

N-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

BV _{DSS} /	R _{DS(ON)}	I _{D(ON)} (min)	Order Number / Package			
BV _{DGS}	(max)		TO-92	TO-243AA*	Die**	
600V	20Ω	0.25A	VN2460N3	VN2460N8	VN2460NW	

^{*} Same as SOT-89 Product Supplied on 2000 piece carrier tape reels.

Features

- ☐ Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low C_{ISS} and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- High input impedance and high gain

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

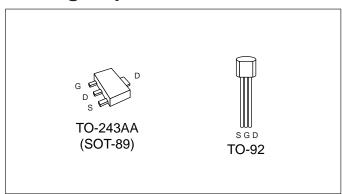
Absolute Maximum Ratings

Drain-to-Source Voltage	BV_{DSS}
Drain-to-Gate Voltage	BV_{DGS}
Gate-to-Source Voltage	± 20V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C

^{*} Distance of 1.6 mm from case for 10 seconds.

Product marking for TO-243AA:

VN4F*


Where * = 2-week alpha date code

Advanced DMOS Technology

These low threshold enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

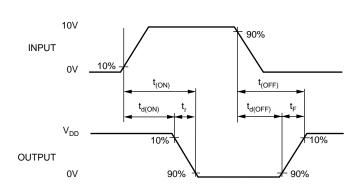
Package Options

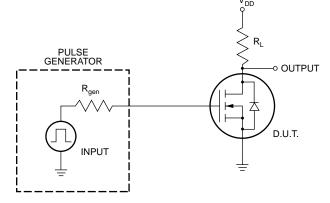
Note: See Package Outline section for dimensions.

^{**} Die in wafer form.

Thermal Characteristics

Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _C = 25°C	· jc		l _{DR} *	I _{DRM}
TO-243AA	0.2A	0.6A	1.6W [†]	15	78 [†]	0.2A	0.6A
TO-92	0.16A	0.5A	1W	125	170	0.16A	0.5A

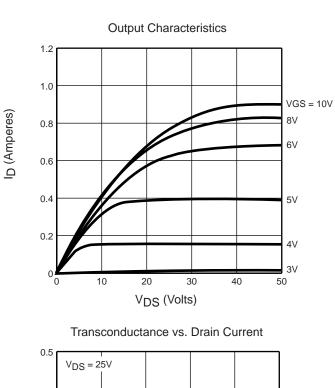

 $^{^*}$ I_D (continuous) is limited by max rated T_j.

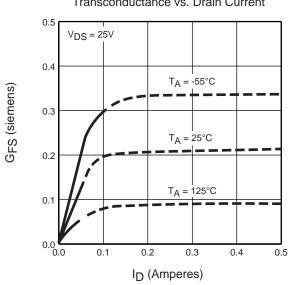

Electrical Characteristics (@ 25°C unless otherwise specified)

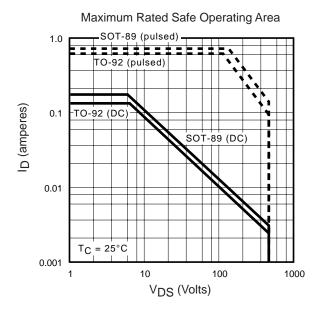
Symbol	Parameter	Min	Тур	Max	Unit	Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	600			V	$V_{GS} = 0V, I_D = 2.0mA$	
V _{GS(th)}	Gate Threshold Voltage	1.5		4.0	V	$V_{GS} = V_{DS}$, $I_D = 2.0 \text{mA}$	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with Temperature			-5.5	mV/°C	$V_{GS} = V_{DS}$, $I_D = 2.0 \text{mA}$	
I _{GSS}	Gate Body Leakage			100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current			10	μΑ	$V_{GS} = 0V$, $V_{DS} = Max$ Rating	
				1	mA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C	
I _{D(ON)}	ON-State Drain Current	0.25			А	V _{GS} = 10V, V _{DS} = 25V	
R _{DS(ON)} Sta	Static Drain-to-Source			25	0	$V_{GS} = 4.5V, I_D = 100mA$	
	ON-State Resistance			20	Ω	V _{GS} = 10V, I _D = 100mA	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with Temperature			1.7	%/°C	$V_{GS} = 10V, I_D = 100mA$	
G _{FS}	Forward Transconductance	50			m \Q	$V_{DS} = 25V, I_{D} = 100mA$	
C _{ISS}	Input Capacitance			150		V _{GS} = 0V, V _{DS} = 25V f = 1.0 MHz	
C _{oss}	Common Source Output Capacitance			50	pF		
C _{RSS}	Reverse Transfer Capacitance			25			
t _{d(ON)}	Turn-ON Delay Time			10			
t _r	Rise Time			10		$V_{DD} = 25V,$ $I_{D} = 250\text{mA},$ $R_{GEN} = 25\Omega$	
t _{d(OFF)}	Turn-OFF Delay Time			25	ns		
t _f	Fall Time			20			
V _{SD}	Diode Forward Voltage Drop			1.5	V	$V_{GS} = 0V, I_{SD} = 400 \text{mA}$	

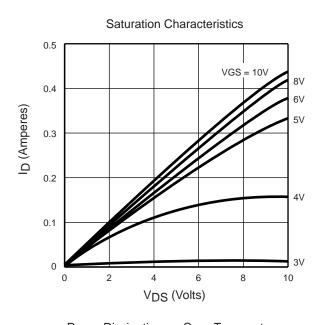
Notes:

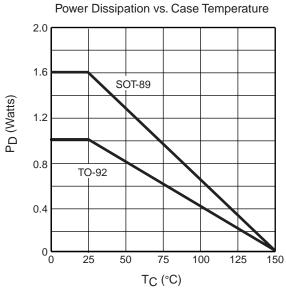
Switching Waveforms and Test Circuit

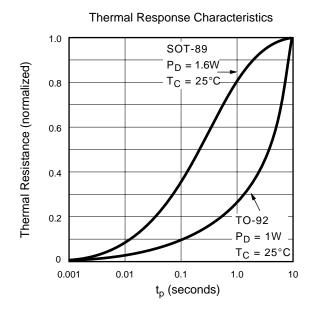


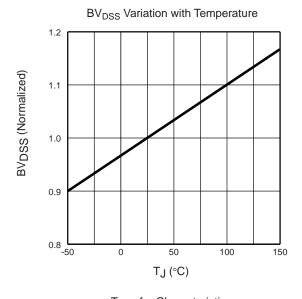

 $^{^\}dagger$ Mounted on FR5 board, 25mm x 25mm x 1.57mm. Significant P_D increase possible on ceramic substrate.

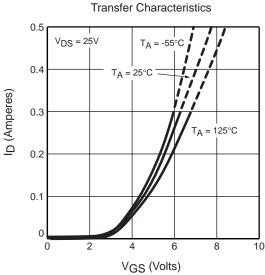

^{1.} All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: $300\mu s$ pulse, 2% duty cycle.)

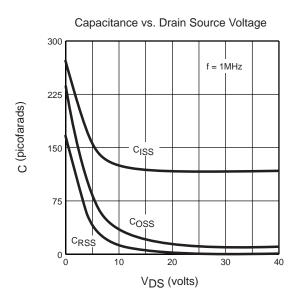

^{2.} All A.C. parameters sample tested.

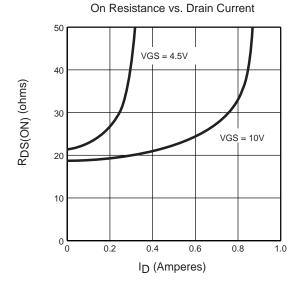

Typical Performance Curves

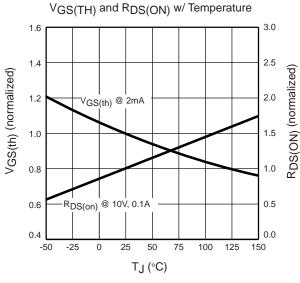


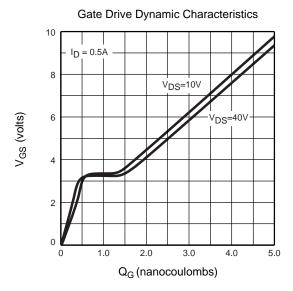









Typical Performance Curves



04/14/03