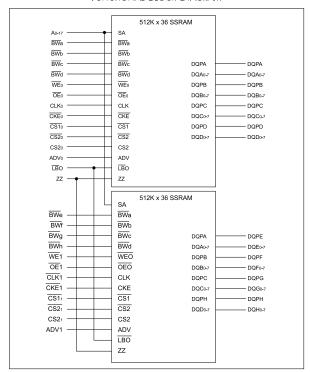
512K x 72 Synchronous Pipeline Burst ZBL SRAM *Preliminary

FEATURES

- Fast clock speed: 150, 133, and 100MHz
- Fast access times: 3.8ns, 4.2ns, and 5.0ns
- Fast OE access times: 3.8ns, 4.2ns, and 5.0ns
- High performance 3-1-1-1 access rate
- $3.3V \pm 5\%$ power supply
- I/O supply voltage 3.3V or 2.5V
- Common data inputs and data outputs
- Byte write enable and global write control
- Six chip enables for depth expansion and address pipeline
- Internally self-timed write cycle
- Burst control pin (interleaved or linear burst sequence)
- Automatic power-down for portable applications
- Commercial, industrial and military temperature ranges
- Packaging:
 - •152 PBGA package 17 x 23mm

BENEFITS


- 30% space savings compared to equivalent TQFP solution
- Reduced part count
- 24% I/O reduction
- Laminate interposer for optimum TCE match
- Low Profile
- Reduce layer count for board routing
- Suitable for hi-reliability applications
- User configurable as 1M x 36 or 2M x 18
- Upgradable to 1M x 72 (contact factory for availability)

DESCRIPTION

The WEDC SyncBurst - SRAM employs high-speed, lowpower CMOS design that is fabricated using an advanced CMOS process. WEDC's 32Mb SyncBurst SRAMs integrate two 512K x 36 SSRAMs into a single BGA package to provide 512K x 72 configuration. All synchronous inputs pass through registers controlled by a positive-edge-triggered single-clock input (CLK). The ZBL or Zero Bus Latency Memory utilizes all the bandwidth in any combination of operating cycles. Address, data inputs, and all control signals except output enable and linear burst order are synchronized to input clock. Burst order control must be tied "High or Low." Asynchronous inputs include the sleep mode enable (ZZ). Output Enable controls the outputs at any given time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation and provides increased timing flexibility for incoming signals.

*Preliminary product that is not fully characterized, non-qualified and is subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM

Pin Configuration (TOP VIEW)

	1	2	3	4	5	6	7	8	9
Α	-	ADV ₀	OE0	DQB2	DQB4	DQB6	DNU	DQA6	DQA2
В	CKEO	WE0	DQB7	DQB5	DQB3	DQB0	DQA7	DQA3	DQA1
С	CLK0	CS2 ₀	DQC2	DQPC	DQPB	DQB1	DQD7	DQA4	DQA0
D	BWa	BWb	DQC3	VSS	VSS	VSS	DQD6	DQA5	DQPA
Е	BWc	₿₩d	DQC4	VDDQ	VDDQ	VDDQ	DQD5	DQPD	ZZ
F	CS1 _o	CS2 ₀	DQC5	VDDQ	VDDQ	VSS	DQD4	DNU	A0
G	A7	DQC0	DQC7	VSS	VDD	VDD	DQD3	A1	A3
Н	A18	DQC1	DQC6	VDD	VDD	ADD,	DQD2	A2	A5
J	A9	A6	DQF2	VSS	VSS	VSS	DQD1	A4	A16
К	A8	DQF4	FQF3	VDD	VDD	VDD	DQD0	A14	A15
L	A17	DQF5	DQF6	VDD	VDD	VSS	DQE6	A12	A13
М	ADV1	ŌE1	DQF7	VSS	VDDQ	VDDQ	DQE7	A10	A11
N	CKE1	WE1	DQPF	VDDQ	VDDQ	VDDQ	DQE5	DQE3	LBO
Р	CLK1	CS2₁	DQF1	VSS	VSS	VSS	DQE4	DQE2	DQE0
R	BWe	BWf	DQF0	DQG1	DQG4	DQH1	DQH2	DQE1	DQPE
Т	BWg	BWh	DQG0	DQG2	DQG5	DQH0	DQH4	DQH7	DQPH
U	CS1₁	CS2 ₁	DQG3	DQPG	DQG6	DQG7	DQH3	DQH5	DQH6

NOTE: DNU means Do Not Use and are reserved for future use.

FUNCTION DESCRIPTION

The WEDPZ512K72V-XBX is an ZBL SSRAM designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa. All inputs (with the exception of \overline{OE} , \overline{LBO} and ZZ) are synchronized to rising clock edges.

All read, write and deselect cycles are initiated by the ADV input. Subsequent burst addresses can be internally generated by the burst advance pin (ADV). ADV should be driven to Low once the device has been deselected in order to load a new address for next operation.

Clock Enable (CKE) pin allows the operation of the chip to be suspended as long as necessary. When CKE is high, all synchronous inputs are ignored and the internal device registers will hold their previous values. NBL SSRAM latches external address and initiates a cycle when CKE and ADV are driven low at the rising edge of the clock.

Output Enable (\overline{OE}) can be used to disable the output at any given time. Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, \overline{CKE} is driven low, the write enable input signals \overline{WE} are driven high, and ADV driven low. The internal array is read between the first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. During read operation \overline{OE} must be driven low for the device to drive out the requested data.

Write operation occurs when \overline{WE} is driven low at the rising edge of the clock. $\overline{BW[h:a]}$ can be used for byte write operation. The pipe-lined ZBL SSRAM uses a late-late write cycle to utilize 100% of the bandwidth. At the first rising edge of the clock, \overline{WE} and address are registered, and the data associated with that address is required two cycles later.

Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst seguence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state of the LBO pin. When this pin is low, linear burst sequence is selected. And when this pin is high, Interleaved burst sequence is selected.

During normal operation, ZZ must be driven low. When ZZ is driven high, the SRAM will enter a Power Sleep Mode after two cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates after two cycles of wake up time.

BURST SEQUENCE TABLE

(Interleaved Burst, $\overline{LBO} = High$)

		Case 1		Case 2		Cas	se 3	Case 4	
LBO Pin	High	A1	A0	Α1	Α0	A1	Α0	A1	Α0
First Add	dress	0	0	0	1	1	0	1	1
		0	1	0	0	1	1	1	0
		1	0	1	1	0	0	0	1
Fourth Ac	ddress	1	1	1	0	0	1	0	0

NOTE 1: LBO pin must be tied to High or Low, and Floating State must not be allowed.

(Linear Burst, $\overline{LBO} = Low$)

		Case 1		Case 2		Cas	se 3	Case 4	
LBO Pin	High	A1	A0	A1	A0	A1	Α0	A1	A0
First Add	dress	0	0	0	1	1	0	1	1
		0	1	1	0	1	1	0	0
		1	0	1	1	0	0	0	1
Fourth Ac	ddress	1	1	0	0	0	1	1	0

TRUTH TABLES

Synchronous Truth Table

CEx	ADV	WE	BWx	OE	CKE	CLK	Address Accessed	Operation
Н	L	X	X	X	L	↑	N/A	Deselect
Х	Ι	X	X	X	L	↑	N/A	Continue Deselect
L	L	I	Х	L	L	↑	External Address	Begin Burst Read Cycle
Х	Н	X	Х	L	L	↑	Next Address	Continue Burst Read Cycle
L	L	Η	Х	Н	L	↑	External Address	NOP/Dummy Read
Х	Н	Χ	Х	Н	L	↑	Next Address	Dummy Read
L	L	L	L	Х	L	↑	External Address	Begin Burst Write Cycle
Х	Н	Х	L	Х	L	1	Next Address	Continue Burst Write Cycle
L	L	L	Н	Х	L	↑	N/A	NOP/Write Abort
Х	Н	Х	Н	Х	L	1	Next Address	Write Abort
Х	X	X	Х	X	Н	1	Current Address	Ignore Clock

NOTES: 1. X means "Don't Care."

- 2. The rising edge of clock is symbolized by (\uparrow).
- 3. A continue deselect cycle can only be entered if a deselect cycle is executed first.
- 4. WRITE = L means Write operation in WRITE TRUTH TABLE.

 WRITE = H means Read operation in WRITE TRUTH TABLE.
- 5. Operation finally depends on status of asynchronous input pins (ZZ and \overline{OE}).
- 6. \overline{CEx} refers to the combination of $\overline{CS1}$, $\overline{CS2}$ and $\overline{CS2}$.

WRITE TRUTH TABLE

WE	BWa	BWb	BWc	BWd	Operation
Н	X	X	X	Х	Read
L	L	Н	Н	Н	Write Byte a
L	Н	L	Н	Н	Write Byte b
L	Н	Н	L	Н	Write Byte c
L	Н	Н	Н	L	Write Byte d
L	L	L	L	L	Write All Bytes
L	Н	Н	Н	Н	Write Abort/NOP

NOTES: 1. X means "Don't Care."

- 2. All inputs in this table must meet setup and hold time around the rising edge of CLK (\uparrow) .
- 3. Replace BWa with BWe, BWb, with BWf, BWc with BWg and BWd with BWh for operation of IC2.

ABSOLUTE MAXIMUM RATINGS*

VIN Voltage or any other pin relative hovss	-0.3V to +4.6V
Voltage on VDD Supply Relative to Vss	-0.3V to +4.6V
Storage Temperature (BGA)	-55°C to +150°C

^{*}Stress greater than those listed under "Absolute Maximum Ratings: may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS

 $(-55^{\circ}C \le TA \le +125^{\circ}C)$

Description	Symbol	Conditions			Min	Max	Units	Notes
Input High (Logic 1) Voltage	VIH			3.3V I/O	2.0	VDD +0.5	V	1
				2.5V I/O	1.7	VDD +0.5		
Input Low (Logic 0) Voltage	VIL			3.2V I/O	-0.3	0.8	V	1
				2.5 I/O	-0.3	0.7		
Input Leakage Current	lıL	$V_{DD} = M_{ax}, OV \le V_{IN} \le V_{DD}$			-4	+4	μΑ	2
Output Leakage Current	lol	Outpu	Output(s) Disabled, Vout = Vss to VDDQ		-2	+2	μΑ	
Output High Voltage	Voн		loн = -4.0m/	4	2.4		V	1
			IOH = -1mA (2.5)	/ I/O)	2.0			
Output Low Voltage	Vol		Iol = 8.0 mA (3.3)	√ I/O)		0.4	V	1
			IOL = 1.0 mA (2.5 V)	I/O)		0.4		
Supply Voltage	VDD		•		3.135	3.465	V	1
I/O Power Suply (3.3V)	VDDQ				3.136	3.465	V	1
I/O Power Suply (2.5V)	VDDQ				2.375	2.9	V	1

NOTES: 1. All voltages referenced to VSS (GND)

DC CHARACTERISTICS

 $(-55^{\circ}C \leq TA \leq + 125^{\circ}C)$

Description	Symbol	Conditions	150 MHz (Max)	133 MHz (Max)	100 MHz (Max)	Units	Notes
Power Supply	IDD	Device Selected; All Inputs ≤ VIL or ≥ VIH; Cycle	800	760	640	mΑ	1
Current: Operating		Time ≥ Tcyc MIN; VDD = MAX; Output Open					
Power Supply Current: Standby	ISB2	Device Deselected; $VDD = MAX$; All Inputs $\leq VIL$ or $\geq VIH$ All Inputs Static; CLK Frequency $= MAX$ Output Open, $zz \geq VDD - 0.2V$	60	60	60	mA	
Clock Running	ISB	Device Deselected; VDD = MAX; All Inputs				mΑ	
Standby Current		\leq Vss + 0.2 or \geq VDD - 0.2; f = max ; ZZ \leq VIL	220	180	160		

NOTES: 1. lbb is specified with no output current and increases with faster cycle times. lbb increases with faster cycle times and greater output loading.

BGA CAPACITANCE

(TA = + 25C)

Description	Symbol	Conditions	Max	Units	Notes
Control Input Capacitance	G	TA = 25°C; $f = 1$ MHz	10	рF	1
Input/Output Capacitance (DQ)	Co	TA = 25°C; $f = 1MHz$	10	рF	1
Address Capacitance	CA	TA = 25°C; $f = 1MHz$	20	рF	1
Clock Capacitance	Сск	TA = 25°C; $f = 1MHz$	7	рF	1

NOTES: 1. This parameter is not tested but guaranteed by design.

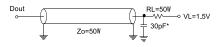
^{2.} ZZ pin has an internal pull-up, and input leakage $= \pm 20 \mu A$.

AC CHARACTERISTICS

 $(-55^{\circ}C - TA - +125^{\circ}C)$

	Symbol	<u>150</u>	MHz	<u>133</u>	MHz	<u>100</u>	MHz	
Parameter		Min	Max	Min	Max	Min	Max	Units
Clock Time	tcyc	6.7		7.5		10.0		ns
Clock Access Time	tco		3.8		4.2		5.0	ns
Output enable to Data Valid	toe		3.8		4.2		5.0	ns
Clock High to Output Low-Z	tızc	1.5		1.5		1.5		ns
Output Hold from Clock High	tон	1.5		1.5		1.5		ns
Output Enable Low to output Low-Z	tlzoe	0.0		0.0		0.0		ns
Output Enable High to Output High-Z	thzoe		3.0		3.5		3.5	ns
Clock High to Output High-Z	tHZC		3.0		3.5		3.5	ns
Clock High Pulse Width	tсн	2.5		2.5		3.0		ns
Clock Low Pulse Width	tcı	2.5		2.5		3.0		ns
Address Setup to Clock High	tas	1.5		1.5		1.5		ns
CKE Setup to Clock High	tces	1.5		1.5		1.5		ns
Data Setup to Clock High	tos	1.5		1.5		1.5		ns
Write Setup to Clock High	tws	1.5		1.5		1.5		ns
Address Advance to Clock High	tadvs	1.5		1.5		1.5		ns
Chip Select Setup to Clock High	tcss	1.5		1.5		1.5		ns
Address Hold to Clock high	tан	0.5		0.5		0.5		ns
CKE Hold to Clock High	tсен	0.5		0.5		0.5		ns
Data Hold to Clock High	tон	0.5		0.5		0.5		ns
Write Hold to Clock High	twн	0.5		0.5		0.5		ns
Address Advance to Clock High	tadvh	0.5		0.5		0.5		ns
Chip Select Hold to Clock High	tcsh	0.5		0.5		0.5		ns

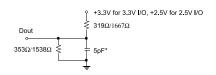
NOTES: 1. All Address inputs must meet the specified setup and hold times for all rising clock (CLK) edges when ADV is sampled low and CSx is sampled valid. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.


- 2. Chip enable must be valid at each rising edge of CLK (when ADV is Low) to remain enabled.
- 3. A write cycle is defined by WE low having been registered into the device at ADV Low.

 A Read cycle is defined by WE High with ADV Low. Both cases must meet setup and hold times.

AC TEST CONDITIONS

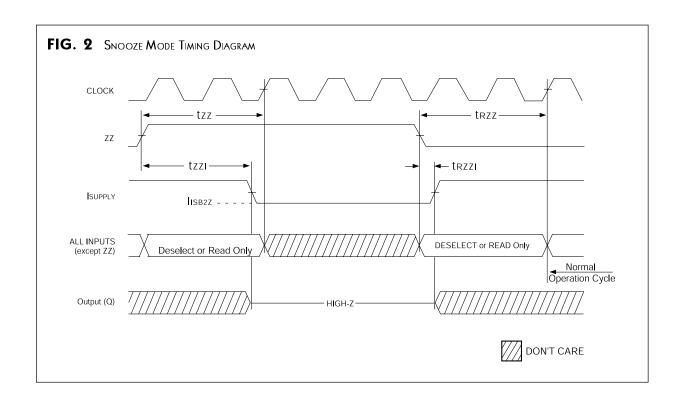
Parameter	Value
Input Pulse Level	0 to 3.6V
Input Rise and Fall Time	1.0V/ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Output Load (A & B)

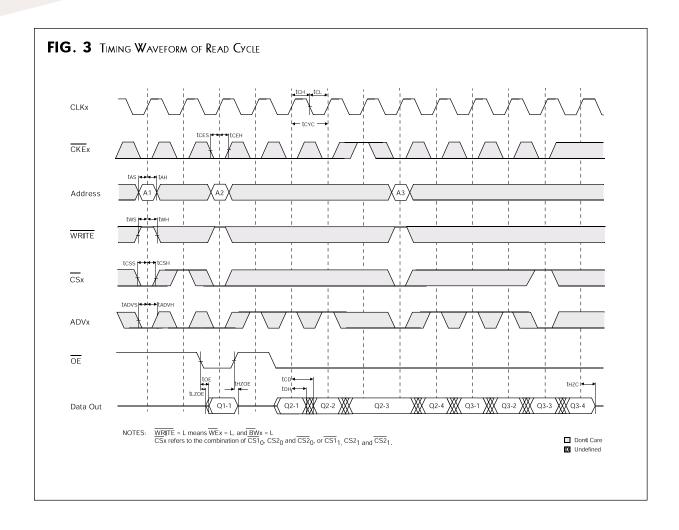

OUTPUT LOAD (A)

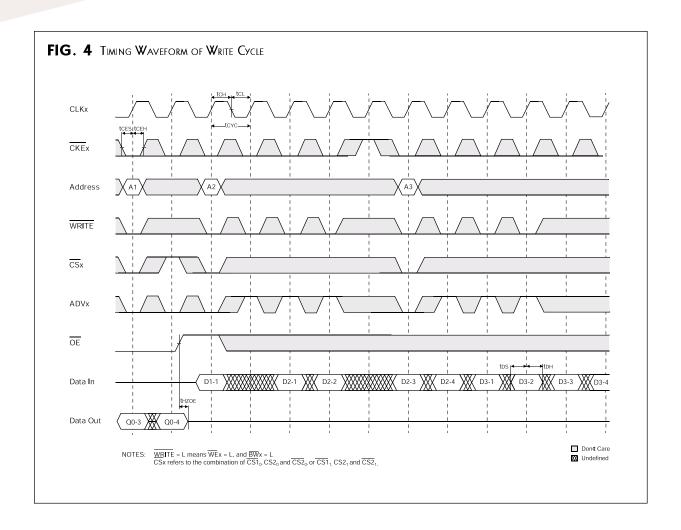
 $V_L = 1.5V$ for 3.3V I/O $V_{DDQ}/2$ for 2.5V I/O

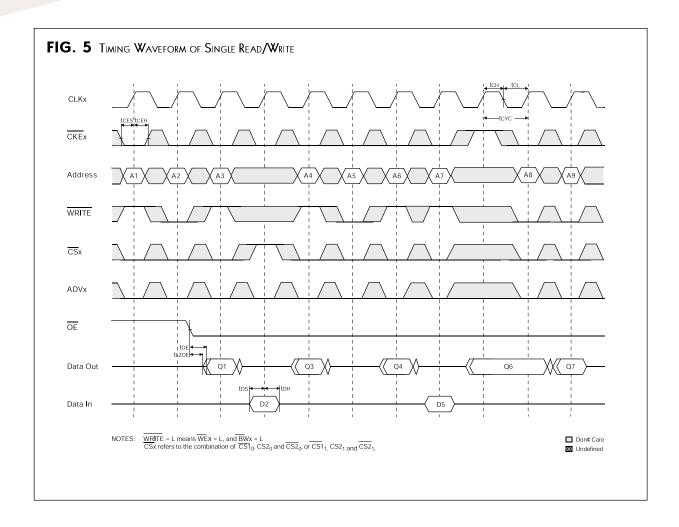
*Including Scope and Jig Capacitance

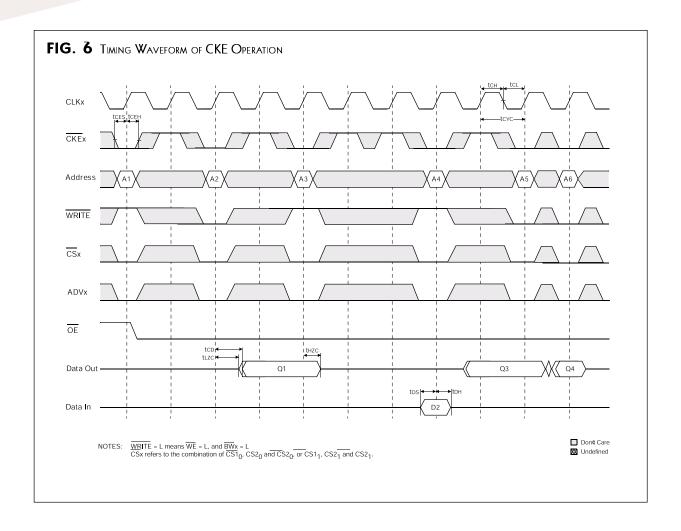
OUTPUT LOAD (B) (FOR TLZC, TLZOE, THZOE, AND THZC)


SNOOZE MODE


SNOOZE MODE is a low-current, "power-down" mode in which the device is deselected and current is reduced to ISB2Z. The duration of SNOOZE MODE is dictated by the length of time Z is in a HIGH state. After the device enters SNOOZE MODE, all inputs except ZZ become gated inputs and are ignored. ZZ is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE.


When ZZ becomes a logic HIGH, ISB2Z is guaranteed after the setup time tZZ is met. Any READ or WRITE operation pending when the device enters SNOOZE MODE is not guaranteed to complete successfully. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.


SNOOZE MODE


Description	Conditions	Symbol	Min	Max	Units
Current during SNOOZEMODE	ZZ≥VIH	ISB2Z		20	mA
ZZ active to input ignored		tzz		2	cycle
ZZ inactive to input sampled		trzz	2		cycle
ZZ active to snooze current		tzzı		2	cycle
ZZ inactive to exit snooze current		trzzi	0		ns

