

Order Number: AN2164

Rev. 0, 7/2001

Semiconductor Products Sector

APPLICATION NOTE
MPC8245 Memory Clock Design Guidelines

Esther C Epiphane
RISC Application
risc10@email.sps.mot.com

This document explains the mathematical analysis of DLL locking range loop delay charts for the
MPC8245 hardware specification document, as well as setup time requirements for Tos
(SDRAM_SYNC_IN to PCI_SYNC_IN). Understanding and implementing the requirements for DLL
locking and Tos are important the MPC8245’s proper functioning. This document covers the following
topics:

Topic Page

Section 1.0, “Clocking” 2

Section 1.1, “DLL Locking Overview” 3

Section 1.2, “SDRAM_SYNC_IN to sys_logic_clk Time (Tos)” 10

Section 1.3, “Conclusion” 11
This document contains information on a new product under development by Motorola.
Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc., 2001. All rights reserved.

Clocking

1.0 Clocking
The MPC8245 allows for multiple clock options to accommodate various system configurations.
Internally, the MPC8245 uses one phase-locked loop (PLL) circuit to generate master clocks to the system
logic and a second PLL to generate the processor clock. The system logic PLL is synchronized to the
PCI_SYNC_IN input signal.

Figure 1 shows a block diagram of the clocking signals in the MPC8245.

Figure 1. Clock Subsystem Block Diagram

The sys_logic_clk signal may be set to a multiple of the PCI bus frequency as defined in the
MPC8245Hardware Specification. To help reduce the amount of discrete logic required in a system, the
MPC8245 provides PCI clock fanout buffers. The MPC8245 also provides the memory clock
(SDRAM_CLKn) signals through a delay locked loop (DLL) that is running at the same frequency as the
internal system logic (sys_logic_clk).

The PCI and SDRAM clock signals are supplied for synchronization of external components on the system
board. For minimum skew between SDRAM_SYNC_IN and the SDRAM clocks, the loop length on
SDRAM_SYNC_IN should be designed to be the same as the loop lengths on the SDRAM_CLKn signals
to their driven components. For example, for minimum skew, if an SDRAM device has a 5-inch trace, the
loop trace should be 5 inches in length. Note that a system designer may deliberately vary the loop lengths
in order to introduce a distinct amount of skew between SDRAM_SYNC_OUT and the SDRAM_CLKn
signals.

DLL

PLL

PLL

Processor Core

Core Clk

Peripheral Logic

sys_logic_clk

MPC8245

PCI_CLK[0:4]

PCI_SYNC_OUT
PCI_SYNC_IN

SDRAM_CLK[0:3]

SDRAM_SYNC_OUT

SDRAM_SYNC_IN

OSC_IN
2 MPC8245 Memory Clock Design Guidelines

DLL Locking Overview

1.1 DLL Locking Overview
The MPC8245 provides an on-chip delay-locked loop (DLL) that supplies the external memory bus clock
signals to SDRAM banks. The DLL is made up of a delay line and a phase comparator and is responsible
for generating the SDRAM_CLK(0:3), SDRAM Clock Synchronize Out (SDRAM_SYNC_OUT), and
CPU_CLK(0:2) signals. SDRAM_SYNC_OUT should be fed back through a delay loop into the
SDRAM_SYNC_IN input, which becomes the reference clock for the DLL. The clock, which goes
through the DLL, is shifted up or down one of the 128 tap points in the DLL delay line by adjusting the
length of the external delay loop. The phase comparator in the DLL compares the input and reference clock
of the DLL every five clock cycles to determine whether a jump to an adjacent tap point in the delay line is
necessary. This is done until the internal input clock to the DLL matches the reference clock,
SDRAM_SYNC_IN. The DLL is locked when the input clock and reference clock to the DLL are
matched. It then becomes possible to remove the effects of trace delay to the system memory by equating
the delay through the external loop to the delay to the system memory. DLL locking range is required for
proper operation of the MPC8245 and certain requirements must be met to ensure the DLL locks
successfully. These requirements include using the design recommendations for SDRAM_SYNC_OUT
timing and the propagation delay time for the DLL to lock. An increased lock range may cause slightly
more jitter in the output clock of the DLL; hence, the limitations per different DLL_EXTEND modes and
tap settings must be considered. When the DLL is locked, SDRAM_SYNC_IN will be in phase with
sys_logic_clk.

There are several possible delay line lengths. The shortest delay line length has a small amount of possible
delay and a smaller clock jitter due to the tap point movement. Note that although an increased lock range
makes it easier to guarantee that the reference clock is within the range, an increased lock range may cause
slightly more jitter in the output clock of the DLL.

There are cases in which the DLL tap point may need to be explicitly altered, such as systems that do not
use the DLL_MAX_DELAY bit to lengthen the DLL lock range and that are unable to meet the timing
requirements, particularly with a low-speed memory bus. In this case, the DLL_EXTEND bit of PMCR2
can be written to shift the lock range of the DLL by half of an SDRAM clock cycle. Note that this bit
should only be written during system initialization and should not be altered during normal operation. See
MPC8245 Hardware Specification and user’s manual for more information about the use of
DLL_EXTEND and the locking ranges supplied by the MPC8245.

There is a bit (DLL_RESET) in the AMBOR register that controls the initial tap point of the DLL. Note
that although this bit is cleared after a hard reset, it must be explicitly set and then cleared by software
during initialization in order to guarantee correct operation of the DLL and the SDRAM_CLK[0:3] signals
(if they are used).

This document describes the mathematical analysis of the four graphs in Section 1.4.3.1 of the MPC8245
hardware specification document which are specific to DLL locking. Each graph defines a scenario of DLL
locking based on the settings of DLL_EXTEND (bit 7 of the Power Management Configuration Register 2
- 0x72) and the DLL_MAX_DELAY (bit 2 of the Miscellaneous I/O Control Register 1 - 0x76).

1.1.1 DLL Locking Graphs for the MPC8245
The general formula for calculating the DLL lock range depends on the settings of DLL_EXTEND. This is
shown in Section 1.4.3.1, “Clock AC Timing Specifications,” of the hardware specification document for
the MPC8245. For DLL Lock Range with DLL_EXTEND disabled (Default=0), the lock range must be 0
≤ (N*Tclk - tloop - tfix0) ≤ 7 nanoseconds. The formula for calculating lock range with DLL_EXTEND
enabled requires that the lock range must be 0 ≤ (N*Tclk - Tclk/2 - tloop - tfix0) ≤ 7 nanoseconds. Where: N
is a non-zero integer (1 or 2). Tclk is the period of one SDRAM_SYNC_OUT clock cycle in nanoseconds.
tloop is the propagation delay of the DLL synchronization feedback loop (PC board runner) from
SDRAM_SYNC_OUT to SDRAM_SYNC_IN in nanoseconds; 6.25 inches of loop length (unloaded PC
board runner) corresponds to approximately 1 nanoseconds of delay. tfix0 is a fixed delay inherent in the
MPC8245 Memory Clock Design Guidelines 3

DLL Locking Overview

design when the DLL is at tap point 0 and the DLL is contributing no delay; tfix0 equals approximately 3
nanoseconds. These equations may be used with the DLL locking graphs in the case studies that follow to
verify that the delay of Tloop is supported for specific cases. The grey areas of each graph are the regions
for which DLL Locking occurs. The graphs are also present in Section 1.4.3.1, “Clock AC Timing
Specifications,” in the MPC8245 hardware specification document.

The DLL_MAX_DELAY bit can lengthen the amount of time through the delay line. This is accomplished
by increasing the time between each of the 128 tap points in the delay line. Although this increased time
makes it easier to guarantee that the reference clock will be within the DLL lock range, it also means there
may be slightly more jitter in the output clock of the DLL, should the phase comparator shift the clock
between adjacent tap points. The impact of this time increase between tap points will be illustrated in the
case studies to follow.

1.1.2 Variables and Equations
The following table defines the variables that will be used throughout the remainder of this document.
These values are based on characterization data.

Notes:
1. The data in this table is based on design simulation.
2. The period of the SDRAM clocks is dependent on the frequency of the memory bus. The frequency range for

the memory bus is 33-133 MHz ehrn operating at 266MHz CPU frequency and 33-100 MHz when operating at
300MHz CPU frequency. The period values represented in the table are for a 300 MHz CPU part.

3. Normal tap delay, bit 2 of offset 0x76 is cleared. Maximum Tap Delay, bit 2 of offset 0x76 is set.

Table 1. Terms and Definitions1

Term Definition Minimum Maximum Units Notes

m Integer 10 118 none

N An arbitrary integer 0 No limit none

Tclk Period of one
SDRAM_SYNC_IN clock
cycle

7.5 30 nanoseconds 2

Tctq sys_logic_cIk to
SDRAM_SYNC_OUT timing
at tap point 0

2.41 4.81 nanoseconds

Tap delay Delay for going from one tap
point to the next consecutive
one (128 tap points)

84 for normal
123 for max

177 for normal
247 for max

picoseconds 3

Tdl Delay added by delay line in
DLL

m*(Maximum Tap
Delay)

= 10(MaximumTap
Delay)

m*(MinimumTap
delay)

=118(Minimum Tap
Delay)

nanoseconds 4

tloop Propagation delay of the DLL
synchronization feedback
loop from
SDRAM_SYNC_OUT to
SDRAM_SYNC_IN

Mode dependant Mode Dependant nanoseconds 5

Tos Offset period required for
phase alignment of
SDRAM_SYNC_IN to
sys_logic_clk

0.65 1.00 nanoseconds
4 MPC8245 Memory Clock Design Guidelines

DLL Locking Overview

4. See explanation in Section 1.1.2., “Variables and Equations.”
5. Non-extended mode; bit 7 of offset 0x72 is cleared. Extended mode; bit 7 of offset 0x72 is set.

The general formulas for creating the DLL Locking graphs are:

(1) n*Tclk = Tctq + Tos + Tdl + Tloop (Non-Extended mode)

(2) (n-0.5)*Tclk = Tctq + Tos + Tdl + Tloop (Extended mode)

These equations are different from the equations in Section 1.1.1, “DLL Locking Graphs for the
MPC8245,” which show the general formulas for obtaining the trace length to guarantee DLL locking.
Once the delay timing desired is obtained, the graphs may be used to figure out whether the delay length
Tloop is supported in the grey areas of the graph. Here follows a more detailed analysis of how the DLL
Locking range graphs for the MPC8245 were obtained.

Let Tdp = Tctq + Tos + Tdl

From (1), Tloop = N*Tclk -Tdp (Non-Extended mode)

From (2), Tloop = (N-0.5)*Tclk - Tdp (Extended mode)

Please note that the use of “(min)” throughout the remainder of the document refers to minimum value of
the variable that it is used in context with. Likewise for “(max)” throughout the remainder of the document
refers to maximum value of the variable with which it is used in context.

The value Tloop can be determined as follows:

(3) (N*Tclk - Tdp(max)) ≤ Tloop ≤ (N*Tclk - Tdp(min)); (Non-Extended mode)

(4) ((N-0.5)*Tclk - Tdp(max)) ≤ Tloop ≤ ((N-0.5)*Tclk - Tdp(min)); (Extended mode)

This is because the value of Tloop should take into consideration the worse case values for Tdp. Therefore,
Tloop has to cover the range of its smallest to largest possible values. The smallest possible value is “N*Tclk
- Tdp(max)” for Non-Extended and “(N-0.5)*Tclk - Tdp(max)” for Extended mode. The largest possible
value of Tloop is “N*Tclk - Tdp(min)” for Non-Extended and “(N-0.5)*Tclk - Tdp(min)” for Extended mode.

Analysis of the values of Tdp shows that:

Tdp(min) = Tctq(max) + Tos(max) + Tdl(min) Eq. (5)

Tdp(max) = Tctq(min) + Tos(min) + Tdl(max) Eq.(6)

Note that the maximum values of Tctq and Tos are being used for the minimum value of Tdp. The reverse is
the case for the maximum value for Tdp where the minimum values of Tctq and Tos are being used. This is
because the worse case values are being used for the minimum and maximum values.

For example, let the characterization data times found at tap point 0 to be from 0 to 46.5 picoseconds and
the times at tap point 1 to be 130.5 to 177.0 picoseconds. The largest variation of the time from tap point 0
to tap point 1 is from 0 to 177.0 picoseconds, or a difference of 177 picoseconds. By observation the
smallest variation is from 46.5 to 130.5 picoseconds, which is 84 picoseconds. Figure 2 shows the
minimum and maximum worse case analysis.
MPC8245 Memory Clock Design Guidelines 5

DLL Locking Overview
Figure 2. Explanation of Maximum and Minimum Value Usage in Equations 5 and 6.

Table 2. Tap Delay Data

Using the values in Tables 1 and 2 as well as the equations of Section 1.1.2, we can use calculations to
show how the graphs were obtained for DLL Locking in the four various modes.

The graphs in Section 1.4.3.1, “Clocking AC Specifications,” of the hardware specification document were
derived from the graphs in this document. (The grey areas in each graph represent where the DLL will
lock.) The areas of DLL locking for various modes are as follows:

1. For Standard DLL mode (non extended): Clear bit 7 (DLL_EXTEND) at offset 0x72. (Default)

2. For Extended DLL mode: Set bit 7 (DLL_EXTEND) at offset 0x72.

3. Normal Tap Delay (Default): Clear bit 2 (DLL_MAX_DELAY) at offset 0x76.

4. Max Tap Delay: Set bit 2 (DLL_MAX_DELAY) at offset 0x76.

1.1.3 Case Analyses

1.1.3.1 Case 1: Normal Tap Delay and Non-Extended Mode:
Recall the following:

Non-Extended mode (N*Tclk - Tdp(max)) ≤ Tloop ≤ (N*Tclk - Tdp(min));

Tdp(min) = Tctq(max) + Tos(max) + Tdl(min) Eq. (5)

Tdp(max) = Tctq(min) + Tos(min) + Tdl(max) Eq.(6)

Therefore using Tables 1 and 2, the following values were obtained:

Tctq(max) = 4.81 ns, Tos(max) = 1.215 ns, Tdl(min) = 10 (0.177) ns

Tdp(min) = 4.81 + 1.215 + 1.77 = 7.795 ns

Term Mode Minimum Maximum Unit

Tap Delay Normal Tap Delay 84 177 picoseconds

Maximum Tap Delay 123 247 picoseconds

Values for

 Tap pt. 0

Values for

Tap pt. 1

Minimum Maximum Minimum Maximum

(Picoseconds) (Picoseconds)

0.0 46.5 130.5 177.0

maximum range

minimum range
6 MPC8245 Memory Clock Design Guidelines

DLL Locking Overview
Also, Tctq(min) = 2.407 ns, Tos(min) = 0.647 ns, Tdl(max) = 118(0.084) ns

This gives Tdp(max) = 2.407 + 0.647 + 9.912 = 12.966ns.

Recall that (N*Tclk - Tdp(max)) ≤ Tloop ≤ (N*Tclk - Tdp(min))

Note that for Graph 1 in Figure 3, if the grey strip at the maximum Tclk area is extrapolated to the x-axis we
can find the range of Tloop when N = 0, and Tclk = 0. Based on the calculations above - 12.966 ≤ Tloop ≤
-7.795 nanoseconds. Comparing our calculations to the extrapolated values on the graph we have estimated
around the range of -13 ≤ Tloop ≤ - 8 nanoseconds. Note that as the values of N and Tclk are increased the
range of Tloop shifts right on the x-axis eventually creating the grey DLL Locking areas. Each band
represents the DLL Locking at a particular value of N.

Figure 3. DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=0 and
Normal Tap Delay

1.1.3.2 Case 2: Maximum Tap Delay and Non-Extended Mode:
Recall the following:

Non-Extended mode (N*Tclk - Tdp(max)) ≤ Tloop ≤ (N*Tclk - Tdp(min));

Tdp(min) = Tctq(max) + Tos(max) + Tdl(min) Eq. (5)

Tdp(max) = Tctq(min) + Tos(min) + Tdl(max) Eq.(6)

Therefore using Tables 1 and 2, the following values were obtained:

Tctq(max) = 4.81 ns, Tos(max) = 1.215 ns, Tdl(min) = 10 (0.247) ns

Tdp(min) = 4.81 + 1.215 + 2.47 = 8.495 ns

Also, Tctq(min) = 2.407 ns, Tos(min) = 0.647 ns, Tdl(max) = 118(0.123) ns

This gives Tdp(max) = 2.407 + 0.647 +14.514 = 17.568 ns.

Recall that (N*Tclk - Tdp(max)) ≤ Tloop ≤ (N*Tclk - Tdp(min))

 -11 -9 -8 -7 -6 -5 -4 -3 -2 -1

40

-10-16 -14 -13 -12-15-17

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12

T
cl

k
S

D
R

A
M

_
S

Y
N

C
_

O
U

T

P
e

ri
o

d

Tloop Propagation Delay Time in Nanoseconds
MPC8245 Memory Clock Design Guidelines 7

DLL Locking Overview
Note that for Graph 2 in Figure 4, if the grey strip at the maximum Tclk area is extrapolated to the x-axis we
can find the range of Tloop when N = 0, and Tclk = 0. Based on the calculations above - 17.568 ≤ Tloop ≤
-8.495 nanoseconds. Comparing our calculations to the extrapolated values on the graph we have estimated
around the range of -17.6 ≤ Tloop ≤ - 8.5 nanoseconds. Note that as the values of N and Tclk are increased
the range of Tloop shifts right on the x-axis eventually creating the grey DLL Locking areas. Each band
represents the DLL Locking at a particular value of N.

Figure 4. DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=0 and Max
Tap Delay

1.1.3.3 Case 3: Normal Tap Delay and Extended Mode:
Recall the following:

Extended mode ((N-0.5)*Tclk - Tdp(max)) ≤ Tloop ≤ ((N-0.5)*Tclk - Tdp(min));

Tdp(min) = Tctq(max) + Tos(max) + Tdl(min) Eq. (5)

Tdp(max) = Tctq(min) + Tos(min) + Tdl(max) Eq.(6)

Therefore using Tables 1 and 2, the following values were obtained:

Tctq(max) = 4.81 ns, Tos(max) = 1.215 ns, Tdl(min) = 10 (0.177) ns

Tdp(min) = 4.81 + 1.215 + 1.77 = 7.795 ns

Also, Tctq(min) = 2.407 ns, Tos(min) = 0.647 ns, Tdl(max) = 118(0.084) ns

This gives Tdp(max) = 2.407 + 0.647 + 9.912 = 12.966ns.

Recall that ((N-0.5)*Tclk - Tdp(max)) ≤ Tloop ≤ ((N-0.5)*Tclk - Tdp(min))

Note that for Graph 3 in Figure 5, if the grey strip at the maximum Tclk area is extrapolated to the x-axis,
we can find the range of Tloop when N = 0, and Tclk = 0. Based on the calculations above: 12.966 ≤ Tloop ≤
-7.795 nanoseconds. Comparing our calculations to the extrapolated values on the graph, we have
estimated around the range of -13 ≤ Tloop ≤ - 8 nanoseconds. Note that as the values of N and Tclk are

0 1 2 3 4 5 6 7 8 9 10 11 12 -11 -9 -8 -7 -6 -5 -4 -3 -2 -1

40

35

30

25

20

15

10

5

-10-16 -14 -13 -12-15-17-18

T
cl

k
S

D
R

A
M

_
S

Y
N

C
_

O
U

T

P
e

ri
o

d

Tloop Propagation Delay Time in Nanoseconds
8 MPC8245 Memory Clock Design Guidelines

DLL Locking Overview
increased the range of Tloop shifts right on the x-axis eventually creating the grey DLL Locking areas. Each
band represents the DLL Locking at a particular value of N.

Figure 5. DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and
Normal Tap Delay

1.1.3.4 Case 4: Maximum Tap Delay and Extended Mode:
Recall the following:

Extended mode ((N-0.5)*Tclk - Tdp(max)) ≤ Tloop ≤ ((N-0.5)*Tclk - Tdp(min));

Tdp(min) = Tctq(max) + Tos(max) + Tdl(min) Eq. (5)

Tdp(max) = Tctq(min) + Tos(min) + Tdl(max) Eq.(6)

Therefore using Tables 1 and 2, the following values were obtained:

Tctq(max) = 4.81 ns, Tos(max) = 1.215 ns, Tdl(min) = 10 (0.247) ns

Tdp(min) = 4.81 + 1.215 + 2.47 = 8.495 ns

Also, Tctq(min) = 2.407 ns, Tos(min) = 0.647 ns, Tdl(max) = 118(0.123) ns

This gives Tdp(max) = 2.407 + 0.647 +14.514 = 17.568 ns.

Recall that ((N-0.5)*Tclk - Tdp(max)) ≤ Tloop ≤ ((N-0.5)*Tclk - Tdp(min))

Note that for Graph 4 in Figure 6, if the grey strip at the maximum Tclk area is extrapolated to the x-axis,
we can find the range of Tloop when N = 0, and Tclk = 0. Based on the calculations above: 17.568 ≤ Tloop ≤
-8.495 nanoseconds. Comparing our calculations to the extrapolated values on the graph we have estimated
around the range of -17.6 ≤ Tloop ≤ - 8.5 nanoseconds. Note that as the values of N and Tclk are increased,
the range of Tloop shifts right on the x-axis eventually creating the grey DLL locking areas. Each band
represents the DLL Locking at a particular value of N.

 -11 -9 -8 -7 -6 -5 -4 -3 -2 -1

40

-10-16 -14 -13 -12-15-17

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11

Tloop Propagation Delay Time in Nanoseconds

T
cl

k
S

D
R

A
M

_
S

Y
N

C
_

O
U

T

P
e

ri
o

d

MPC8245 Memory Clock Design Guidelines 9

SDRAM_SYNC_IN to sys_logic_clk Time (Tos)

Figure 6. DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and Max
Tap Delay

1.2 SDRAM_SYNC_IN to sys_logic_clk Time (Tos)
The MPC8245 has an internal delay in the feedback path for SDRAM_SYNC_IN with respect to the
internal sys_logic_clk signal. This results in the SDRAM_CLKs not being phase-aligned with
SDRAM_SYNC_IN. The internal sys_logic_clk signal is used by the peripheral logic to latch input data
and launch output data on the memory interface. Due to the additional internal delay present in
sys_logic_clk and the DLL, the resulting SDRAM_CLK pins will be offset by the delay amount.

Tos represents the timing adjustment for SDRAM_SYNC_IN with respect to sys_logic_clk. The feedback
trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN must be shortened by this amount relative to
the SDRAM clock output trace lengths so that phase alignment of the memory clocks can be maintained
with respect to sys_logic_clk. Based on the range of values given in Table 1 for Tos, the trace length of
SDRAM_SYNC_OUT to SDRAM_SYNC_IN can be shortened by 0.65 nanoseconds to about 1.0
nanoseconds in timing. This offset cannot be totally accommodated for by using the length adjustment of
Tos. The problem of the SDRAM clocks accessing memory early needs to be assessed on a case-by-case
basis considering the overall system architecture- including memory bus speed and the impact of certain
trace lengths used.

Figure 7 shows Tos as the phase delay between SDRAM_SYNC_IN and sys_logic_clk.

0 1 2 3 4 5 6 7 8 9 10 11 12 -11 -9 -8 -7 -6 -5 -4 -3 -2 -1

40

30

25

20

15

10

5

-10-16 -14 -13 -12-15-17-18

35

T
cl

k
S

D
R

A
M

_
S

Y
N

C
_

O
U

T

P
e

ri
o

d

Tloop Propagation Delay Time in Nanoseconds
10 MPC8245 Memory Clock Design Guidelines

Conclusion
Figure 7. Tos Relative to sys_logic_clk, SDRAM_SYNC_IN, and PCI_SYNC_IN Timing

1.3 Conclusion
When designing for the MPC8245, the DLL locking range must be considered to design using the
appropriate trace lengths for SDRAM_SYNC_OUT to SDRAM_SYNC_IN. The offset adjustment Tos
must also be considered as an additional length required to be removed from SDRAM_SYNC_OUT to
SDRAM_SYNC_IN to create the final trace length.

11a

VM = Midpoint Voltage (1.4V)

MEMORY

10b-d

INPUTS/OUTPUTS

13b

14b

VMVM

SDRAM_SYNC_IN
shown in 2:1 mode

Input Timing Output Timing

12b-d

2.0 V

0.8 V0.8 V

2.0 V

 Tos

10b-d = Input signals valid timing
11a = Input hold time of SDRAM_SYNC_IN to Memory.
12b-d = SDRAM_SYNC_IN to output valid timing
13b = Output hold time for non-PCI signals
14b = SDRAM-SYNC_IN to output high impedance timing
 for non-pci signals
Tos = Offset timing required to align sys_logic_clk with SDRAM_SYNC_IN

sys_logic_clk VM

 PCI_SYNC_IN VM

VM

See hardware specifications document for details of the above timing
characterization values.
MPC8245 Memory Clock Design Guidelines 11

Table 3. Document History

Revision Number Changes

Rev 0 Initial Document
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express
or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in
this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application
in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or
1-800-441-2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
852-26668334
TECHNICAL INFORMATION CENTER: 1-800-521-6274
HOME PAGE: http://www.motorola.com/semiconductors
DOCUMENT COMMENTS: FAX (512) 933-2625, Attn: RISC Applications Engineering
WORLD WIDE WEB ADDRESSES: http://www.motorola.com/PowerPC

http://www.motorola.com/NetComm
http://www.motorola.com/ColdFire

AN2164

DigitalDNA is a trademark of Motorola, Inc.
The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation used by Motorola
under license from International Business Machines Corporation.

	MPC8245 Memory Clock Design Guidelines
	1.0 Clocking
	1.1 DLL Locking Overview
	1.1.1 DLL Locking Graphs for the MPC8245
	1.1.2 Variables and Equations
	1.1.3 Case Analyses

	1.2 SDRAM_SYNC_IN to sys_logic_clk Time (Tos)
	1.3 Conclusion

