESIGNED TO DEMONSTRATE HOW THE XICOR X24C01 COULD *
* BE INTERFACED TO THE 68HC11 MICROCONTROLLER. THE INTERFACE USES 2 LINES *
* FROM PORT D (PDO AND PD1) TO COMMUNICATE. *

* *

* THE CODE SHOWN DEMONSTRATES A 'RANDOM READ' AND 'BYTE WRITE'. THE OTHER *
* MODES OF OPERATION CAN BE CREATED BY EXPANDING UPON THESE ROUTINES. *

* ACKNOWLEDGE POLLING IS USED TO DETERMINE WHEN THE WRITE CYCLE FINISHES. *
* *

* THE MAINLINE OF THIS PROGRAM READS THE DATA LOCATED AT ADDRESS 002DH AND *
* THEN WRITES THAT DATA BACK TO ADDRESS 0041H. THIS PROGRAM HAS BEEN TESTED *

* USING THE X24CO01. *

* REVISED: JANUARY 1997 *

SCLBIT EQU $02 MASK INDICATING PORTD SCL POSITION
SDABIT EQU $01 MASK INDICATING PORTD SDA POSITION
SDAOUT EQU $03 MAKES SDA AN OUTPUT IF STORED IN DDRD
SDAIN EQU $02 MAKES SDA AN INPUT IF STORED IN DDRD
DMASK EQU $80 USED TO MASK BIT TO SEND TO DUT

PORTD EQU $08 PORT D OFFSET IN 'PAGE' $1000

DDRD EQU $09 PORT D DIRECTION REGISTER OFFSET
ADDR EQU $80 LOCATION FOR X24C01 ADDRESS TO ACCESS
DATA EQU $82 LOCATION FOR X24C01 DATA TRANSFERED
COUNT EQU $83 COUNTER LOCATION FOR LOOPING

PDDATA EQU $84 TEMP REGISTER FOR DATA STORAGE
COUNT2 EQU $85 COUNTER FOR ACK POLLING

* RESET VECTOR ENTRY POINT *

ORG $FFFE RESET VECTOR ADDRESS TO PROGRAM ENTRY
FDB $EO00 JUMP TO BEGINNING OF EXECUTABLE CODE

* PROGRAM ENTRY POINT *

ORG $E000 BEGINNING OF EXECUTABLE CODE

BEGIN: LDS #$00FF INITIALIZE STACK POINTER
LDX #$1000 INITIALIZE PAGE OFFSET LOCATION
LDAA #$FF MAKE PORTD ALL ONES
STAA PORTD,X
LDAA #3$03 MAKE SDA AND SCL OUTPUTS
STAA DDRD,X
LDAA #$2D
STAA ADDR
JSR RDBYT READ DATA FROM ADDRESS 002DH
LDAA #$41

AN33-3

Xicor Application Note AN33

STAA ADDR

JSR WRBYT WRITE DATA BACK TO ADDRESS 0041H
JSR ACKPOL PERFORM ACK POLLING

BRA * LOOP UNTIL RESET

*

* READ A BYTE "RANDOM READ SEQUENCE". THE ADDRESS TO READ IS STORED *

* IN ADDR. THE DATA FROM THE DUT IS STORED IN DATA. *
RDBYT: JSR START READ A BYTE FROM THE ADDRESS INDICATED
LDAA ADDR IN 'ADDR'
ASLA
ORAA #$01 BUILD WORD ADDRESS
STAA DATA
JSR OUTBYT SEND WORD ADDRESS
JSR NACK SET SDA HIGH TO RECEIVE ACKNOWLEDGE
JSR INBYT READ DATA FROM X24C01
JSR NACK CLOCK WITHOUT ACKNOWLEDGE
JSR STOP SEND STOP COMMAND
RTS

*

* WRITE ABYTE "BYTE WRITE SEQUENCE". THE ADDRESS TO WRITE IS STORED *

* IN ADDR. THE DATA TO WRITE IS STORED IN DATA. *
WRBYT: LDAA DATA WRITE TO BYTE POINTED TO BY ADDR THE
PSHA VALUE IN LOCATION 'DATA'
JSR START SEND START COMMAND
LDAA ADDR
ASLA
STAA DATA
JSR OUTBYT SEND WORD ADDRESS
JSR NACK SET SDA HIGH TO RECEIVE ACKNOWLEDGE
PULA
STAA DATA
JSR OUTBYT SEND WRITE DATA
JSR NACK SET SDA HIGH TO RECEIVE ACKNOWLEDGE
JSR STOP SEND STOP
RTS

*

* READ 8 BITS FROM THE DUT. THE RESULTS ARE RETURNED IN DATA. *

*

INBYT: LDAA #SDAIN MAKE SDA AN INPUT
STAA DDRD,X
JSR CLOCK GET ACK BEFORE READ
LDAA #3$08 PREPARE TO SHIFT IN 8 BITS
STAA COUNT
LDAB #$00
LOOPI: JSR CLOCK CLOCK DATA
LSRA
ROLB

AN33-4

Xicor Application Note AN33

DEC COUNT

BNE LOOPI LOOP UNTIL 8 BITS ARE READ
STAB DATA STORE VALUE READ INTO DATA
LDAA #SDAOUT MAKE SDA AN OUTPUT

STAA DDRD,X

RTS

*

* WRITE 8 BITS TO THE DUT. THE DATA TO SEND IS IN DATA. IF THE LAST *
*BIT TO SEND IS A ONE THE SDA LINE IS MADE AN INPUT BEFORE THE 8TH *
* CLOCK PULSE TO AVOID BUS CONTENTION WHEN THE DUT ACKNOWLEDGES. THE *

* ROUTINE FINISHES WITH SDA IN AN INPUT STATE. *
OUTBYT: LDAA #3$08 PREPARE TO SHIFT OUT 8 BITS
STAA COUNT
BCLR PORTD,X #SDABIT MAKE SDA A O
LDAA DATA
LOOPO: LDAB PDDATA
ANDB #$01
ANDA #DMASK IS THE DATATO BE SHIFTEDA1ORAO
BEQ ISO JUMP IF DATA SHOULD BE 0
BSET PORTD,X #SDABIT MAKE SDA A 1
LDAA COUNT CHECK TO SEE IF LAST BIT TO SEND
CMPA #$01
BNE IS1
LDAA #SDAIN MAKE SDA AN INPUT IF A 1 IS THE LAST BIT
STAA DDRD,X
BRA IS1
ISO: BCLR PORTD,X #SDABIT MAKE SDA A 0
IS1: JSR CLOCK SEND CLOCK SIGNAL
LDAA DATA
ASLA
STAA DATA
DEC COUNT
BNE LOOPO LOOP UNTIL ALL 8 BITS HAVE BEEN SENT
LDAA #SDAIN MAKE SDA AN INPUT
STAA DDRD,X
RTS

*

* PERFORM ACKNOWLEDGE POLLING TO DETERMINE WHEN THE WRITE CYCLE *
* COMPLETES. UPON RETURN FROM THIS ROUTINE THE A REGISTER INDICATES *
* WHETHER THE DUT EVER ACKNOWLEDGED THE WRITE. A=0 PART ACKNOWLEDGED, *

* A=1 NO ACKNOWLEDGE RECEIVED. *
ACKPOL: LDAA #$080 MAX NUMBER OF TIMES TO CHECK THE PART
STAA COUNT2
AKLOOP: DEC COUNT2 RETURN IF THE PART
BEQ OUTACK NEVER ISSUES AN ACKNOWLEDGE
JSR START SEND START COMMAND
LDAA #$00

AN33-5

Xicor Application Note

AN33

STAA
JSR
JSR
CMPA
BNE
PSHA
JSR
JSR
PULA
RTS

OUTACK:

DATA

OUTBYT SEND SLAVE ADDRESS

NACK SEE IF PART ACKNOWLEDGES
#$00

AKLOOP LOOP IF NO ACKNOWLEDGE
START SEND START

STOP SEND STOP

*|ISSUE A STOP COMMAND *

STOP: BCLR
BSET
NOP
NOP
NOP
NOP
BSET

RTS

PORTD,X #SDABIT
PORTD,X #SCLBIT

PORTD,X #SDABIT

* ISSUE A START COMMAND *

START: BSET
BSET
BCLR
NOP
NOP
NOP
NOP
BCLR
RTS

PORTD,X #SDABIT
PORTD,X #SCLBIT
PORTD,X #SDABIT

PORTD,X #SCLBIT

* ISSUE AN ACKNOWLEDGE.

ACK: LDAA
STAA
BCLR
JSR

RTS

#SDAOUT

DDRD,X

PORTD,X #SDABIT
GENERATE A CLOCK PULSE

CLOCK

MAKE SURE SDA IS LOW
BRING SCL HIGH
PROVIDE SET-UP TIME

BRING SDA HIGH

MAKE SURE THAT SDA IS HIGH

MAKE SURE THAT SCL IS HIGH

FORCE SDA LOW
PROVIDE SET-UP TIME

FORCE SCL LOW

MAKE SDA AN OUTPUT

PERFORM AN 'ACKNOWLEDGE' WITH SDA LOW

*

* SDA IS SET HIGH IN THE OUTBYT ROUTINE. THE ACK ROUTINE DOES *
* NOT CHECK TO SEE IF THE DUT ACTUALLY ISSUES AN ACKNOWLEDGE. *

NACK: JSR

* *

CLOCK

GENERATE A CLOCK PULSE

AN33-6

Xicor Application Note AN33

PSHA

LDAA #SDAOUT MAKE SDA AN OUTPUT
STAA DDRD,X

PULA

RTS

* ISSUE A CLOCK PULSE. WHILE THE CLOCK IS HIGH THE VALUE ON THE *
* SDA LINE IS PLACED IN THE CARRY FLAG. WHEN A READ IS TAKING *
* PLACE THE CARRY FLAG WILL INDICATE THE VALUE FROM THE DUT. *

CLOCK: BSET PORTD,X #SCLBIT PROVIDE A CLOCK ON SCL, START HIGH
LDAA PORTD,X READ SDA WHILE SCL IS HIGH
BCLR PORTD,X #SCLBIT
ANDA #$01 SDA VALUE IS IN LOWER BIT OF A REG
RTS

AN33-7

