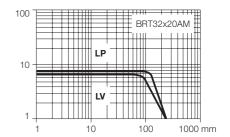

Photoelectric sensor retro-reflective sensor VS3RP5XLPQ

Type Ident-No.	VS3RP5XLPQ 3062626
Type of light	red
Wave length	680 nm
Operating temperature	-20+ 55 °C
Rated operational voltage (DC) U _B	10 30 VDC
Rated operational current (DC) I _e	≤50 mA
No-load current I ₀	≤25 mA
Short-circuit protection	yes, cyclic
Reverse polarity protection	yes
Output function	normally open, PNP
Switching frequency	≤500 Hz
Max. switch-on delay	≤150 ms
Housing style	rectangular; VS3
Housing material	plastic, ABS
Lens	Glas
Wiring	connector, M8 x 1
Degree of protection	IP67
Supply voltage indication	LED green
Switching status indication	LED yellow
Error indication	LED green

- miniature sensor
- retro-reflective sensor with polarisation filter
- dark operate


Wiring diagram

With retro-reflective sensors, emitter and receiver are incorporated in one compact housing. The light beam of the emitter is directed towards a reflector which returns the light back to the receiver. An object is detected when it interrupts this beam. Retro-reflective sensors incorporate some of the advantages of opposed mode sensors (good contrast and high excess gain). Further it is merely required to install and wire a single device. Devices with polarisation filter should be used for detection of shiny targets.

Excess gain curve

Excess gain in relation to the distance

