

512K x 64 Synchronous Pipeline Burst NBL SRAM

FEATURES

- Fast clock speed: 166, 150, 133, and 100MHz
- Fast access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Fast \overline{OE} access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Single $+2.5V \pm 5\%$ power supply (VDD)
- Snooze Mode for reduced-standby power
- Double Word Write Control
- Clock-controlled and registered addresses, data I/Os and control signals
- Burst control (interleaved or linear burst)
- Packaging:
 - 119-bump BGA package
- Low capacitive bus loading

DESCRIPTION

The WEDC SyncBurst - SRAM family employs high-speed, low-power CMOS designs that are fabricated using an advanced CMOS process. WEDC's 32Mb SyncBurst SRAM integrate two 512K x 32 SRAMs into a single BGA package to provide 512K x 64 configuration. All synchronous inputs pass through registers controlled by a positive-edgetriggered single-clock input (CLK). The NBL or No Bus Latency Memory utilizes all the bandwidth in any combination of operating cycles. Address, data inputs, and all control signals except output enable and linear burst order are synchronized to input clock. Burst order control must be tied "High or Low." Output Enable controls the outputs at any given time and to Asynchronous Input. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation and provides increased timing flexibility for incoming signals.

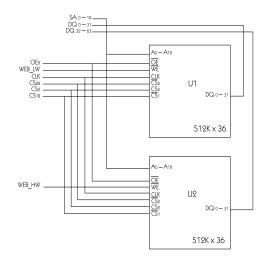

NOTE: NBL = No Bus Latency is equivalent to the industry ZBT $^{\text{m}}$ devices.

FIG. 1 PIN CONFIGURATION

(TOP VIEW)

	1	2	3	4	5	6	7	8	9
Α	DQF	DQF	DQF	DQF	NC	DQg	DQg	DQg	DQg
В	DQF	DQF	DQF	DQF	NC	DQg	DQg	DQg	DQg
С	DQE	DQE	DQE	DQE	NC	DQн	DQн	DQH	DQн
D	DQE	DQE	DQE	DQE	NC	DQн	DQн	DQH	DQн
Е	NC	NC	NC	Vcc	Vcc	Vcc	NC	NC	NC
F	SA	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	SA
G	SA	Œ	Vss	Vss	Vss	Vss	Vss	SA	SA
Н	SA	NC	Vss	WE ₁	Vss	Vss	Vss	SA	SA
J	SA ₁₈	Œ₂	SSCLK	ŌE	NC	NC	NC	SA ₁	SA ₀
K	SA	CE₂	Vss	WEo	Vss	Vss	Vss	SA	SA
L	SA	NC	Vss	Vss	Vss	Vss	Vss	SA	SA
М	SA	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	SA
N	N	NC	NC	Vcc	Vcc	Vcc	NC	NC	NC
Р	DQD	DQd	DQD	DQd	NC	DQA	DQA	DQA	DQA
R	DQd	DQd	DQd	DQd	NC	DQA	DQA	DQA	DQA
Т	DQc	DQc	DQc	DQc	NC	DQB	DQB	DQB	DQB
U	DQc	DQc	DQc	DQc	NC	DQB	DQB	DQB	DQB

BLOCK DIAGRAM

FUNCTION DESCRIPTION

The WED2ZL64512S is an NBL SSRAM designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa. All inputs (with the exception of \overline{OE}) are synchronized to rising clock edges.

All read, write and deselect cycles are initiated by the ADV input. Subsequent burst addresses can be internally generated by the burst advance pin (ADV). ADV should be driven to Low once the device has been deselected in order to load a new address for next operation.

Output Enable (\overline{OE}) can be used to disable the output at any given time. Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, $\overline{\text{CKE}}$ is driven low, the write enable input signals WE are driven high, and ADV driven low. The internal array is read between the

first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. During read operation \overline{OE} must be driven low for the device to drive out the requested data.

Write operation occurs when WE is driven low at the rising edge of the clock. The pipe-lined NBL SSRAM uses a latelate write cycle to utilize 100% of the bandwidth. At the first rising edge of the clock, WE and address are registered, and the data associated with that address is required two cycle later.

Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst sequence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is linear.

0

 Ω

1 1 0

 \cap

Case 1 Case 2 Case 3 Case 4 LBO Pin High Α0 Α1 Α1 Α0 Α1 Α1 Α0 Α0 First Address 0 0 1 0 1 1 1 \cap 1 1 0 1 1 0 0 1 1 0 0 0 0 1

Fourth Address

1

1

BURST SEQUENCE TABLE; LINEAR

TRUTH TABLES

Synchronous Truth Table

CEx	ADV	WE	OE	CLK	Address Accessed	Operation
Н	L	X	Χ	1	N/A	Deselect
X	Н	X	Χ	1	N/A	Continue Deselect
L	L	Ι	L	1	External Address	Begin Burst Read Cycle
X	Н	X	L	1	Next Address	Continue Burst Read Cycle
L	L	Ι	Н	1	External Address	NOP/Dummy Read
X	Н	X	Н	1	Next Address	Dummy Read
L	L	L	Χ	1	External Address	Begin Burst Write Cycle
X	Н	X	Χ	1	Next Address	Continue Burst Write Cycle
L	L	L	Χ	1	N/A	NOP/Write Abort
X	Н	X	Χ	1	Next Address	Write Abort
X	Х	Х	Х	1	Current Address	Ignore Clock

NOTES:

- 1. X means "Don't Care."
- 2. The rising edge of clock is symbolized by (\uparrow)
- 3. A continue deselect cycle can only be entered if a deselect cycle is executed first.
- WRITE = L means Write operation in WRITE TRUTH TABLE. WRITE = H means Read operation in WRITE TRUTH TABLE.

ABSOLUTE MAXIMUM RATINGS*

VOLTAGE ON VDD SUPPLY RELATIVE TO VSS	-0.3V то +3.6V
Vin (DQx)	-0.3V to +3.6V
Vin (Inputs)	-0.3V to +3.6V
STORAGE TEMPERATURE (BGA)	-55°С то +125°С
SHORT CIRCUIT OUTPUT CURRENT	100mA

^{*}Stress greater than those listed under "Absolute Maximum Ratings: may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (0°C ≤ TA ≤ 70°C)

Description	Symbol	Conditions	MIN	MAX	Units	Notes
INPUT HIGH (LOGIC 1) VOLTAGE	VIH		1.7	VDD +0.3	V	1
INPUT LOW (LOGIC 0) VOLTAGE	VIL		-0.3	0.7	V	1
INPUT LEAKAGE CURRENT	lu	OV - VIN - VDD	-5	5	μΑ	2
OUTPUT LEAKAGE CURRENT	Ito	Output(s) Disabled, OV - Vin - Vdd	-5	5	μΑ	
Output High Voltage	Voн	Iон = -1.0mA	2.0		V	1
OUTPUT LOW VOLTAGE	Vol	IoL = 1.0mA		0.4	V	1
SUPPLY VOLTAGE	VDD		2.375	2.625	V	1

NOTES:

- 1. All voltages referenced to Vss (GND)
- 2. ZZ pin has an internal pull-up, and input leakage = \pm 10 μ A.

DC CHARACTERISTICS

				166	150	133	100		
DESCRIPTION	Symbol	Conditions	Тур	MHz	MHz	MHz	MHz	Units	Notes
POWER SUPPLY	IDD	Device Selected; All Inputs ≤ VIL or ≥ VIH; Cycle		650	600	560	500	mA	1, 2
CURRENT: OPERATING		TIME = TCYC MIN; VDD = MAX; OUTPUT OPEN							
POWER SUPPLY	ISB2	Device Deselected; Vdd = MAX; All Inputs ≤ Vss + 0.2	30	60	60	60	60	mA	2
CURRENT: STANDBY		or Vdd - 0.2; All Inputs Static; CLK Frequency = 0; $ZZ \ge VIL$							
POWER SUPPLY	ISB3	Device Selected; All Inputs ≤ VIL or ≥ VIH; Cycle	20	40	40	40	40	mA	2
CURRENT: CURRENT		TIME = TCYC MIN; VDD = MAX; OUTPUT OPEN;							
		ZZ ≥ V _{DD} - 0.2V							
CLOCK RUNNING	ISB4	DEVICE DESELECTED; VDD = MAX; ALL INPUTS		140	120	100	80	mA	2
STANDBY CURRENT		≤ Vss + 0.2 or Vdd - 0.2; Cycle Time = Tcyc							
		MIN; ZZ ≤ VIL							

NOTES:

- 1. Ioo is specified with no output current and increases with faster cycle times. Ioo increases with faster cycle times and greater output loading.
- 2. Typical values are measured at 2.5V, 25°C, and 10ns cycle time.

BGA CAPACITANCE

DESCRIPTION	Symbol	Conditions	Тур	Max	Units	Notes
CONTROL INPUT CAPACITANCE	CL	TA = 25°C; $f = 1$ MHz	5	7	рF	1
INPUT/OUTPUT CAPACITANCE (DQ)	Со	TA = 25°C; $f = 1$ MHz	6	8	рF	1
Address Capacitance	CA	TA = 25°C; $f = 1$ MHz	5	7	рF	1
Clock Capacitance	Сск	TA = 25°C; $f = 1$ MHz	3	5	рF	1

NOTES:

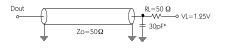
1. This parameter is sampled.

AC CHARACTERISTICS

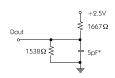
	Symbol	<u>166</u>	<u>MHz</u>	<u>150MHz</u>		<u>133MHz</u>		<u>100MHz</u>		
PARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	Min	Max	Units
CLOCK TIME	tcyc	6.0		6.7		7.5		10.0		ns
CLOCK ACCESS TIME	tcp		3.5		3.8		4.2		5.0	ns
Output enable to Data Valid	toe		3.5		3.8		4.2		5.0	ns
CLOCK HIGH TO OUTPUT LOW-Z	tızc	1.5		1.5		1.5		1.5		ns
OUTPUT HOLD FROM CLOCK HIGH	tон	1.5		1.5		1.5		1.5		ns
OUTPUT ENABLE LOW TO OUTPUT LOW-Z	tlzoe	0.0		0.0		0.0		0.0		ns
OUTPUT ENABLE HIGH TO OUTPUT HIGH-Z	thzoe		3.0		3.0		3.5		3.5	ns
CLOCK HIGH TO OUTPUT HIGH-Z	tHZC		3.0		3.0		3.5		3.5	ns
CLOCK HIGH PULSE WIDTH	tсн	2.2		2.5		3.0		3.0		ns
CLOCK LOW PULSE WIDTH	tcı	2.2		2.5		3.0		3.0		ns
Address Setup to Clock High	tas	1.5		1.5		1.5		1.5		ns
CKE SETUP TO CLOCK HIGH	tces	1.5		1.5		1.5		1.5		ns
DATA SETUP TO CLOCK HIGH	tos	1.5		1.5		1.5		1.5		ns
Write Setup to Clock High	tws	1.5		1.5		1.5		1.5		ns
Address Advance to Clock High	tadvs	1.5		1.5		1.5		1.5		ns
CHIP SELECT SETUP TO CLOCK HIGH	tcss	1.5		1.5		1.5		1.5		ns
Address Hold to Clock high	tah	0.5		0.5		0.5		0.5		ns
CKE HOLD TO CLOCK HIGH	tceh	0.5		0.5		0.5		0.5		ns
Data Hold to Clock High	tрн	0.5		0.5		0.5		0.5		ns
Write Hold to Clock High	twн	0.5		0.5		0.5		0.5		ns
Address Advance to Clock High	tadvh	0.5		0.5		0.5		0.5		ns
CHIP SELECT HOLD TO CLOCK HIGH	tcsH	0.5		0.5		0.5		0.5		ns

NOTES:

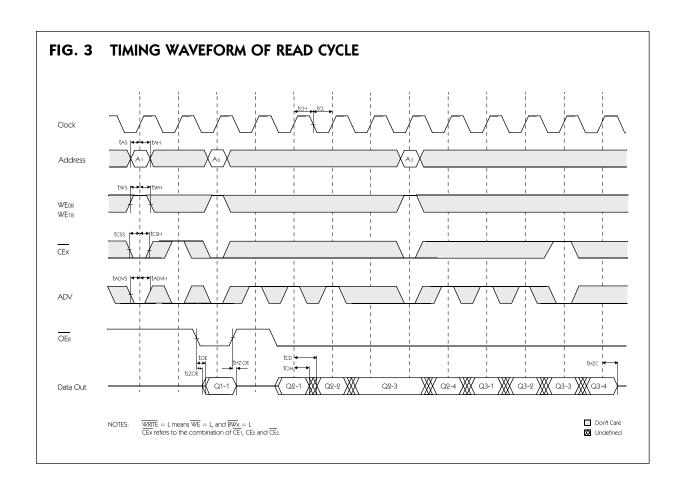
- 1. All Address inputs must meet the specified setup and hold times for all rising clock (CLK) edges when ADV is sampled low and $\overline{\text{CE}}$ x is sampled valid. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.
- 2. Chip enable must be valid at each rising edge of CLK (when ADV is Low) to remain enabled.
- 3. A write cycle is defined by \overline{WE} low having been registered into the device at ADV Low. A Read cycle is defined by \overline{WE} High with ADV Low. Both cases must meet setup and hold times.

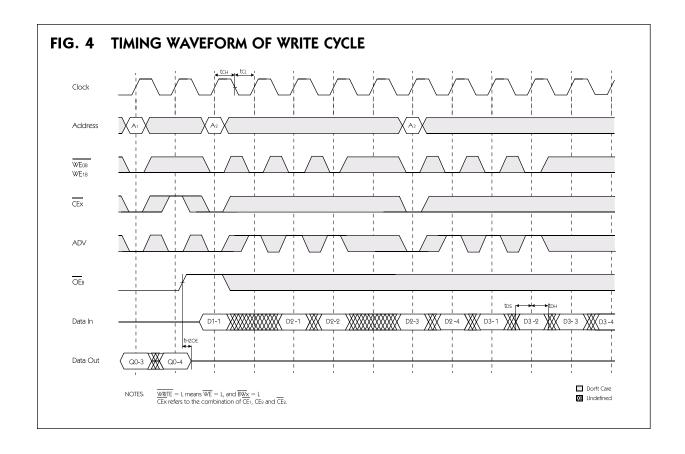

AC TEST CONDITIONS

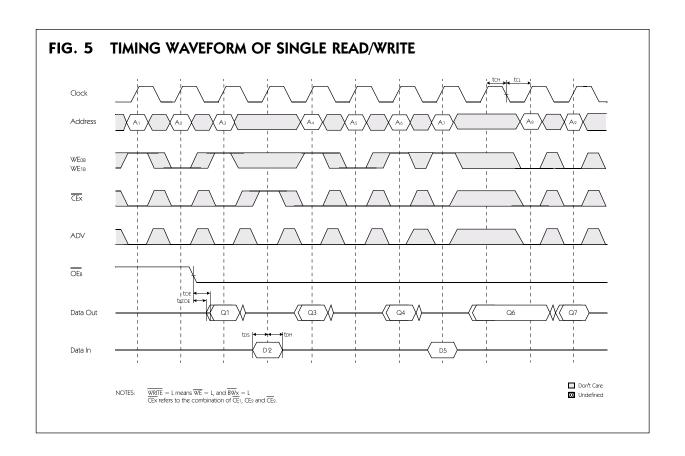
(TA = 0 to 70°C, V_{DD} = 2.5V \pm 5%, Unless Otherwise Specified)

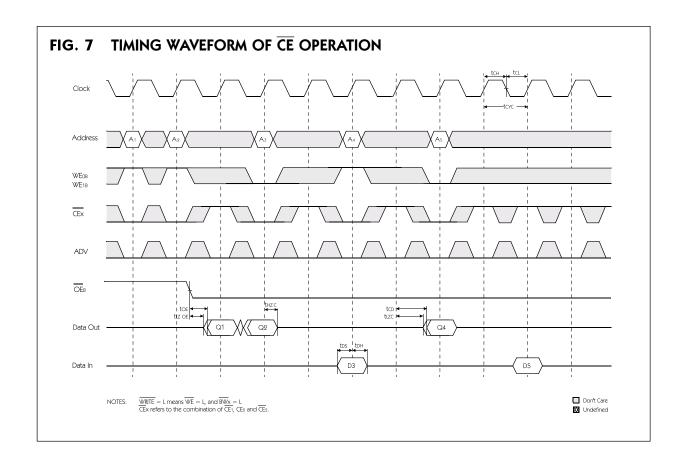

Parameter	Value
Input Pulse Level	0 to 2.5V
Input Rise and Fall Time (Measured at 20% to 80%)	1.0V/ns
Input and Output Timing Reference Levels	1.25V
Output Load	See Output Load (A)

OUTPUT LOAD (B)

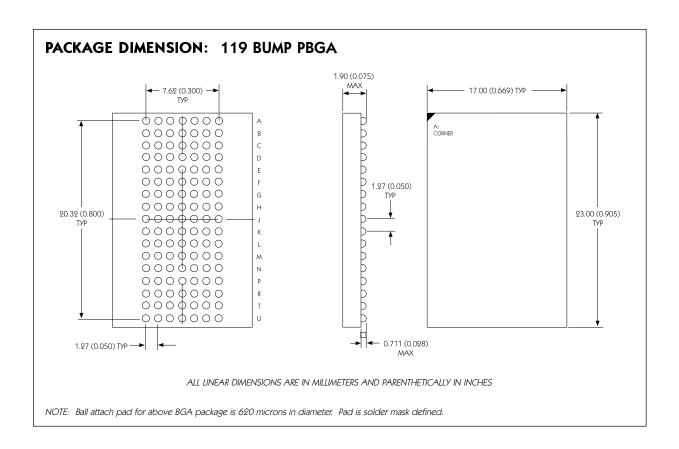

(FOR tLZC, tLZOE, tHZOE, AND tHZC)




OUTPUT LOAD (A)



^{*}Including Scope and Jig Capacitance



ORDERING INFORMATION

COMMERCIAL TEMP RANGE (0°C TO 70°C)

Part Number	Configuration	tco (ns)	Clock (MHz)
WED2ZL64512S35BC	512K x 64	3.5	166
WED2ZL64512S38BC	512K x 64	3.8	150
WED2ZL64512S42BC	512K x 64	4.2	133
WED2ZL64512S50BC	512K x 64	5.0	100