

Order this document by:

A N 1 2 4 9 / D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Brushed DC Motor Control Using the MC68HC16Z1
by Lawrence Donahue

INTRODUCTION
The MC68HC16Z1 is a 16-bit high speed microcontroller that incorporates a number of different modules.
One of these modules is the General Purpose Timer (GPT), which provides various timing functions includ-
ing pulse width modulation (PWM) output. PWM is very useful for motor control. This note describes a DC
motor control system that provides for constant motor speed using PWM.

The control system uses motor shaft rotation period as its input, monitors motor speed, and changes PWM
output duty cycle to either speed up or slow down the motor in order to maintain constant speed. The
M68HC16 interfaces to the motor via the DEVB103 Logic to Motor Interface Module, which is described in
detail in Motorola Application Note AN1300, Interfacing Microcomputers to Fractional Horsepower Motors.

BACKGROUND
A DC motor is a transducer that converts electrical energy to mechanical energy. As shown in Figure 1, an
ideal motor would run without loss and store no energy.

Figure 1 Ideal Motor

The model of an ideal motor is similar to that of an ideal transformer, but only one side has voltage (V) and
current (I) variables, while the other side has velocity (U) and force (F) variables. The voltage-velocity and
current-force relationships are:

 KIs = Fm
Vs = KUm

However, a real motor is far from ideal, both electrically and mechanically. The electrical side consists es-
sentially of wire wound around a core. The windings have an associated inductance, and since wire has
resistivity, there is also a finite resistance. Inertia affects mechanical operation. A rotating motor does not
instantaneously stop when disconnected from its power source, but rather slows down and eventually stops.

Is FmK : 1

Vs Um

AN1249 IDEAL MOTOR
© MOTOROLA INC, 1996

Similarly, a stopped motor does not instantaneously jump up to speed when power is applied. Because the
motor resists step changes in the velocity (the across variable) there is an element that looks capacitive.
Because an unpowered motor eventually slows down, it is lossy. A more realistic model of a motor includes
an electrical resistance and inductance and a mechanical resistance and compliance, along with an addi-
tional load, as shown in Figure 2.

Figure 2 Model Motor with Load

Figure 3 shows the electrical equivalent circuit, looking into the terminals of the ideal transducer.

Figure 3 Electrical Equivalent of Mechanics

 Figure 4 is the second-order electronic equivalent of the motor.

Figure 4 Electrical Equivalent of a Motor

Is FmK : 1

Vs Um

AN1249 NONIDEAL MOTOR

LeRe

Rm RLCm

AN1249 MECH ELEC EQIV

Ceq

Cm

K2
---------= Req K2RmRL Rm RL+() 1–

=

Vs

AN1249 MOTOR ELEC EQUIV

LeRe

ReqCeq
MOTOROLA AN1249/D
2

The result is a second order model system with a natural frequency of:

ω0 = [LeCeq]-1/2

The input to this model system is a pulse-width modulated signal that switches between ground and a con-
stant voltage. Switching occurs at a constant frequency with a given duty cycle. If the switching frequency
is sufficiently above the bandwidth of the motor, the motor filters out everything but the DC component of
the PWM signal, thus averaging it. For example, consider a PWM that switches between 0 volts and V0 volts
with a duty cycle of 25%. The motor behaves as if it were connected to a DC supply of 0.25V0 volts — the
duty cycle of the PWM determines the speed of the motor.

In real DC motors, however, the relationship between source voltage and shaft velocity is not linear, and
these relationships vary from motor to motor. Therefore, one desirable characteristic of a motor control sys-
tem is the ability to control speed independent of motor characteristics. Also, in many real-world applica-
tions, motor loads vary. Hence, another desirable characteristic is the ability to provide constant motor
speed under changing loads. These requirements are addressed by monitoring and controlling motor speed
rather than providing a specific voltage or duty cycle.

SYSTEM OVERVIEW
The system has four basic elements, as shown in Figure 5.

Figure 5 System Block Diagram

The first block represents the (MC68HC16Z1EVB) evaluation board that provides system computing and
control functions. The MCU is accessed by EVB16 software running on an IBM PC compatible connected
to the EVB via a parallel port. The GPT in the MCU generates a PWM signal which is connected to the
DEVB103 logic to motor interface module (Figure 6). The logic to motor interface module takes logic level
PWM signals and switches the power transistors of an H-bridge to provide motor drive power up to 60 V
and 3 A. The motor is the third element of the system. The fourth element consists of an opto-sensor and a
sensor board that conditions sensor output so that the period of motor shaft rotation can be measured by
software, to complete the feedback loop. Figure 7 shows a typical comparator with unipolar output. Com-
parator component values depend on sensor output level.

Figure 10 shows the open loop system function. The input is D, the duty cycle that determines the speed
of the motor. The output is ωA, the actual speed of the motor. Hence, the transfer function of the motor is:

ωA / D = [s2 + 2αs + ω02]-1

Observations of the actual motor indicate that the open loop system function is overdamped, and thus looks
somewhat like a first order system.

AN1249 SYS BLOCK

68HC16Z1EVB LOGIC-TO-MOTOR
INTERFACE

SENSOR BOARD

MOTOR

OPTICAL
SENSOR
AN1249/D MOTOROLA
3

Figure 6 Logic To Motor Interface Schematic

Figure 7 Sensor Output Conditioning Circuit

A BOT

D1

MBR030
CURRENT SENSE (CS+)

CURRENT SENSE GND (CS-)

GROUND GROUND

B+ (12-60V)

+M

-M

C1
390 mF

+
+5V

C5
1 mF

14
1

2

4

5

9

10

12

13

R12

R22
10K

R23

R24
10K

R25
10K

R13

R14

R15

1K

1K

1K

1K

10K

D5
12V

D7
4.7V

R9
3.9K

R21
2K

R10
220

R7
5.6K

Q3
MPS
A06

Q4
MPS
A06

R8
100

R6
220

Q2
MPS
A56

C6
1 mF

R20
5.6K

Q6
MPS
A06

R18
100

R19
220

Q7
MPS
A56

R17
220

C7
1 mF

R26
5.1K
1W

R3
5.1K
1W

D6
12V

D8
4.7V

D9
4.7V

D10
4.7V

7

11

8

6

3

+5V

+5V

MC74HC00

U1A

U1B

U1C

U1D
D4
14V

Q1

MPS
W06

Q6
MPS
W06

U3
MC78L05ACP

VI VOG
N
DC2

1 mF
C4
1 mF

R16
2K

R27
120R5 1K

R11 220

R1 470

R2 220

R4 470

+5V

D3
PWR

D2

MBR030

D12
MBR030

D11
MBR030

C3
1 mF

U2
MC34151

B TOP

A TOP

B BOT

A BOT

10

3

12

11
2
1

9

4

B TOP

B BOT

A TOP

MC74HC00

MC74HC00

MC74HC00

1
2
3
4

NC
A IN
GND
B IN

NC
A OUT

VCC
B OUT

8
7
6
5

6
5
8
7

MPM3002

Q5
MPS
A06

LTM SCHEM

R1

Q1

+V

V OUT

+

–

–V

R2

R3

RB

R4

D1

Z1

VIN

V REF

SCHMITT COND CKT
MOTOROLA AN1249/D
4

Figure 8 System Functional Diagram

The system is to maintain the motor speed ωA constant at the desired speed ωD. Examining the closed-
loop system function diagram shown in Figure 9 yields:

D = D + [ωD - ωA]/ωD

or

ωA =ωD

Figure 9 Closed Loop System

Therefore the input-output relationship is independent of the motor given a constant input ωD. However,
when the transfer function of the motor changes (i.e., when the load on the motor changes) or when the
desired speed changes, the system must adjust the value of D to make the actual motor speed equal the
desired speed. Further examination of the system function yields:

D = D + [ωD - ωA] / ωD = (ωA/Vref) (s2 + 2as + ω0
2)

which simplifies to:

ωA = Vref (1 + D) [s2 + 2αs +ω0
2 +Vref/ωD]-1

As shown in Figure 10, the poles of the closed loop system function differ from those of the open loop func-
tion. The poles become:

s1 = - α + [α2 - ω0
2 - Vref/ωD]

1/2

s2 = - α – [α2 - ω0
2 - Vref/ωD]

1/2

Figure 10 Open Loop and Closed Loop Poles in Complex Plane

AN1249 SYS FUNC BLOCK

s2 αs ωo
2+ +()

1–
VREF ωAD

s2 2αs ωo
2+ +()

1–VREF ωAD
ΣωD ΣωD

1–

AN1249 LOOP POLAR

– α
x x

Re

Im

– α

x

x

Re

Im

OPEN LOOP CLOSED LOOP
AN1249/D MOTOROLA
5

The poles are thus functions of Vref/ωD. If Vref/ωD gets large enough, the poles become complex, and the
actual motor speed, ωA, rings as it settles to its final value of ωD. The envelope and overshoot of the ringing
are both dependent on several factors, including the control algorithm, the voltage and duty cycle used for
the PWM, the desired speed, the load on the motor, and the motor itself.

SOFTWARE CONTROL
The software that controls the motor brings the motor up to speed as fast as possible, given the voltage
constraints of the system, and then maintains that desired speed. Figure 12 is an overall block diagram of
the system software. Figure 13 through Figure 15 provide flow diagrams of the three major blocks of code.

Begin sets up the registers that control the GPT, sets the desired period of rotation and tolerances, and sets
the PWM to 100%. Startup then monitors the period of rotation of the motor by using the subroutine mea-
sure (refer to Figure 13). If measure returns a period longer than that desired, the program loops back to
startup. When measure returns a period shorter than that desired, the program continues with new_duty
(refer to Figure 13), which calculates and sets the new duty cycle with the algorithm:

Dnew = Dold [1 + (TD - TA)/TA]-1

where TD and TA are the desired and actual periods of rotation, respectively. Following new_duty, tolerance
(refer to Figure 14) checks to see if the measured period is within the tolerances designated in begin.

For experimental purposes, a second control algorithm that modifies the duty cycle in a different manner
was also implemented. The routine compares TD and TA and determines whether TA is greater or less than
TD, then takes one of the following actions:

• If the two periods are within 8 GPT counts, the duty cycle is not modified.
• If TD - 8 is greater than TA, the duty cycle is decreased.
• if TD + 8 is less than TA, the duty cycle is increased.

The routine then looks at the magnitude of the difference between the two periods to determine by how
much the duty cycle is to be modified. Figure 16 is a flow diagram of the alternate control algorithm.

Figure 11 is a plot of the increment by which the duty cycle is modified as a function of the difference be-
tween TD and TA.

Figure 11 Modify Value vs. Difference

AN1249 MOD VS DIFF

GPT COUNTS

MODIFY
VALUE

TD TA–

8

6

4

2

#$8 #$10 #$40 #$100
MOTOROLA AN1249/D
6

Figure 12 System Software Flow Diagram

START

BEGIN
SETS GPTMCR, TCTL2, ICR, CSOR0,

AND CSBAR0 TO PROVIDE FOR THE IC1
INTERRUPT. INITIALIZES PWM TO 100% DUTY

CYCLE.

STARTUP
CALLS 'MEASURE' AND LOOPS IF THE

RESULTING PERIOD OF ROTATION IS GREATER
THAN THE DESIRED PERIOD.

NEW_DUTY
CALCULATES AND STORES THE NEW DUTY CYCLE

IN THE DUTY MEMORY LOCATION.

TOLERANCE
CHECKS TO SEE IF THE ACTUAL PERIOD OF

 ROTATION IS WITHIN THE TOLERANCES AND JUMPS
TO 'NEW_DUTY' IF IT'S NOT. OTHERWISE,

LOOPS.

AN1249 SOFTWARE FLOW
AN1249/D MOTOROLA
7

Figure 13 Startup Routine Flow Diagram

Figure 14 Tolerance Subroutine Flow Diagram

START

CALL “MEASURE“

IS “DESIRED“ - “ACTUAL“
POSITIVE?

YES

BRANCH TO “NEW_DUTY“

NO

START

“DESIRED” + “DELTA” – “ACTUAL”

YES
IS RESULT NEGATIVE?

BRANCH TO “NEW_DUTY”

NO

“DESIRED” – “DELTA” – “ACTUAL”

IS RESULT POSITIVE?

BRANCH TO “NEW_DUTY”

NO

YES

AN1249 MEAS FLOW
MOTOROLA AN1249/D
8

Figure 15 New_duty Routine Flow Diagram

START

DESIRED – ACTUAL

GREATER THAN
NO

NEGATE RESULT

DIVIDE BY ACTUAL

SHIFT ONE SPACE
TO THE RIGHT

SUBTRACT RESULT
FROM 1 ($8000)

DIVIDE BY ACTUAL

SHIFT ONE SPACE
TO THE RIGHT

ADD RESULT TO
1 ($8000)

MULTIPLY RESULT
BY DUTY

SHIFT ONE SPACE
TO THE RIGHT

JUMP TO
"TOLERANCE"

.

LOAD RESULT IN
DUTY

YES

AN1249 DUTY FLOW

ZERO?
AN1249/D MOTOROLA
9

Figure 16 Alternate Control Algorithm Flow Diagram

AN1249 ALT FLOW

START

SET TMSK1 TO 0100
TO MASK FOR IC1 INTERRUPT

SET A TO 0

IS A < 2?
YES “PERIOD” ON IC1 INTERRUPT

INCREMENT A.

A = 2? TIC1 => E

RTI

NO

TIC1 => D

ACTUAL = –(E – D)

SET A TO 2.

TFLG1 = F880

RTI

TFLG = F880

TMSK1 = 0000
TO DISABLE IC1

INTERRUPT

RTS

NO

YES
MOTOROLA AN1249/D
10

OPERATION
Both control routines were evaluated on two different motors. One motor was a slower, less responsive mo-
tor that worked well with the second increment/decrement approach and not so well with the first approach.
The second motor was faster and more responsive and worked very well with the first approach but not so
well with the second approach.

CODE LISTINGS
Listings 1 and 2 contain code for the first implementation of the control routine and the second increment/
decrement implementation of the control routine, respectively.

Listing 1 First Control Implementation.

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

 ORG $80
 DC.W PERIOD ;IC1 jumps to PERIOD

 ORG $0400 ;offsets from IX for variables
DESIRED EQU $0 ;location for storing the desired period
DELTA EQU $2 ;location for storing the period tolerance
ACTUAL EQU $4 ;location for storing the measured period
DUTY EQU $6 ;location for storing the present duty cycle
TEMP1 EQU $8 ;location for storing any temporary values
TEMP2 EQU $A ; " " " " " "
TEMP3 EQU $C ; " " " " " "
TEMP4 EQU $E ; " " " " " "

 ORG $0200 ;start program after interrupt vectors
***** Initialization Routines *****
 INCLUDE 'INITRAM.ASM' ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)
 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP

***** Here we go with motor control. *****

BEGIN LDD #$0083 ;Put the GPT into supervisor mode (the default
 STD GPTMCR ;mode) and sets interrrupt priority level to 3.
 LDD #$FFF9
 STD CSBAR0
 LDD #$7801 ;assert AVEC and other int. vector stuff
 STD CSOR0
 LDD #$1740 ;Set IC1 to be highest GPT priority, GPT to...
 STD ICR ;highest priority interrupt, and vector base...
 ;address to 4.
 LDY #$400 ;Beginning for variables in indirect addresses.
 LDD #$A00 ;Set the desired period to $A00 GPT counts.
 STD DESIRED,Y
 LDD #$80 ;Set the tolerence to +/- $80 GPT counts.
 STD DELTA,Y
 LDAA #$01 ;Set IC1 to capture only on a positive edge.
 STAA TCTL2
 LDD #$0062 ;Set the input of PWMCNT to the system clock...
 STD PWMC ;divided by 128 and set PWMA to be allways high.
STARTUP BSR MEASURE ;Branch to measure period of revolution
 CPE DESIRED,Y ;Compare the measured period with the desired
 BPL STARTUP ;and loop if motor is slower than desired.
 LDD #$00FF ;Store the value $FF in...
 STD DUTY,Y ;...the user defined duty cycle location and...
 STAB PWMA ;...in the GPT PWMA register thus setting the...
 ;...duty cycle of PWMA to $FF/$100.
 LDD #$0060 ;Change PWMA's otput to be from a constant...
 STD PWMC ;...output to a PWM output with duty cycle...
 ;...in the PWMA register.
 JMP NEW_DUTY ;branch to get new duty cycle
MEASURE LDD #$0104 ;Enable the IC1 interrupt and the TCNT clock...
 STD TMSK1 ;...to be the OC1 pin.
 LDAA #$00 ;The A register is used to keep track of how...
MEAS_LOOP CMPA #$02 ;...many input captures have taken place--with...
 ;...two, we can measure the period.
 BMI MEAS_LOOP ;Loop if two measurements have not been made.
 LDD #$0000 ;If two interrupts have taken place,reset for...
 STD TMSK1 ;...no interrupts (disable IC1).
 RTS ;Return from "measure" subroutine.
TOLERANCE BSR MEASURE ;Branch to "measure" subroutine.
AN1249/D MOTOROLA
11

 LDE ACTUAL,Y ;Load the measured period in E
 LDD DESIRED,Y ;Load the desired period in D.
 ASLD ;Double the desired period and put in D.
 SDE ;Subtract twice the desired period from the...
 ;...actual period, and if the actual period is...
 BPL TOO_SLOW ;...more than twice the desired, branch to the...
 ;...the "too_slow" code.
 LDD DESIRED,Y ;Load the desired period in D.
 LDE ACTUAL,Y ;Load the measured period in E.
 ASLE ;Half the desired period and put in D.
 SDE ;Subtract half the desired period from the...
 ;...actual period, and if the actual period is...
 BMI TOO_FAST ;...less than half the desired, branch to the...
 ;...the "too_fast" code.
 BRA WITHIN ;Otherwise branch to the "within" code.
TOO_SLOW LDD #$00FF
 STD DUTY,Y ;Set the user defined duty cycle location to $FF.
 STAB PWMA ;Set the PWMA register for a $FF/$100 duty cycle.
 BRA WAIT ;Branch to the "wait" code.
TOO_FAST LDD #$0000
 STD DUTY,Y ;Set the user defined duty cycle location to 0.
 STAB PWMA ;Set the PWMA register for a 0% duty cycle.
 BRA WAIT ;Branch to the "wait" code.
WITHIN LDD DESIRED,Y ;Load the desired period in D.
 LDE DELTA,Y ;Load the period tolerance in E.
 ADE ;Add the two together to get the maximum...
 ;...period allowed and store in E.
 LDD ACTUAL,Y ;Load the measured period in D and...
 SDE ;...subtract it from the max period allowed.
 BMI JUMP ;Branch to get new duty cycle if slow.
 LDD DESIRED,Y ;Load the desired period in D.
 LDE DELTA,Y ;Load the period tolerance in E.
 NEGE ;Negate the period tolerance.
 ADE ;Add the two together to get the minimum...
 ;... period allowed and store in E.
 LDD ACTUAL,Y ;Load the measured period in D and...
 SDE ;...subtract it from the min period allowed.
 BPL JUMP ;Branch to get new duty cycle if fast.
JUMP JMP NEW_DUTY ;Jump to "new_duty" code.
WAIT LDE #$2 ;Load the number of loops to wait for in E.
 LDD #$0000 ;Initialize temporary loacation #1 with zero...
 STD TEMP1,Y ;...because it will be used to count the number...
 ;...of loops.
WAIT_LOOP INCW TEMP1,Y ;Increment the counter loop.
 CPE TEMP1,Y ;Has the count (TEMP1,Y) reached the value in E?
 BNE WAIT_LOOP ;Loop if the count hasn't reached the value in E.
 BRA TOLERANCE ;Branch back to tolerance once the count has...
 ;...reached the specified value.
PERIOD INCA ;This code is executed when the IC1 interrupt...
 ;...takes place. The code first increments A...
 ;...which is used to count how many edges have...
 ;...been detected in the present "measure" routine.
 CMPA #$02 ;Compare the number of edge detections to 2.
 BEQ DELTA_T ;If second edge, jump to DELTA_T routine.
 LDE TIC1 ;Load the TCNT input capture value in E.
 BCLR TFLG1,#$01 ;Clear the IC1 interrupt flag.
 RTI ;Return from the IC1 interrupt.
DELTA_T LDD TIC1 ;Load the TCNT input capture value in D.
 SDE ;Subtract the second time (D) from first (E)...
 NEGE ;...and change the sign to get possitive value...
 ;...for the period.
 STE ACTUAL,Y ;Store the period in the appropriate location...
 ;...of user specified memory (ACTUAL,Y).
 LDAA #$02 ;Set A to 2 to break out of MEAS_LOOP above.
 BCLR TFLG1,#$01 ;Clear the IC1 interrupt flag.
 RTI ;Return from the IC1 interrupt.
NEW_DUTY LDD ACTUAL,Y ;Load the measured period into D.
 LDE DESIRED,Y ;Load the desired period into E.
 SDE ;Subtract the desired period from the measured...
 ;...and put result in E.
 BPL PLUS ;Branch to the "plus" code if the desired period...
 ;...is greater than the measured period.
MINUS NEGE ;-(Desired-Measured) ==> E
 TED ;-(Desired-Measured) ==> E
 LDX ACTUAL,Y ;Load the measured period into the IX register.
 FDIV ;(Actual-Desired)/Actual ==> IX
 STX TEMP1,Y ;Store the result in user defined memory...
 LDD TEMP1,Y ;...TEMP1,Y and store the result in D.
 LSRD ;Shift bits one place to the right because in...
 LDE #$8000 ;...this section, the convention changes and...
 ;...$8000 becomes equal to 1 instead of 0.5.
 SDE ;Subtract the word shifted above from $8000 thus...
 ;...performing: 1-(Actual-Desired)/Actual ==> E.
 BRA FACTOR ;Branch to section of code that will scale the...
 ;...present duty cycle by the result stored in E.
MOTOROLA AN1249/D
12

PLUS LDX ACTUAL,Y ;Load the measured period into the IX register.
 TED ;(Desired-Actual) ==> E
 FDIV ;(Desired-Actual)/Actual ==> IX
 STX TEMP1,Y ;Store the result in user defined memory...
 LDD TEMP1,Y ;...TEMP1,Y then load the result in D.
 LSRD ;Shift bits one place to the right because in...
 LDE #$8000 ;...this section, the convention changes and...
 ;...$8000 becomes equal to 1 instead of 0.5.
 ADE ;Add the word shifted above to $8000 thus...
 ;...performing: 1+(Desired-Actual)/Actual ==> E.
FACTOR STE TEMP1,Y ;Store the result from "minus" or "plus" in...
 LDX TEMP1,Y ;...user defined memory TEMP1,Y then load the...
 ;...result in IX.
 LDD DUTY,Y ;Load D with the present duty cycle.
 FDIV ;Divide the presest duty cycle by the factor...
 ;...calculated in "minus" or "plus" above...
 ;...thus performing the operation:...
 ;...DUTY/(1+(Desired-Actual)/Actual) ==> IX.
 STX TEMP1,Y ;Store this result in user defined memory...
 LDD TEMP1,Y ;...and then loading the result in D.
 LSRD ;Shift the result one place to the right to..
 ;...compensate for the shift from above.
 STD DUTY,Y ;Load this result in the memory location...
 ;...designated to be the duty cycle--DUTY,Y.
 LDE #$00FF ;Load E with $FF and compare with the result...
 SDE ;...as a sanity check to make sure that the..
 ;...resulting duty cycle makes sense.
 BPL OK ;If the result passes the sanity check, branch...
 ;...to OK code,...
 LDD #$00FF ;...otherwise, load the maximum allowable duty...
 STD DUTY,Y ;...cycle ($FF/$100) into DUTY,Y.
OK STAB PWMA ;Store the new duty cycle in the GPT PWMA register.
 JMP TOLERANCE ;Loop back to TOLERANCE.

Listing 2 Second (Increment/Decrement) Control Implementation

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

 ORG $80
 DC.W PERIOD ;IC1 jumps to PERIOD

 ORG $0400 ;Offsets from IX for variables
DESIRED EQU $0 ;Location for storing the desired period.
DELTA EQU $2 ;Location for storing the period tolerance.
ACTUAL EQU $4 ;Location for storing the measured period.
DUTY EQU $6 ;Location for storing the present duty cycle.
TEMP1 EQU $8 ;Location for storing any temporary values.
TEMP2 EQU $A ;Location for storing any temporary values.
TEMP3 EQU $C ;Location for storing any temporary values.
TEMP4 EQU $E ;Location for storing any temporary values.

 ORG $0200 ;start program after interrupt vectors
***** Initialization Routines *****
 INCLUDE 'INITRAM.ASM' ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)
 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP

***** Here we go with motor control. *****

BEGIN LDD #$0083 ;Put the GPT into supervisor mode (the default...
 STD GPTMCR ;...mode) and sets interrupt priority level to 3.
 LDD #$FFF9
 STD CSBAR0
 LDD #$7801 ;assert AVEC and other int. vector stuff
 STD CSOR0
 LDD #$1740 ;Set IC1 to be highest GPT priority, GPT to...
 STD ICR ;...highest priority interrupt, and vector base...
 ;...base address to 4.
 LDY #$400 ;Beginning for variable in indirect addresses.
 LDD #$A00 ;Set the desired period to $A00 GPT counts.
 STD DESIRED,Y
 LDD #$8 ;Set the period tolerance to +/- $8 GPT counts.
 STD DELTA,Y
 LDAA #$01 ;Set IC1 to capture only on a positive edge.
 STAA TCTL2
 LDD #$0062 ;Set the input of PWMCNT to the system clock...
 STD PWMC ;...divided by 128 and set PWMA to be high always.
STARTUP BSR MEASURE ;Branch to measure period of revolution.
 CPE DESIRED,Y ;Cpmpare the measured period with the desired...
 BPL STARTUP ;...and loop if motor is slower than desired
 LDD #$00FF ;Store the value $FF in...
AN1249/D MOTOROLA
13

 STD DUTY,Y ;...the user defined duty cycle location and...
 STAB PWMA ;...in the GPT PWMA register thus setting the...
 ;...duty cycle of PWMA to $FF/$100.
 LDD #$0060 ;Change PWMA's output to be from a constant...
 STD PWMC ;...ooutput to a PWM output with duty cycle...
 ;...in the PWMA register.
 JMP NEW_DUTY ;Branch to get new duty cycle.
MEASURE LDD #$0104 ;Enable the IC1 interrupt and the TCNT clock...
 STD TMSK1 ;...to be the OC1 pin (as a reference for debug).
 LDAA #$00 ;The A register os used to keep track of how...
MEAS_LOOP CMPA #$02 ;...many input captures have taken place--with...
 ;...two, we can measure the period.
 BMI MEAS_LOOP ;Loop if two measurements have not been made.
 LDD #$0000 ;If two interrupts have taken place, reset for...
 STD TMSK1 ;...no interrupts (disable IC1).
 RTS ;Return from "measure" subroutine.
TOLERANCE BSR MEASURE ;Branch to "measure" subroutine.
 LDD DESIRED,Y ;Load the desired period into D.
 LDE DELTA,Y ;Load the period tolerance into E.
 ADE ;Add the two together to get the maximum...
 ;...period allowed and store the value in E.
 LDD ACTUAL,Y ;Load the measured period in D and...
 SDE ;...subtract it from the max period allowed.
 BMI JUMP ;Branch to get new duty cycle if slow.
 LDD DESIRED,Y ;Load the desired period into D.
 LDE DELTA,Y ;Load the period tolerance into E.
 NEGE ;Negate the period tolerance.
 ADE ;Add the two together to get the minimum...
 ;...period allowed and store it in E.
 LDD ACTUAL,Y ;;Load the measured period in D and...
 SDE ;...subtract it from the min period allowed.
 BPL JUMP ;Branch to get new duty cycle if fast.
JUMP JMP NEW_DUTY ;Jump to "new_duty" code which calculates the...
 ;...new duty cycle.
WAIT LDE #$2 ;Load the number of loops to wait for in E.
 LDD #$0000 ;Initialize temporary location #1 with zero...
 STD TEMP1,Y ;...because it will be used to keep track of...
 ;...the number of loops.
WAIT_LOOP INCW TEMP1,Y ;Increment the loop counter.
 CPE TEMP1,Y ;Has the count (TEMP1,Y) reached the value in E?
 BNE WAIT_LOOP ;Loop if the count hasn't reached the value in E?
 BRA TOLERANCE ;Branch back to tolerance once the count has...
 ;...reached the specified value.
PERIOD INCA ;This count is executed when the IC1 interrupt...
 ;takes place. The code first increments A which...
 ;...is used to count how many edges have been...
 ;...detected in the present "measure" routine.
 CMPA #$02 ;Compare the number of edge detections to 2.
 BEQ DELTA_T ;If second edge, jump to DELTA_T routine.
 LDE TIC1 ;Load the TCNT input capture value in E.
 BCLR TFLG1,#$01 ;Clear the IC1 interrupt flag
 RTI ;Return from the IC1 interrupt.
DELTA_T LDD TIC1 ;Load the TCNT input capyure value in D.
 SDE ;Subtract the second time (D) from first (E)...
 NEGE ;...and change the sign to get positive value...
 ;...for the period.
 STE ACTUAL,Y ;Store the measured period in the appropriate...
 ;location of user specified memory (ACTUAL,Y).
 LDAA #$02 ;Set A to 2 to break out of MEAS_LOOP above.
 BCLR TFLG1,#$01 ;Clear the IC1 interrupt flag.
 RTI ;Return from the IC1 interrupt.
NEW_DUTY LDD ACTUAL,Y ;Load the measured period into D.
 LDE DESIRED,Y ;Load the desired period into E.
 SDE ;Subtract the desired period from the measured...
 ;...and put the result in E.
 BPL PLUS ;Branch to the "plus" code if the desired...
 ;...period is greater than the measured period.
 NEGE ;Load -(Desired-Measured) into register E.
MINUS STE TEMP1,Y ;Store -(Desired-Measured) into location TEMP1,Y.
 LDD #$0010 ;Load the value $10 into register D.
 SDE ;Subtract $10 from the discrepency between the...
 ;...measured period and the desired period.
 BPL TWO_PL ;If the discrepency is greater than $10, branch...
 ;...to the "two_pl" code.
 LDD #$0001 ;If the discrepency is less than $10, load 1...
 ;...into D to be the value to add to the present...
 ;...duty cycle.
 JMP OK_PL ;Jump to the "ok_pl" code.
TWO_PL LDE TEMP1,Y ;Load -(Desired-Measured) from TEMP1,Y into E.
 LDD #$0040 ;Load the value $40 into register D.
 SDE ;Subtract $40 from the discrepency between the...
 ;...measured period and the desired period.
 BPL FOUR_PL ;If the discrepency is greater than $40, branch...
 ;...to the "four_pl" code.
 LDD #$0002 ;If the discrepency is less than $40, load 2...
MOTOROLA AN1249/D
14

 ;...into D to be the value to add to the present...
 ;...duty cycle.
 JMP OK_PL ;Jump to the "ok_pl" code.
FOUR_PL LDE TEMP1,Y ;Load -(Desired-Measured) from TEMP1,Y into E.
 LDD #$0100 ;Load the value $100 into register D.
 SDE ;Subtract $100 from the discrepency between the...
 ;...measured period and the desired period.
 BPL EIGHT_PL ;If the discrepency is greater than $100,...
 ;...branch to the "eight_pl" code.
 LDD #$0004 ;If the discrepency is less than $100, load 4...
 ;...into D to be the value to add to the present...
 ;...duty cycle.
 JMP OK_PL ;Jump to the "ok_pl" code.
EIGHT_PL LDD #$0008 ;Load 8 into D to be the value to add to the...
 ;...present duty cycle.
OK_PL LDE DUTY,Y ;Load the present duty cycle into register E...
 ADE ;...and add it to the value obtained above...
 ;...to get the new duty cycle and put result in E.
 STE DUTY,Y ;Store the new duty cycle in DUTY,Y.
 LDD DUTY,Y ;Load the new duty cycle from DUTY,Y into D.
 LDE #$00FF ;Load E with $FF and compare with the result...
 SDE ;...as a sanity check to make sure that the...
 ;...resulting duty cycle makes sense.
 BPL OK ;If the result passes the sanity check, branch...
 ;...to "ok" code...
 LDD #$00FF ;...otherwise, load the maximum allowable duty...
 STD DUTY,Y ;...cycle ($FF/$100) into DUTY,Y.
 BRA OK ;Branch to "ok" code.
PLUS STE TEMP1,Y ;Store (Desired-Measured) into location TEMP1,Y.
 LDD #$0010 ;Load the value $10 into register D.
 SDE ;Subtract $10 from the discrepency between the...
 ;...measured period and the desired period.
 BPL TWO_MI ;If the discrepency is greater than $10,...
 ;...branch to the "two_mi" code.
 LDD #$0001 ;If the discrepency is less than $10, load 4...
 ;...into D to be the value to add to the...
 ;...present duty cycle.
 JMP OK_MI ;Jump to the "ok_mi" code.
TWO_MI LDE TEMP1,Y ;Load (Desired-Measured) from TEMP1,Y into E.
 LDD #$0040 ;Load the value $40 into register D.
 SDE ;Subtract $40 from the discrepency between the...
 ;...measured period and the desired period.
 BPL FOUR_MI ;If the discrepency is greater than $40,...
 ;...branch to the "four_mi" code.
 LDD #$0002 ;If the discrepency is less than $40, load 2...
 ;...into D to be the value to add to the...
 ;...present duty cycle.
 JMP OK_MI ;Jump to the "ok_mi" code.
FOUR_MI LDE TEMP1,Y ;Load (Desired-Measured) from TEMP1,Y into E.
 LDD #$0100 ;Load the value $100 into register D.
 SDE ;Subtract $100 from the discrepency between the...
 ;...measured period and the desired period.
 BPL EIGHT_MI ;If the discrepency is greater than $100,...
 ;...branch to the "eight_mi" code.
 LDD #$0004 ;If the discrepency is less than $100, load 4...
 ;...into D to be the value to add to the...
 ;...present duty cycle.
 JMP OK_MI ;Jump to the "ok_mi" code.
EIGHT_MI LDD #$0008 ;Load 8 into D to be the value to add to the...
 ;...present duty cycle.
OK_MI LDE DUTY,Y ;Load the present duty cycle into register E...
 SDE ;...and subtract from it the value obtained above...
 ;...to get the new duty cycle and put result in E.
 STE DUTY,Y ;Store the new duty cycle in DUTY,Y.
 LDD DUTY,Y ;Load the new duty cycle from DUTY,Y into D.
 LDE 0 ;Load E with 0 and compare with the result...
 SDE ;...as a sanity check to make sure that the...
 ;...resulting duty cycle makes sense.
 BMI OK ;If the result passes the sanity check, branch...
 ;...to "ok" code...
 LDD #$0 ;...otherwise, load the minimum allowable duty...
 STD DUTY,Y ;...cycle (0) into DUTY,Y.
OK STAB PWMA ;Store the new duty cycle in the GPT PWMA register.
 JMP TOLERANCE ;Loop back to "tolerance" code.
AN1249/D MOTOROLA
15

Moto g
the s d
spec t
appl t
conv s
inten a
prod r
unau ,
cost h
unin a
regis

TO OB
US

JA

HO

MF
INT
rola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regardin
uitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, an
ifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in differen
ications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does no
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in system
ded for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorol
uct could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended o
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims

s, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with suc
tended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. M is
tered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TAIN ADDITIONAL PRODUCT INFORMATION:
A/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
PAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
NG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
AX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
ERNET: http://www.mot.com

ADDITIONAL INFORMATION
The following Motorola publications contain additional information that may be of use to the reader.

The motor control system described in this note is based on an M68HC11-based system discussed in
Application Note AN1311,Software for an 8-bit Microcontroller Based Brushed DC Motor Drive. Howev-
er, the M68HC11system uses a PWM signal as its input.

The DEVB103 Logic to Motor Interface Module is completely described in Application Note AN1300,
Interfacing Microcomputers to Fractional Horsepower Motors.

TheMC68HC16Z1 User’s Manual (MC68HC16Z1UM/AD) contains comprehensive information con-
cerning the MC68HC16Z1 microcontroller.

TheGPT Reference Manual (GPTRM/AD) contains detailed information concerning the General-Pur-
pose Timer (GPT) module in the MC68HC16Z1.

These publications are available through Motorola sales offices and Literature Distribution Centers.

	Brushed DC Motor Control Using the MC68HC16Z1
	Introduction
	Background
	Figure 1 Ideal Motor
	Figure 2 Model Motor with Load
	Figure 3 Electrical Equivalent of Mechanics
	Figure 4 Electrical Equivalent of a Motor

	System Overview
	Figure 5 System Block Diagram
	Figure 6 Logic To Motor Interface Schematic
	Figure 7 Sensor Output Conditioning Circuit
	Figure 8 System Functional Diagram
	Figure 9 Closed Loop System
	Figure 10 Open Loop and Closed Loop Poles in Compl...

	Software Control
	Figure 11 Modify Value vs. Difference
	Figure 12 System Software Flow Diagram
	Figure 13 Startup Routine Flow Diagram
	Figure 14 Tolerance Subroutine Flow Diagram
	Figure 15 New_duty Routine Flow Diagram
	Figure 16 Alternate Control Algorithm Flow Diagram...

	Operation
	Code Listings
	Listing 1 First Control Implementation.
	Listing 2 Second (Increment/Decrement) Control Imp...

	Additional Information

