

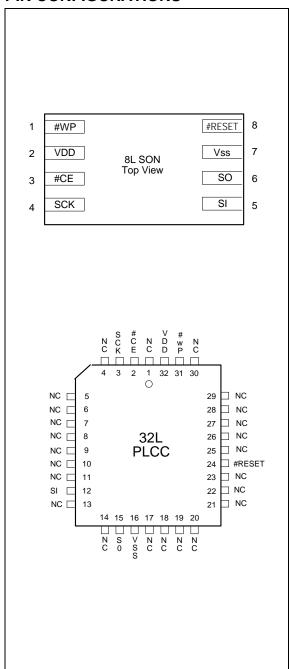
1M ' 1 SERIAL FLASH MEMORY

GENERAL DESCRIPTION

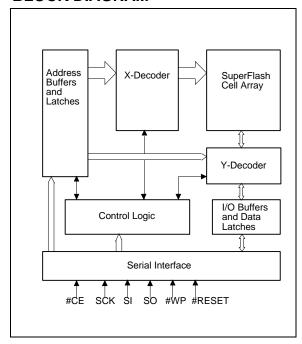
The W45B010 is manufactured with Winbond's high performance CMOS WinFlash technology. The Serial Flash is organized as 32 sectors of 4096 Bytes for the W45B010. The memory is accessed for Read or Erase/Program by the SPI bus compatible serial protocol. The bus signals are: serial data input (SI), serial data output (SO), serial clock (SCK), write protect (#WP), chip enable (#CE), and hardware reset (#RESET). This device is offered in 8L SON and 32L PLCC package.

FEATURES

- Single 2.7 3.6V Read and Write Operations
- · Serial Interface Architecture
 - SPI Compatible: Mode 0 and Mode 3
- · Byte Serial Read with Single Command
- Superior Reliability
 - Endurance: 10,000 Cycles (typ.)
 - 20 years Data Retention
- Low Power Consumption
 - Active Current: 30 mA (max)
 - Standby Current: 15 μA (max)
- Sector or Chip-Erase Capability
 - Uniform 4 KByte sectors
- Fast Erase and Byte-program
 - Chip-erase Time: 100 mS (Max.)
 - Sector-erase Time: 25 mS (Max.)
 - Byte-program Time: 50 μS (Max.)


- · Automatic Write Timing
 - Internal VPP Generation
- End-of-Write Detection
 - Software Status
- 20 MHz Max Clock Frequency
- Hardware Reset Pin (#RESET)
 - Resets the device to Standby Mode
- TTL Compatibility
- Hardware Data Protection
 - Protects/Unprotects the device from Write operation
- · Packages Available

- 1 -


8L SON (5 x 6 mm), 32L PLCC

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME			
#CE	Chip Enable			
SI	Serial Data Input			
SO	Serial Data Output			
SCK	Serial Clock			
#WP	Write Protect			
#RESET	Reset			
VDD	Power Supply			
Vss	Ground			

PRODUCT IDENTIFICATION

	BYTE	DATA
Manufacturer's ID	0000 h	DA h
Device ID: W45B010	0001 h	91 h

FUNCTIONAL DESCRIPTION

Device Operation

The W45B010 uses bus cycles of 8 bits each for commands, data, and addresses to execute operations. The operation instructions are listed in the table below. All instructions are synchronized off a high to low transition of #CE. The first low to high transition on SCK will initiate the instruction sequence. Inputs will be accepted on the rising edge of SCK starting with the most significant bit. Any low to high transition on #CE before the input instruction completes will terminate any instruction in progress and return the device to the standby mode.

Read

The Read operation outputs the data in order from the initial accessed address. While SCK is input, the address will be incremented automatically until end (top) of the address space, then the internal address pointer automatically increments to beginning (bottom) of the address space (00000h), and data out stream will continue. The read data stream is continuous through all addresses until terminated by a low to high transition on #CE.

Sector/Chip-erase Operation

The Sector-Erase operation clears all bits in the selected sector to 'FF". The Chip -erase instruction clears all bits in the device to 'FF".

Byte-program Operation

The Byte-Program operation programs the bits in the selected byte to the desired data. The selected byte must be in the erased state ('FF') when initiating a Program operation. The data is input from bit 7 to bit 0 in order.

Software Status Operation

The Status operation determines if an Erase or Program operation is in progress. If bit 0 is at a "0" an Erase or Program operation is in progress, the device is busy. If bit 0 is at a "1" the device is ready for any valid operation. The status read is continuous with ongoing clock cycles until terminated by a low to high transition on #CE.

Reset

Reset will terminate any operation, e.g., Read, Erase and Program, in progress. It is activated by a high to low transition on the #RESET pin. The device will remain in reset condition as long as #RESET is low. Minimum reset time is 10 μ S. See Figure 14 for reset timing diagram. #RESET is internally pulled-up and could remain unconnected during normal operation. After reset, the device is in standby mode, a high to low transition on #CE is required to start the next operation. An internal power-on reset circuit protects against accidental data writes. Applying a logic level low to #RESET during the power-on process then changing to a logic level high when VDD has reached the correct voltage level will provide additional protection against accidental writes during power on.

Read WINBOND ID/Read Device ID

The Read Manufacturer ID and Read Device ID operations read the JEDEC assigned manufacturer identification and the manufacturer assigned device identification codes. These codes may be used to determine the actual device resident in the system.

Write Protect

The #WP pin provides inadvertent write protection. The #WP pin must be held high for any Erase or Program operation. The #WP pin is "don't care" for all other operations. In typical use, the #WP pin is connected to Vss with a standard pull-down resistor. #WP is then driven high whenever an Erase or Program operation is required. If the #WP pin is tied to VDD with a pull-up resistor, then all operations may occur and the write protection feature is disabled. The #WP pin has an internal pull-up and could remain unconnected when not used.

DEVICE OPERATION INSTRUCTION

BUS CYCLE	1	2	3	4	5	6	7
Operation/Type	Command	Address ¹	Address	Address	Data	Dummy	Data
Read	FFh	A23 – A16	A15 – A8	A7 – A0	Х	Х	Dout
Sector-erase ²	20h	A23 – A16	A15 – A8	Х	Dout	Х	
Chip-erase	60h	Х	Х	Х	Dout	Х	
Byte-program	10h	A23 – A16	A15 – A8	A7 – A0	Din	Х	
Software-status	9Fh	Dout					
Read Manufacture ID	90h	Х	Х	A0 = 0	DAh		
Read Device ID 3	90h	Х	Х	A0 = 1	91h		

Notes:

- 1. A23 A17 are "Don't Care" for device.
- 2. A16 A12 are used to determine sector address, A11 A8 are don't care.
- 3. With A16 A1 = 0, W45B010 Device ID = 91h, is read with A0 = 1.

DEVICE OPERATION TABLE

Operation	SI	so	#CE ¹	#WP	#RESET
Read	Х	Dout	Low	Х	High
Sector-erase	Х	Х	Low	High	High
Chip-erase	Х	Х	Low	High	High
Byte-program	Din	Х	Low	High	High
Software-status	Х	Dout	Low	Х	High
Reset ²	Χ	X	X	X	Low
Read Manufacture ID	Х	Dout	Low	Х	High
Read Device ID	Х	Dout	Low	Х	High

Notes:

- 1. A high to low transition on #CE will be required to start any device operation except for Reset.
- 2. The #RESET low will return the device to standby and terminate any Erase or Program operation in progress.

DC CHARACTERISTICS

Absolute Maximum Stress Ratings

(Applied conditions greater than those listed under "Absolute maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

PARAMETER	RATING	UNIT
Temperature Under Bias	-55 to +125	°C
Storage Temperature	-65 to +150	°C
D. C. Voltage on Any Pin to Ground Potential	-0.5 to VDD +0.5	V
Transient Voltage (<20 nS) on Any Pin to Ground Potential	-1.0 to VDD +1.0	V
Package Power Dissipation Capability (TA = 25° C)	1.0	W
Surface Mount Lead Soldering Temperature (3 Seconds)	240	°C
Output Short Circuit Current 1	50	mA

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC Operating Characteristics

 $(VDD = 2.7V - 3.6V, VSS = 0V, TA = 0 \text{ to } 70^{\circ} \text{ C})$

PARAMETER	SYM.	TEST CONDITION			LIMITS	
				MIN.	MAX.	UNITS
Power Supply Current	IDD	f = 20 MHz,	Program/Erase	1	30	mA
		#CE = VIL, VDD = VDD Max.	Read	-	20	mA
Standby Current	ISB	#CE = VIHC, VDD = VDD Max.		-	15	μΑ
Input Leakage	ILI	VIN = GND to VDD, VDD = VDD Max.		-	2	μΑ
Output Leakage	ILO	VOUT = GND to VDD, VDD =VDD Max.			2	μΑ
Input Low Voltage	VIL			-0.2	0.6	V
Input High Voltage	ViH			2.0	VDD +0.3	V
Output Low Voltage	Vol	IOL = 1.6 mA		-	0.4	V
Output High Voltage	Voн	IOH = -0.4 mA		2.4	-	V

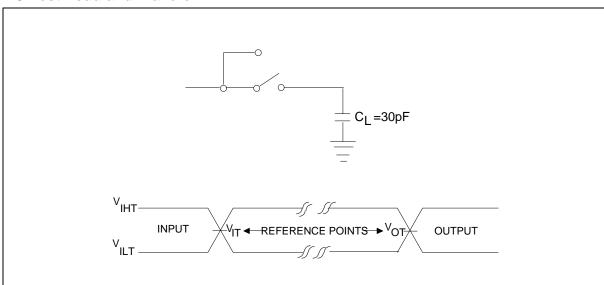
- 5 -

Note: Outputs shorted for no more than one second. No more than one output shorted at a time.

CAPACITANCE

 $(VDD = 2.7V - 3.6V, TA = 25^{\circ} C, f = 1 MHz)$

PARAMETER	SYMBOL	CONDITIONS	MAX.	UNIT
Output Pin Capacitance	Cour ¹	VDQ = 0V	12	pF
Input Pin Capacitance	CIN ¹	VIN = 0V	6	pF


AC CHARACTERISTICS

AC Test Conditions

(VDD = 2.7V - 3.6V)

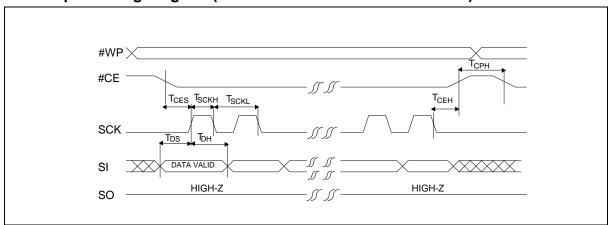
PARAMETER	CONDITIONS
Input Rise/Fall Time	<5 nS
Input/Output Timing Level	0.5 VDD / 0.5 VDD
Output Load	CL = 30 pF

AC Test Load and Waveform

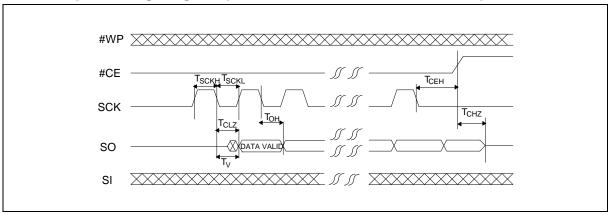
AC test inputs are driven at Viht (0.9 Vdd) for a logic "1" and Vilt (0.1 Vdd) for a logic "0". Measurement reference points for inputs and outputs are at Vit (0.5 Vdd) and Vot (0.5 Vdd) Input rise and fall times (10% \leftrightarrow 90%) are <5 nS.

Note: VIT: VINPUT Test; VOT: VOUTPUT Test; VIHT: VINPUT HIGH Test; VILT; VINPUT LOW Test

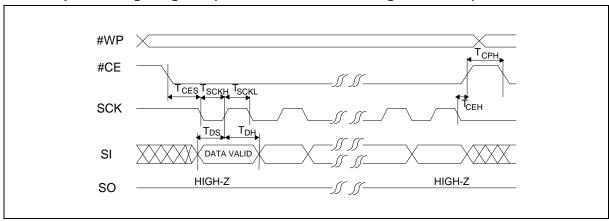
AC Operating Characteristics


(VDD = 2.7V - 3.6V)

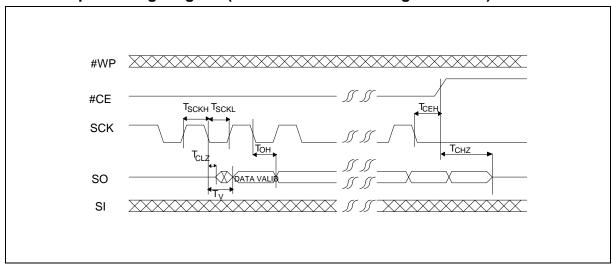
PARAMETER	SYMBOL		LIMITS			
		MIN.	MAX.	UNITS		
Serial Clock Frequency	FCLK		20	MHz		
Serial Clock High Time	Тѕскн	22	-	nS		
Serial Clock Low Time	TSCKL	22	-	nS		
#CE Setup Time	TCES	10	-	nS		
#CE Hold Time	Тсен	10	-	nS		
#CE High Time	Тсрн	50	-	nS		
#CE High to High-Z Output	TcHz	-	20	nS		
#CE Low to Low-Z Output	TcLz	0	-	nS		
#RESET Low to High-Z Output	Trlz	-	20	nS		
Data In Setup Time	TDS	5	-	nS		
Data In Hold Time	TDH	5	-	nS		
Output Hold from SCK Change	Тон	0	-	nS		
Output Valid from SCK	Tv	-	25	nS		
Write Protect Setup Time	Twps	10	-	nS		
Write Protect Hold Time	TWPH	10	-	nS		
Sector-erase	TSE	-	25	nS		
Chip-erase	TSCE	-	100	mS		
Byte-program	Твр	-	50	μS		
Reset Pulse Width	Trst	10	-	μS		
Reset Recovery Time	TREC	-	1	μS		
Reset Time After Power-up	TPURST	10	-	μS		

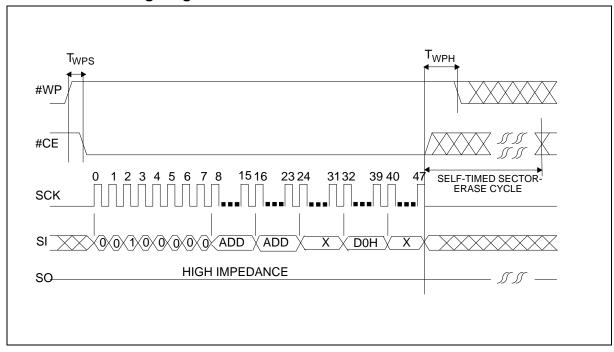


TIMING WAVEFORMS


Serial Input Timing Diagram (Inactive Serial Clock Low - Mode 0)

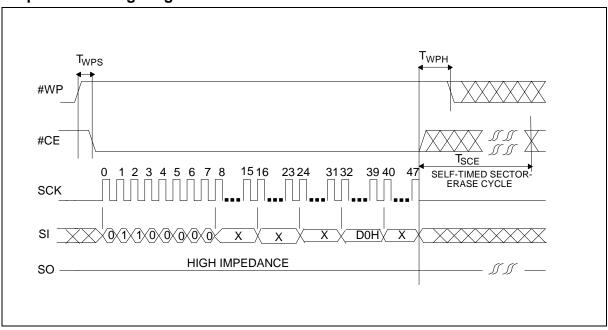
Serial Output Timing Diagram (Inactive Serial Clock Low - Mode 0)

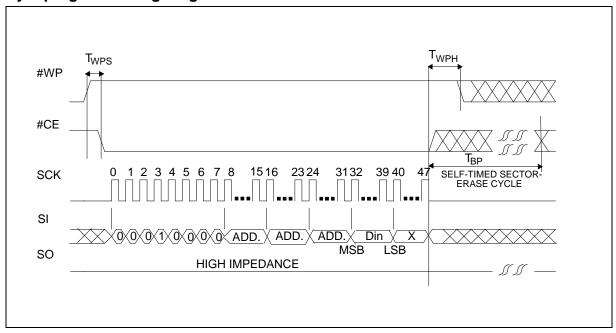

Serial Input Timing Diagram (Inactive Serial Clock High - Mode 3)



Timing Waveforms, continued

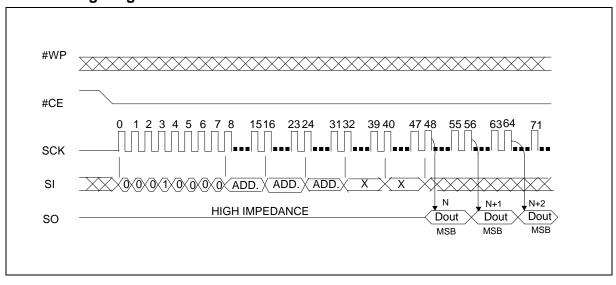
Serial Output Timing Diagram (Inactive Serial Clock High - Mode 3)

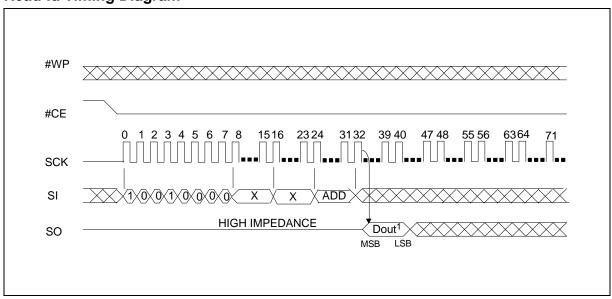

Sector-erase Timing Diagram



Timing Waveforms, continued

Chip-erase Timing Diagram

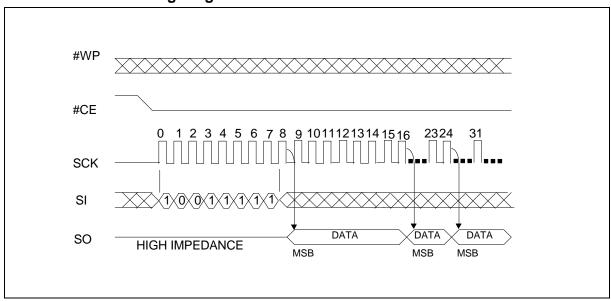

Byte-program Timing Diagram



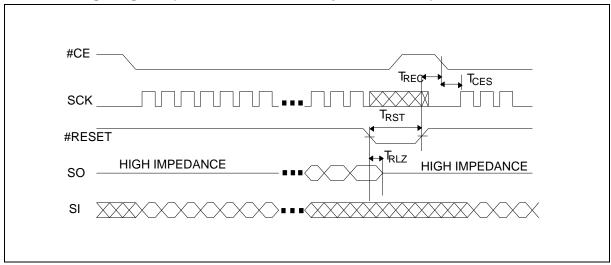
Timing Waveforms, continued

Read Timing Diagram

Read-Id Timing Diagram

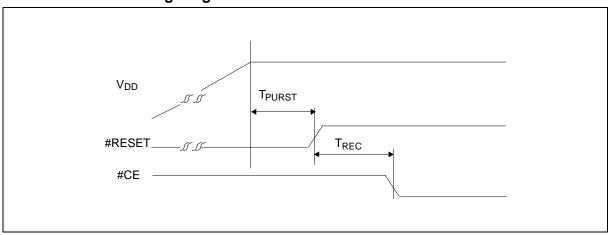

Note: 1. Manufacturer's ID = DAh is read with A 0 = 0

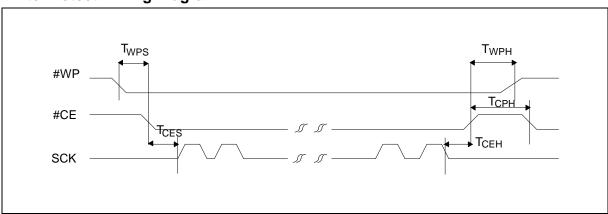
Device ID = 91h is read with A 0 = 1



Timing Waveforms, continued

Software-Status Timing Diagram


Reset Timing Diagram (Inactive Clock Polarity Low Shown)



Timing Waveforms, continued

Power-on Reset Timing Diagram

Write Protect Timing Diagram

ORDERING INFORMATION

PART NO.	OPERATING VOLTAGE (V)	POWER SUPPLY CURRENT MAX. (mA)	STANDBY VDD CURRENT MAX. (mA)	PACKAGE	CYCLING	OPERATING TEMP. (°C)
W45B010Z	2.7V - 3.6V	30	15	8L SON (5 x 6 mm)	10K	0°C – 70°C
W45B010P	2.7V - 3.6V	30	15	32L PLCC	10K	0°C – 70°C

Notes:

- 1. Winbond reserves the right to make changes to its products without prior notice.
- 2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

HOW TO READ THE TOP MARKING

Example: The top marking of 32L-PLCC W45B010Z

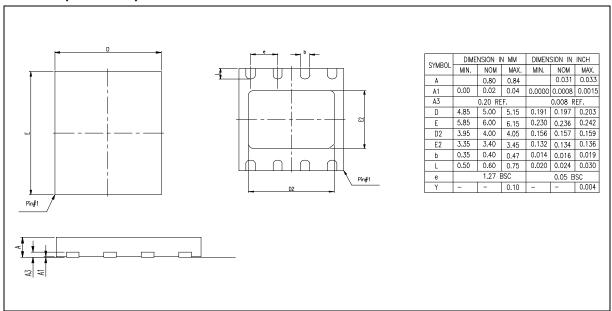
1st line: winbond logo

2nd line: the part number: W45B010Z

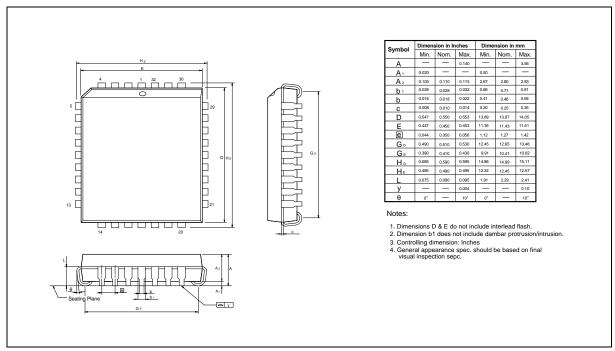
3rd line: the lot number

4th line: the tracking code: <u>149 O B SA</u>

149: Packages made in '01, week 49


O: Assembly house ID: A means ASE, O means OSE, ... etc. B: IC revision; A means version A, H means version H, ... etc.

SA: Process code



PACKAGE DIMENSIONS

8L SON (5 x 6 mm)

32L PLCC

- 15 -

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	Feb. 22, 2002	-	Initial Issue

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East. Rd., Taipei, Taiwan TEL: 886-2-27190505 FAX: 886-2-27197502 Winbond Electronics Corporation America 2727 North First Street, San Jose,

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798

Winbond Electronics Corporation Japan

7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800 Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai,

200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice.

All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.