

P-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

BV _{DSS} /	R _{DS(ON)}	I _{D(ON)}	Order Number / Package		
BV _{DGS}	(max)	(min)	TO-92	TO-243AA*	Die [†]
-30V	0.6Ω	-4.0A	VP3203N3	VP3203N8	VP3203ND

^{*}Same as SOT-89. Product supplied on 2000 piece carrier tape reels.

Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low C_{ISS} and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- High input impedance and high gain
- Complementary N- and P-channel devices

Applications

- Motor controls
- Converters
- Amplifiers
- □ Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

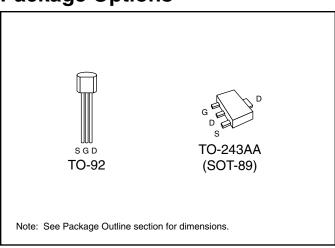
Absolute Maximum Ratings

Drain-to-Source Voltage	BV_{DSS}
Drain-to-Gate Voltage	BV _{DGS}
Gate-to-Source Voltage	± 20V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C

^{*} Distance of 1.6 mm from case for 10 seconds.

Product marking for TO-243AA:

VP2L*


Where * = 2-week alpha date code

Advanced DMOS Technology

These enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

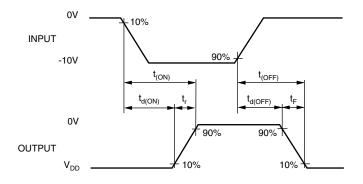
Package Options

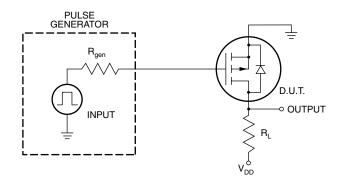
[†] MIL visual screening available.

Thermal Characteristics

Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _A = 25°C	$ heta_{ extsf{jc}}$ $^{\circ}$ C/W	$ heta_{ m ja}$ °C/W	I _{DR} *	I _{DRM}
TO-92	-0.65A	-4.0A	0.74W	125	170	-0.65A	-4.0A
TO-243AA	-1.1A	-4.0A	1.6W [†]	15	78 [†]	-1.1A	-4.0A

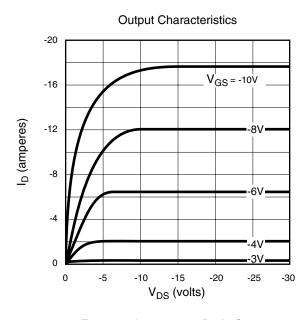
^{*} I_D (continuous) is limited by max rated T_j .

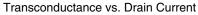

Electrical Characteristics (@ 25°C unless otherwise specified)

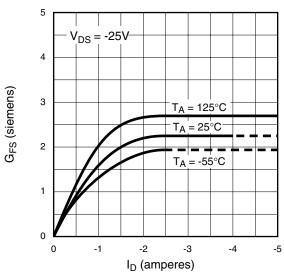

Symbol	Parameter		Min	Тур	Max	Unit	Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage		-30			V	$V_{GS} = 0V$, $I_D = -10mA$	
$V_{GS(th)}$	Gate Threshold Voltage		-1.0		-3.5	V	$V_{GS} = V_{DS}$, $I_D = -10$ mA	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with Temperature				-5.5	mV/°C	$V_{GS} = V_{DS}$, $I_D = -10$ mA	
I _{GSS}	Gate Body Leakage			-1.0	-100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current				-10	μΑ	$V_{GS} = 0V$, $V_{DS} = Max$ Rating	
					-1	mA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C	
I _{D(ON)}	ON-State Drain Current			-14		Α	$V_{GS} = -10V, V_{DS} = -5V$	
R _{DS(ON)}	Static Drain-to-Source ON-State Resistance	TO-92			1.0	Ω	$V_{GS} = -4.5V, I_D = -1.5A$	
		SOT-89			1.0	Ω	$V_{GS} = -4.5V, I_D = -0.75A$	
		TO-92			0.6	Ω	$V_{GS} = -10V, I_D = -3A$	
		SOT-89			0.6	Ω	$V_{GS} = -10V, I_D = -1.5A$	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with Temperature				1.0	%/°C	$V_{GS} = -10V, I_D = -1.5A$	
G _{FS}	Forward Transconductance		1.0	2.0		Ö	$V_{DS} = -25V, I_{D} = -2A$	
C _{ISS}	Input Capacitance			200	300		V 0V V 05V	
C _{OSS}	Common Source Output Capacitance			100	120	pF	$V_{GS} = 0V, V_{DS} = -25V$ f = 1 MHz	
C _{RSS}	Reverse Transfer Capa	citance		45	60		1 - 1 1011 12	
t _{d(ON)}	Turn-ON Delay Time Rise Time Turn-OFF Delay Time Fall Time				10	ns	$V_{DD} = -25V$ $I_{D} = -2A$ $R_{GEN} = 10\Omega$	
t _r					15			
$t_{d(OFF)}$					25			
t _f					25			
V _{SD}	Diode Forward Voltage Drop				-1.6	V	$V_{GS} = 0V, I_{SD} = -1.5A$	
t _{rr}	Reverse Recovery Time			300		ns	$V_{GS} = 0V$, $I_{SD} = -1A$	

Notes:

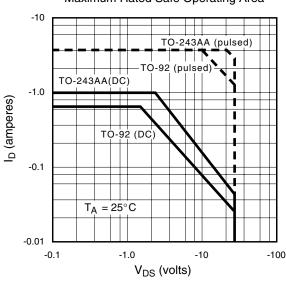
- 1. All D.C. parameters 100% tested at 25° C unless otherwise stated. (Pulse test: 300μ s pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.

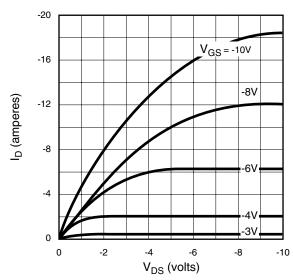

Switching Waveforms and Test Circuit

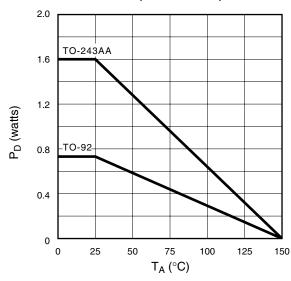


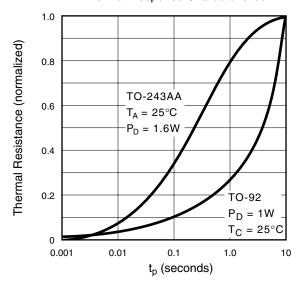


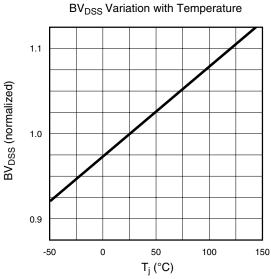
 $^{^{\}dagger}$ Mounted on FR5 board, 25mm x 25mm x 1.57mm. Significant $P_{_{D}}$ increase possible on ceramic substrate.

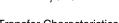

Typical Performance Curves

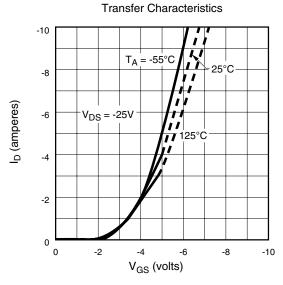


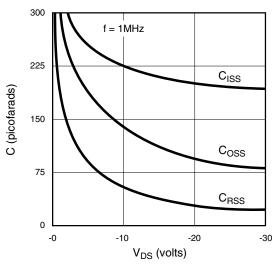

Maximum Rated Safe Operating Area

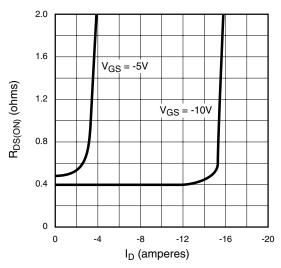

Saturation Characteristics

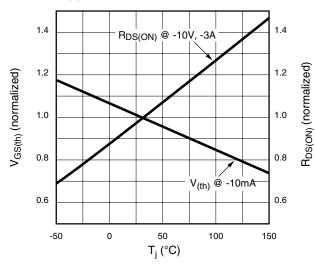

Power Dissipation vs. Temperature

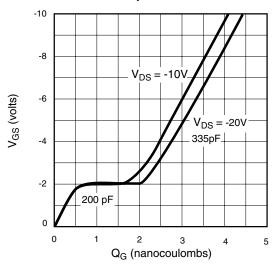



Thermal Response Characteristics


Typical Performance Curves




Capacitance vs. Drain-to-Source Voltage


On-Resistance vs. Drain Current

 $V_{(th)}$ and R_{DS} Variation with Temperature

Gate Drive Dynamic Characteristics

