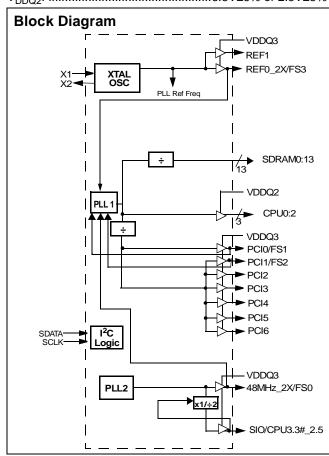
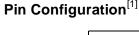


Spread Spectrum FTG for SiS540 and 630 Chipsets

Features


- Maximized EMI Suppression using Cypress's Spread Spectrum technology
- Single-chip system frequency synthesizer for SiS540 and SiS630 core logic chip sets
- Three copies of CPU output
- · Seven copies of PCI output
- One 48-MHz output for USB
- One 24-/48-MHz selectable output for SIO
- Two buffered reference outputs
- 14 SDRAM outputs provide support for 3 DIMMs SMBus interface for programming


Key Specifications

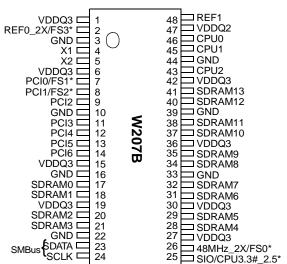

CPU Cycle-to-Cycle Jitter:	250 ps
CPU to CPU Output Skew:	175 ps
PCI to PCI Output Skew:	500 ps
CPU to PCI Output Skew (CPU leads):	. 1 to 4 ns
CPU to SDRAM Output Skew:	500 ps
V _{DDQ3} :	3.3V±5%
V _{DDO2} :3.3V±5% or	2.5V±5%

Table 1. Pin Selectable Frequency

FS3	FS2	FS1	FS0	CPU (MHz)	SDRAM (MHz)	PC (MHz)	SS
0	0	0	0	66.6	100.0	33.3	-0.6%
0	0	0	1	100.2	100.2	33.4	±0.45%
0	0	1	0	150.3	100.2	37.6	OFF
0	0	1	1	133.6	100.2	33.4	±0.45%
0	1	0	0	66.8	111.3	33.4	OFF
0	1	0	1	100.2	133.6	33.4	±0.45%
0	1	1	0	100.2	150.3	33.4	OFF
0	1	1	1	133.3	133.3	33.3	-0.6%
1	0	0	0	66.6	66.6	33.3	-0.6%
1	0	0	1	83.3	83.3	31.2	OFF
1	0	1	0	97.0	97.0	32.3	-0.6%
1	0	1	1	95.0	95.0	31.7	±0.45%
1	1	0	0	95.0	126.7	31.7	OFF
1	1	0	1	112.0	112.0	37.3	OFF
1	1	1	0	122.0	91.5	30.5	-0.6%
1	1	1	1	122.0	122.0	30.5	-0.6%

Note:

Internal 100-k Ω pull-down resistors present on inputs marked with *. Design should not rely solely on internal pull-down resistors to set I/O pins LOW.

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
CPU0:2	46, 45, 43	0	CPU Clock Outputs: See <i>Tables 1</i> and 5 for detailed frequency information. Output voltage swing is controlled by voltage applied to VDDQ2.
PCI0/FS1	7	I/O	PCI Clock Outputs 0/Frequency Selection 1: PCI clock outputs. Output voltage swing is controlled by voltage applied to VDDQ3. Shortly after initial power-up the pin is sampled as an input to determine CPU, SDRAM, and PCI operating frequencies.
PCI1/FS2	8	I/O	PCI Clock Outputs 1/Frequency Selection 2: PCI clock outputs. Output voltage swing is controlled by voltage applied to VDDQ3. Shortly after initial power-up the pin is sampled as an input to determine CPU, SDRAM, and PCI operating frequencies.
PCI2:6	9, 11, 12, 13, 14	0	PCI Clock Outputs 2 through 6: PCI clock outputs. Output voltage swing is controlled by voltage applied to VDDQ3.
48MHz_2X/ FS0	26	I/O	48-MHz_2X Output/Frequency Select 0: 48 MHz is provided in normal operation. In standard systems, this output can be used as the reference for the Universal Serial Bus. This output has double drive strength. Upon power-up FS0 input will be latched, which will set clock frequencies as described in <i>Table 1</i> . This output does not have Spread Spectrum modulation.
SIO/ CPU3.3#_2.5	25	I/O	Super I/O Output/CPU Voltage Select: This output is used as the clock input for Super I/O. Upon power-up its input will be latched. If the input is HIGH, CPU0:2 will be configured for 2.5V operations, otherwise they are configured for 3.3V.
REF1	48	0	Fixed 14.318 Output 1: This pin provides a fixed frequency signal determined by the reference signal provided at the X1/X2 pins.
REF0_2X/FS3	2	I/O	Fixed 14.318 Output 0/Frequency Selection 3: This pin provides a fixed frequency signal determined by the reference signal provided at the X1/X2 pins. It has a double drive strength output buffer. Shortly after initial power-up the pin is sampled as an input to determine CPU, SDRAM, and PCI operating frequencies.
SDRAM0:13	17, 18, 20,21, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41	0	SDRAM Clock Outputs: These fourteen dedicated outputs provide the SDRAM clocks for 3 memory DIMM. The swing is set by VDDQ3.
SCLK	24	I	Clock pin for SMBus circuitry.
SDATA	23	I/O	Data pin for SMBus circuitry.
X1	4	I	Crystal Connection or External Reference Frequency Input: This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.
X2	5	I	Crystal Connection: An input connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.
VDDQ3	1, 6, 15, 19, 27, 30, 36, 42	Р	Power Connection: Power supply for core logic, PLL circuitry, SDRAM outputs, PCI outputs, reference outputs, 48-MHz output, and SIO output. Connect to 3.3V supply.
VDDQ2	47	Р	Power Connection: Power supply for CPU0:2 output buffers. Connect to 2.5V, or 3.3V.
GND	3, 10, 16, 22, 33, 39, 44	G	Ground Connections: Connect all ground pins to the common system ground plane.
	•		

Overview

The W207B is a spread spectrum system timing generator designed to support SiS540 and 630 core logic chip sets. It is a highly integrated device, providing clock outputs for CPU, core logic, super I/O, PCI, and up to three SDRAM DIMMs.

Functional Description

I/O Pin Operation

Pins 2, 7, 8, 25, and 26 are dual-purpose I/O pins.

Upon power-up each I/O pin acts as a logic input, allowing the determination of assigned device functions. A short time after power-up, the logic state of each pin is latched and each pin then becomes a clock output. This feature reduces device pin count by combining clock outputs with input select pins.

An external $10\text{-}k\Omega$ "strapping" resistor is connected between each I/O pin and ground or V_{DDQ3}. Connection to ground sets a "0" bit, connection to V_{DDQ3} sets a "1" bit. Figure 1 and Figure 2 show two suggested methods for strapping resistor connection.

Upon W207B power-up, the first 2 ms of operation is used for input logic selection. During this period, each clock output buffer is three-stated, allowing the output strapping resistor on

each I/O pin to pull the pin and its associated capacitive clock load to either a logic HIGH or LOW state. At the end of the 2-ms period, the established logic 0 or 1 condition of each I/O pin is then latched. Next the output buffer is enabled, converting all I/O pins into operating clock outputs. The 2-ms timer starts when $V_{\mbox{\scriptsize DDQ3}}$ reaches 2.0V. The input bits can only be reset by turning $V_{\mbox{\scriptsize DDQ3}}$ off and then back on again.

It should be noted that the strapping resistors have no significant effect on clock output signal integrity. The drive impedance of the clock outputs is < 40 Ω (nominal) which is minimally affected by the 10-k Ω strap to ground or V_{DDQ3} . As with the series termination resistor, the output strapping resistor should be placed as close to the I/O pin as possible in order to keep the interconnecting trace short. The trace from the resistor to ground or V_{DDQ3} should be kept less than two inches in length to prevent system noise coupling during input logic sampling.

When each clock output is enabled following the 2-ms input period, target (normal) output frequency is delivered assuming that V_{DDQ3} has stabilized. If V_{DDQ3} has not yet reached full value, output frequency initially may be below target but will increase to target once V_{DDQ3} voltage has stabilized. In either case, a short output clock cycle may be produced from the CPU clock outputs when the outputs are enabled.

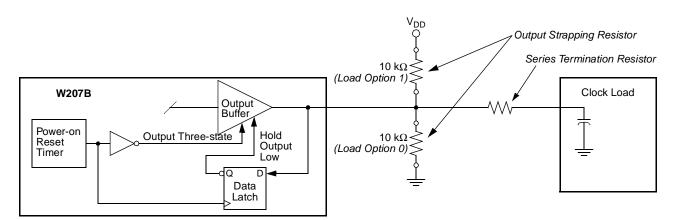


Figure 1. Selection Through Resistor Load Option

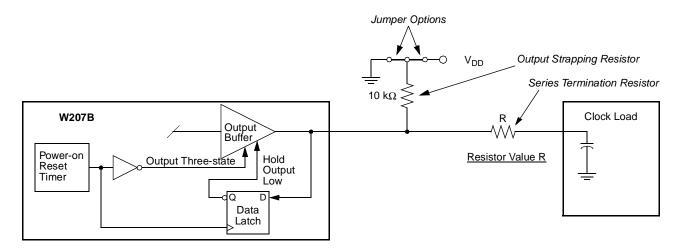


Figure 2. Input Logic Selection Through Jumper Option

CPU/PCI Frequency Selection

CPU frequency is selected with I/O pins 26, 7, 8, and 2 (48MHz_2X/FS0, PCI0/FS1, PCI1/FS2, and REF_2X/FS3, respectively). Refer to *Table 1* for CPU/PCI frequency programming information. Alternatively, frequency selections are available through the serial data interface. Refer to *Table 5* on page 8

Output Buffer Configuration

Clock Outputs

All clock outputs are designed to drive serial terminated clock lines. The device outputs are CMOS-type which provide rail-to-rail output swing. To accommodate the limited voltage swing required by some processors, the output buffers of CPU0:2 use a special V_{DDQ2} power supply pin that can be tied to 2.5V nominal.

Crystal Oscillator

The device requires one input reference clock to synthesize all output frequencies. The reference clock can be either an externally generated clock signal or the clock generated by the internal crystal oscillator. When using an external clock signal,

pin X1 is used as the clock input and pin X2 is left open. The input threshold voltage of pin X1 is $(V_{DDG3})/2$.

The internal crystal oscillator is used in conjunction with a quartz crystal connected to device pins X1 and X2. This forms a parallel resonant crystal oscillator circuit. The device incorporates the necessary feedback resistor and crystal load capacitors. Including typical stray circuit capacitance, the total load presented to the crystal is approximately 18 pF. For optimum frequency accuracy without the addition of external capacitors, a parallel-resonant mode crystal specifying a load of 18 pF should be used. This will typically yield reference frequency accuracies within ±100 ppm. To achieve similar accuracies with a crystal calling for a greater load, external capacitors must be added such that the total load (internal, external, and parasitic capacitors) equals that called for by the crystal.

Dual Supply Voltage Operation

The device is designed for dual power supply operation. Supply pin VDDQ3 is connected to a 3.3V supply and supply power to the internal core circuit and to the clock output buffers, except for outputs CPU0:2. Supply pins VDDQ2 may be connected to either a 2.5V or 3.3V supply, although device specifications may not be provided for both configurations.

Serial Data Interface

The device features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions. Upon power-up, the W207B initializes with default register settings, therefore the use of this serial data interface is optional. The serial interface is write-only (to the clock chip) and is the dedicated function of device pins SDATA and SCLK. In motherboard applications, SDATA and SCLK are typically driven by two logic outputs of the chipset.

Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions. *Table 2* summarizes the control functions of the serial data interface.

Operation

Data is written to the device in ten bytes of eight bits each. Bytes are written in the order shown in *Table 3*.

Table 2. Serial Data Interface Control Functions Summary

Control Function	Description	Common Application
Clock Output Disable	Any individual clock output(s) can be disabled. Disabled outputs are actively held LOW.	Unused outputs are disabled to reduce EMI and system power. Examples are clock outputs to unused SDRAM DIMM socket or PCI slot.
CPU Clock Frequency Selection	Provides CPU/PCI frequency selections beyond the options that are provided by the frequency selection pin power-on default selection. Frequency is changed in a smooth and controlled fashion.	For alternate CPU devices, and power management options. Smooth frequency transition allows CPU frequency change under normal system operation.
Output Three-state	Puts all clock outputs into a high-impedance state.	Production PCB testing.
Test Mode	All clock outputs toggle in relation with X1 input, internal PLL is bypassed. Refer to <i>Table 4</i> .	Production PCB testing.
(Reserved)	Reserved function for future device revision or production device testing.	No user application. Register bit must be written as 0.

Table 3. Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the device to accept the bits in Data Bytes 0–6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the device is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the device, therefore bit values are ignored ("Don't Care"). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the device, therefore bit values are ignored ("Don't Care"). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Refer to Table 4	The data bits in these bytes set internal W207B registers that control
5	Data Byte 1		device operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit
6	Data Byte 2		control functions, refer to <i>Table 4</i> , Data Byte Serial Configuration Map.
7	Data Byte 3]	
8	Data Byte 4	1	
9	Data Byte 5]	
10	Data Byte 6		

Writing Data Bytes

Each bit in the data bytes controls a particular device function except for the "reserved" bits, which must be written as a logic 0. Bits are written MSB (most significant bit) first, which is bit

7. *Table 4* gives the bit formats for registers located in Data Bytes 0–6. *Table 5* details additional frequency selections that are available through the serial data interface.

Table 4. Data Bytes 0-6 Serial Configuration Map

Affected Pin				Bit	Bit Control			
Bit(s)	Pin No. Pin Name		Control Function	0	1			
Data Byte	e 0		1	- 1				
7			BYTE0_SEL3	Refer	to Table 5	0		
6			BYTE0 _SEL2	Refer	to <i>Table 5</i>	0		
5			BYTE0 _SEL1	Refer	to <i>Table 5</i>	0		
4			BYTE0 _SEL0	Refer	to <i>Table 5</i>	0		
3			FS0:3 override	Select operating frequency by FS 3:0	Select operating frequency by BYTE0_SEL (3:0)	0		
2			BYTE0_SEL4	Refer	to Table 5	0		
1			(Reserved)			1		
0			Test Mode	Normal	Three-state all outputs	0		
Data Byte	e 1		_	_				
7			SI0_SEL	48 MHz	24 MHz	1		
6			(Reserved)			0		
5			(Reserved)			0		
4			(Reserved)			0		
3	43	CPU2	Clock Output Disable	Low	Active	1		
2	45	CPU1	Clock Output Disable	Low	Active	1		
1	46	CPU0	Clock Output Disable	Low	Active	1		
0			(Reserved)			0		
Data Byte	e 2			<u> </u>				
7			(Reserved)			0		
6	14	PCI6	Clock Output Disable	Low	Active	1		
5	13	PCI5	Clock Output Disable	Low	Active	1		
4	12	PCI4	Clock Output Disable	Low	Active	1		
3	11	PCI3	Clock Output Disable	Low	Active	1		
2	9	PCI2	Clock Output Disable	Low	Active	1		
1	8	PCI1	Clock Output Disable	Low	Active	1		
0	7	PCI0	Clock Output Disable	Low	Active	1		
Data Byte	e 3			<u> </u>				
7	32	SDRAM7	Clock Output Disable	Low	Active	1		
6	31	SDRAM6	Clock Output Disable	Low	Active	1		
5	29	SDRAM5	Clock Output Disable	Low	Active	1		
4	28	SDRAM4	Clock Output Disable	Low	Active	1		
3	21	SDRAM3	Clock Output Disable	Low	Active	1		
2	20	SDRAM2	Clock Output Disable	Low	Active	1		
1	18	SDRAM1	Clock Output Disable	Low	Active	1		

Table 4. Data Bytes 0-6 Serial Configuration Map (continued)

Affected Pi		cted Pin	in	Bit (
Bit(s)	1 1		Control Function	0	1	Default
0	17	SDRAM0	Clock Output Disable	Low	Active	1
Data Byt	e 4	•				•
7	25	SIO	Clock Output Disable	Low	Active	1
6	26	48MHz	Clock Output Disable	Low	Active	1
5	41	SDRAM13	Clock Output Disable	Low	Active	1
4	40	SDRAM12	Clock Output Disable	Low	Active	1
3	38	SDRAM11	Clock Output Disable	Low	Active	1
2	37	SDRAM10	Clock Output Disable	Low	Active	1
1	35	SDRAM9	Clock Output Disable	Low	Active	1
0	34	SDRAM8	Clock Output Disable	Low	Active	1
Data Byt	e 5	•				•
7			(Reserved)			0
5			(Reserved)			0
5			(Reserved)			0
4			(Reserved)			0
3			(Reserved)			0
2			(Reserved)			0
1	48	REF1	Clock Output Disable	Low	Active	1
0	2	REF0	Clock Output Disable	Low	Active	1
Data Byt	e 6					
7			(Reserved)			0
6			(Reserved)			0
5			(Reserved)			0
4			(Reserved)			0
3			(Reserved)			0
2			(Reserved)			0
1			(Reserved)			0

Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes

Input Conditions					C	Output Frequency			
	Data	a Byte 0 Bit	Byte 0 Bit 3 = 1						
Bit 2 SEL_4	Bit 7 SEL_3	Bit 6 SEL_2	Bit 5 SEL_1	Bit 4 SEL_0	CPU	SDRAM	PCI	Spread Spectrum	
0	0	0	0	0	66.6	100.0	33.3	-0.6%	
0	0	0	0	1	100.2	100.2	33.4	±0.45%	
0	0	0	1	0	150.3	100.2	37.6	OFF	
0	0	0	1	1	133.6	100.2	33.4	±0.45%	
0	0	1	0	0	66.8	111.3	33.4	OFF	
0	0	1	0	1	100.2	133.6	33.4	±0.45%	
0	0	1	1	0	100.2	150.3	33.4	OFF	
0	0	1	1	1	133.3	133.3	33.3	-0.6%	
0	1	0	0	0	66.6	66.6	33.3	-0.6%	
0	1	0	0	1	83.3	83.3	31.2	OFF	
0	1	0	1	0	97.0	97.0	32.3	-0.6%	
0	1	0	1	1	95.0	95.0	31.7	±0.45%	
0	1	1	0	0	95.0	126.7	31.7	OFF	
0	1	1	0	1	112.0	112.0	37.3	OFF	
0	1	1	1	0	122.0	91.5	30.5	-0.6%	
0	1	1	1	1	122.0	122.0	30.5	-0.6%	
1	0	0	0	0	66.8	100.2	33.4	OFF	
1	0	0	0	1	100.0	100.0	33.3	-0.6%	
1	0	0	1	0	96.2	96.2	32.1	OFF	
1	0	0	1	1	133.3	100.0	33.3	-0.6%	
1	0	1	0	0	75.0	100.0	37.5	OFF	
1	0	1	0	1	83.3	124.9	41.6	OFF	
1	0	1	1	0	105.0	140.0	35.0	OFF	
1	0	1	1	1	133.6	133.6	33.4	OFF	
1	1	0	0	0	110.0	146.7	36.7	OFF	
1	1	0	0	1	166.0	110.7	33.2	OFF	
1	1	0	1	0	166.0	120.0	33.2	OFF	
1	1	0	1	1	95.0	95.0	31.7	-0.6%	
1	1	1	0	0	140.0	140.0	35.0	OFF	
1	1	1	0	1	145.0	145.0	36.2	OFF	
1	1	1	1	0	97.0	129.3	32.33	-0.6%	
1	1	1	1	1	160.0	160.0	32.0	OFF	

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
T _A	Operating Temperature	0 to +70	°C
T _B	Ambient Temperature under Bias	−55 to +125	°C
ESD _{PROT}	Input ESD Protection	2 (min.)	kV

3.3V DC Electrical Characteristics (CPU3.3#_2.5 Input = 0)

 $T_A = 0$ °C to +70°C, $V_{DDQ3} = V_{DDQ2} = 3.3V \pm 5\%$ (3.135–3.465V)

Parameter	Descript	ion	Test Condition	Min.	Тур.	Max.	Unit
Supply Curr	ent			•			
I _{DD}	Combined 3.3V Supply	Current	CPU0:2 =133 MHz Outputs Loaded ^[2]		350		mA
Logic Inputs	(All referenced to V _{DD}	_{Q3} = 3.3V)					
V _{IL}	Input Low Voltage					0.8	V
V _{IH}	Input High Voltage			2.0			V
I _{IL}	Input Low Current ^[3]					10	μA
I _{IH}	Input High Current ^[3]					10	μA
Clock Outpu	its						
V _{OL}	Output Low Voltage		I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage		I _{OH} = -1 mA	3.1			V
I _{OL}	Output Low Current	CPU0:2	V _{OL} = 1.5V	55	75	105	mA
		SDRAM0:13		80	110	155	
		PCI0:6		55	75	105	
		REF0		60	75	90	
		REF1		45	60	75	
		48 MHZ		55	75	105	
I _{OH}	Output High Current	CPU0:2	V _{OH} = 1.5V	55	85	125	mA
		SDRAM0:13		80	120	175	
		PCI0:6		55	85	125	
		REF0		60	85	110	
		REF1		45	65	90	1
		48 MHz		55	85	125	
Crystal Osc							
V_{TH}	X1 Input Threshold Vol	tage ^[4]			1.65		V
C _{LOAD}	Load Capacitance, Imp External Crystal ^[5]				18		pF
C _{IN,X1}	X1 Input Capacitance ^{[6}	5]	Pin X2 unconnected		28		pF

Notes:

- All clock outputs loaded with 6" 60Ω transmission lines with 22-pF capacitors.
 W207B logic inputs have internal pull-up devices (pull-ups not full CMOS level).
 X1 input threshold voltage (typical) is V_{DDQ3}/2.
 The W207B contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is
- 18 pF; this includes typical stray capacitance of short PCB traces to crystal.

 X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).

3.3V DC Electrical Characteristics (CPU3.3#_2.5 Input = 0)

 $T_A = 0$ °C to +70°C, $V_{DDQ3} = V_{DDQ2} = 3.3V \pm 5\%$ (3.135–3.465V) (continued)

Parameter	Description	Test Condition	Min.	Тур.	Max.	Unit
Pin Capacita	nnce/Inductance		•		•	
C _{IN}	Input Pin Capacitance	Except X1 and X2			5	pF
C _{OUT}	Output Pin Capacitance				6	pF
L _{IN}	Input Pin Inductance				7	nΗ
Serial Input	Port					
V_{IL}	Input Low Voltage				0.3V _{DD}	V
V _{IH}	Input High Voltage		0.7V _{DD}			V
I _{IL}	Input Low Current	No internal pull-up/ down on SCLK			10	μΑ
I _{IH}	Input High Current	No internal pull-up/ down on SCLK			10	μΑ
I _{OL}	Sink Current into SDATA or SCLK, Open Drain N-Channel Device On	$I_{OL} = 0.3V_{DD}$	6			mA
C _{IN}	Input Capacitance of SDATA and SCLK				10	pF
C _{SDATA}	Total Capacitance of SDATA Bus				400	pF
C _{SCLOCK}	Total Capacitance of SCLK Bus				400	pF

2.5V DC Electrical Characteristics (CPU3.3#_2.5 Input = 1)

 $T_A = 0$ °C to +70°C, $V_{DDO3} = 3.3V \pm 5\%$ (3.135–3.456V), $V_{DDO2} = 2.5V \pm 5\%$ (2.375–2.625V)

Parameter	Descript	ion	Test Condition	Min.	Тур.	Max.	Unit
Supply Curr	ent			•	•		
I _{DD-3.3V}	Combined 3.3V Supply	Current	CPU0:2 = 133 MHz Outputs Loaded ^[2]		300		mA
I _{DD-2.5}	Combined 2.5V Supply	Current	CPU0:2= 133 MHz Outputs Loaded ^[2]		50		mA
Logic Inputs	3			•			
V _{IL}	Input Low Voltage					0.8	V
V _{IH}	Input High Voltage			2.0			V
I _{IL}	Input Low Current ^[3]					10	μΑ
I _{IH}	Input High Current ^[3]					10	μΑ
Clock Outpu	ıts			•	•		
V _{OL}	Output Low Voltage		I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage		I _{OH} = −1 mA	3.1			V
V _{OH}	Output High Voltage	CPU0:2	I _{OH} = −1 mA	2.2			V
I _{OL}	Output Low Current	CPU0:2	V _{OL} = 1.25V	55	75	105	mA
		SDRAM0:13	V _{OL} = 1.5V	60	75	90	
		PCI0:6	V _{OL} = 1.5V	45	60	75	
		REF0	V _{OL} = 1.5V	55	75	105	
		REF1	V _{OL} = 1.5V	40	65	95	
		SIO	V _{OL} = 1.5V	80	120	175	

2.5V DC Electrical Characteristics (CPU3.3#_2.5 Input = 1) (continued)

 $T_A = 0$ °C to +70°C, $V_{DDQ3} = 3.3V \pm 5\%$ (3.135–3.456V), $V_{DDQ2} = 2.5V \pm 5\%$ (2.375–2.625V)

Parameter	Descript	ion	Test Condition	Min.	Тур.	Max.	Unit
I _{OH}	Output High Current	CPU0:2	V _{OH} = 1.25V	55	85	125	mA
		SDRAM0:13	V _{OH} = 1.5V	60	85	110	
		PCI0:6	V _{OH} = 1.5V	45	65	90	
		REF0	V _{OH} = 1.5V	55	85	125	
		REF1	V _{OH} = 1.5V	45	70	105	
		SIO	V _{OH} = 1.5V	80	110	155	

3.3V AC Electrical Characteristics (CPU3.3#_2.5 Input = 0)

 T_A = 0°C to +70°C, V_{DDQ3} = V_{DDQ2} = 3.3V±5% (3.135–3.465V), f_{XTL} = 14.31818 MHz Spread Spectrum function turned off

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output.

CPU Clock Outputs, (Lump Capacitance Test Load = 20 pF)

		Test Condition/	CPU	= 66.6	MHz	CPU	= 100	MHz	CPU	= 133	MHz	
Parameter	Description	Comments	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.5V	15			10.0			7.5			ns
t _H	High Time	Duration of clock cycle above 2.4V	5.2			3.0			1.87			ns
t _L	Low Time	Duration of clock cycle below 0.4V	5			2.8			1.67			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	1		4	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	1		4	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	45		55	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			250			250			250	ps
t _{SK}	Output Skew	Measured on rising edge at 1.5V			175			175			175	ps
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3			3			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	15	20	30	15	20	30	15	20	30	Ω

SDRAM Clock Outputs, (Lump Capacitance Test Load = 30 pF)

		Test Condition/		DRAM 6.6 MF			DRAM 00 MH			DRAM 33 MH		
Parameter	Description	Comments	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.5V	15			10.0			7.5			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	1		4	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	1		4	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	45		55	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			250			250			250	ps
t _{SK}	Output Skew	Measured on rising edge at 1.5V		175			175			175		ps
t _{SK}	CPU to SDRAM Clock Skew	Covers all CPU/SDRAM outputs. Measured on rising edge at 1.5V.			500			500			500	ps
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3			3			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	10	15	20	10	15	20	10	15	20	Ω

PCI Clock Outputs, PCI0:6 (Lump Capacitance Test Load = 30 pF)

			PCI	= 33.3 [ИНz	
Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.5V	30			ns
f	Frequency, Actual	Determined by PLL divider ratio		33.3		MHz
t _H	High Time	Duration of clock cycle above 2.4V	12			ns
t _L	Low Time	Duration of clock cycle below 0.4V	12			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			500	ps
t _{SK}	Output Skew	Measured on rising edge at 1.5V			500	ps
t _O	CPU to PCI Clock Skew	Covers all 3V66/PCI outputs. Measured on rising edge at 1.5V. CPU leads PCI output.	1	2	4	ns
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	15	20	30	Ω

REF0_2X Clock Output (Lump Capacitance Test Load = 45 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Frequency generated by crystal oscillator		14.318		MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			1.5	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	17	20	25	Ω

REF1 Clock Output (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Frequency generated by crystal oscillator		14.318		MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			1.5	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	20	25	35	Ω

SIO Clock Outputs (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Determined by PLL divider ratio (see m/n below)		48.008		MHz
f _D	Deviation from 48 MHz	(48.008 – 48)/48		+167		ppm
m/n	PLL Ratio	(14.31818 MHz x 57/17 = 48.008 MHz)		57/17		
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	40		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	15	20	30	Ω

Serial Input Port

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f _{SCLOCK}	SCLOCK Frequency	Normal Mode	0		100	kHz
t _{STHD}	Start Hold Time		4.0			μs
t _{LOW}	SCLOCK Low Time		4.7			μs
t _{HIGH}	SCLOCK High Time		4.0			μs
t _{DSU}	Data Set-up Time		250			ns
t _{DHD}	Data Hold Time	(Transmitter should provide a 300-ns hold time to ensure proper timing at the receiver.)	0			ns
t _R	Rise Time, SDATA and SCLOCK	From 0.3V _{DD} to 0.7V _{DD}			1000	ns
t _F	Fall Time, SDATA and SCLOCK	From 0.7V _{DD} to 0.3V _{DD}			300	ns
t _{STSU}	Stop Set-up Time		4.0			μs
t _{SPF}	Bus Free Time between Stop and Start Condition		4.7			μs
t _{SP}	Allowable Noise Spike Pulse Width				50	ns

2.5V AC Electrical Characteristics (CPU3.3#_2.5 Input = 1)

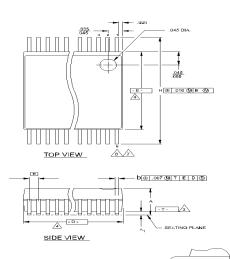
 T_A = 0°C to +70°C, V_{DDQ3} = 3.3V±5% (3.135–3.465V), V_{DDQ2} = 2.5V±5% (2.375–2.625V), f_{XTL} = 14.31818 MHz Spread Spectrum function turned off

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output.

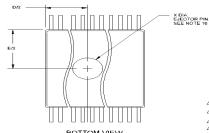
CPU Clock Outputs, (Lump Capacitance Test Load = 20 pF)

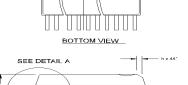
		Test Condition/	CPU	= 66.6	MHz	CPU	= 100	MHz	CPU	J = 133	MHz	
Parameter	Description	Comments	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.25V	15			10.0			7.5			ns
t _H	High Time	Duration of clock cycle above 2.0V	5.2			3.0			1.87			ns
t _L	Low Time	Duration of clock cycle below 0.4V	5			2.8			1.67			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.0V	0.8		3	0.8		3	0.8		3	V/ns
t _F	Output Fall Edge Rate	Measured from 2.0V to 0.4V	0.8		3	0.8		3	0.8		3	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.25V	45		55	45		55	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.25V. Maximum difference of cycle time between two adjacent cycles.			250			250			250	ps
t _{SK}	Output Skew	Measured on rising edge at 1.25V			175			175			175	ps
f _{ST}	Frequency Sta- bilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3			3			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.	12	20	30	12	20	30	12	20	30	Ω

Ordering Information

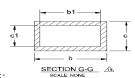

Ordering Code	Package Name	Package Type
W207B	Н	48-pin SSOP (300 mils)

Document #: 38-00847-B




Package Diagram

48-Pin Small Shrink Outline Package (SSOP, 300 mils)



DETAIL A

END VIEW

NOTES:

- NOTES:

 SCALE NONE

 MAXIMUM DIE THICKNESS ALLOWABLE IS 026.

 DIMENSIONING & TOLERANCING PER ANSI

 1/14 5M 1882.

 1/14 5M 1882.

 1/15 3A REFERENCE DATUM.

 1/2 10° & "E' ARE REFERENCE DATUM.

 1/3 10° & "E' ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, BUTDOES INCLUDE MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 INCHES PER SIDE.

 1/2 1S THE LENGTH OF TERMINAL FOR SOLDERING TO A SUBSTITUTE OR S

S Y		COMMO			NOTE		4		6
M B	D	IMENSIOI	VS.	N _{II}	VARI-		D		N
1 %	MIN.	NOM.	MAX.	1.	ATIONS	MIN.	NOM.	MAX.	
A	.095	.102	.110		AA	.620	.625	.630	48
A,	.008	.012	.016		AB	.720	.725	.730	56
A,	.088	.090	.092						
b	.008	.010	.0135			TILLO	TABLE	NUMBER	
b	.008	.010	.012			THIS	TABLE I	NINCH	=8
С	.005	-	.010						
C ₁	.005	.006	.0085						
D	SEE	VARIATION		4					
E	.292	.296	.299						
е		.025 BSC							
H	.400	.406	.410						
h	.010	.013	.016						
L	.024	.032	.040						
N		VARIATION		6					
X	.085	.093	.100	10					
œ	0°	5°	8°						

S		COMMO	V		NOTE		4		6	
M R	D	IMENSIO	VS.	١,٥	VARI-		D NOM.		N	
2	MIN.	NOM.	MAX.	1 -	ATIONS	MIN.				
Α	2.41	2.59	2.79		AA	15.75	15.88	16.00	48	
A,	0.20	0.31	0.41		AB	18.29	18.42	18.54	56	
A,	2.24	2.29	2.34							
b	0.203	0.254	0.343			T T				
b₁	0.203	0.254	0.305			THIS TAI	3LE IN N	IILLIME I	ERS	
С	0.127	-	0.254							
Cı	0.127	0.152	0.216							
D	SEE	VARIATION	IS	4						
E	7.42	7.52	7.59							
е		0.635 BSC								
H	10.16	10.31	10.41							
h	0.25	0.33	0.41							
	0.61	0.81	1.02							
N	SEE	VARIATION	IS	6						
X	2.16	2.36	2.54	10						
ď	0°	5°	8°							

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.