

V23818-K305-V15

Small Form Factor

Multimode 850 nm 1.3 Gigabit Ethernet 2x5 Transceiver with VF-45™ (Volition™) Connector

Preliminary

FEATURES

- Small Form Factor transceiver
- RJ-45 style VF-45™ connector system
- Half the size of SC Duplex 1x9 transceiver
- Single power supply (3.3 V)
- Extremely low power consumption
- PECL differential inputs and outputs
- System optimized for 62.5/50 μm graded index fiber
- Multisource footprint
- Small footprint for high channel density
- UL-94 V-0 certified
- ESD Class 2 per MIL-STD 883 Method 3015
- Voted as SG-connector by FC-Standard
- Compliant with FCC (Class B) and EN 55022
- For distances of up to 550 m

Absolute Maximum Ratings

Exceeding any one of these values may destroy the device immediately.

Package Power Dissipation	1.5 VV
Data Input Levels (PECL)	V _{CC} +0.5 V
Differential Data Input Voltage	2.5 V
Operating Ambient Temperature	0°C to 70°C
Storage Ambient Temperature	40°C to 85°C
Soldering Conditions, Temp/Time	
(MIL-STD 883C, Method 2003)	250°C/5.5s
V _{CC} max	5.5 V
ECL-Output current SD	30 mA
ECL-Output current data	50 mA

Volition™ and VF-45™ are trademarks of 3M

Fiber Optics APRIL 1999

DESCRIPTION

The Infineon Gigabit Ethernet multimode transceiver—part of Infineon Small Form Factor transceiver family—is based on the Physical Medium Depend (PMD) sublayer and baseband medium, type 1000BASE-SX (short wavelength).

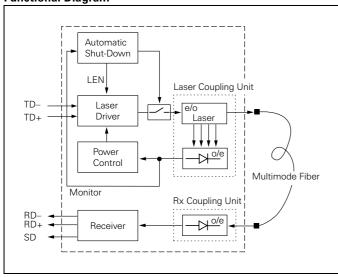
The appropriate fiber optic cable is 62.5 μm or 50 μm multimode fiber with VF-45 TM (Volition TM) connector.

Operating range for 1000BASE-SX over each optical fiber type

Fiber type	Minimum range (meters)
62.5 micron MFF	2 to 260
50.0 micron MFF	2 to 550
10 micron SFF	Not Supported

The Infineon Gigabit Ethernet multimode transceiver is a single unit comprised of a transmitter, a receiver, and an VF-45™ receptacle. This design frees the customer from many alignment and PC board layout concerns.

This transceiver supports the innovative Volition connectorization concept, which competes with UTP/CAT 5 solutions. It is compatible with RJ-45 style backpanels for fiber-to-the-desktop applications while providing the advantages of fiber optic technology. The receptacle accepts the new SG/VF-45 $^{\rm TM}$ connector. The Small Form Factor is specially developed for distances of up to 550 m.


The module is designed for low cost LAN, WAN, and Gigabit Ethernet applications. It can be used as the network end device interface in mainframes, workstations, servers, and storage devices, and in a broad range of network devices such as bridges, routers, hubs, and local and wide area switches.

This transceiver operates at 1.25 Gbits per second from a single power supply (+3.3 V). The full differential data inputs and outputs are PECL compatible.

Functional Description of 2x5 Pin Row Transceiver

This transceiver is designed to transmit serial data via multimode cable.

Functional Diagram

The receiver component converts the optical serial data into PECL compatible electrical data (RD and RDnot). The Signal Detect (SD, active high) shows whether an optical signal is present.

The transmitter converts PECL compatible electrical serial data (TD and TDnot) into optical serial data. Data lines are differentially 100 Ω terminated.

The transmitter contains a laser driver circuit that drives the modulation and bias current of the laser diode. The currents are controlled by a power control circuit to guarantee constant output power of the laser over temperature and aging. The power control uses the output of the monitor PIN diode (mechanically built into the laser coupling unit) as a controlling signal, to prevent the laser power from exceeding the operating limits.

Single fault condition is ensured by means of an integrated automatic shutdown circuit that disables the laser when it detects transmitter failures. A reset is only possible by turning the power off, and then on again.

The transceiver contains a supervisory circuit to control the power supply. This circuit makes an internal reset signal whenever the supply voltage drops below the reset threshold. It keeps the reset signal active for at least 140 milliseconds after the voltage has risen above the reset threshold. During this time the laser is inactive.

TECHNICAL DATA

The electro-optical characteristics described in the following tables are valid only for use under the recommended operating conditions.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Case Temperature	T _C	0		70	°C
Power Supply Voltage	V _{CC} -V _{EE}	3.1	3.3	3.5	V
Transmitter					
Input Voltage Swing	$ V_{TD+}-V_{TD}- $	300		900	mV
Data Input Low Voltage ⁽²⁾	V _{IL} -V _{CC}	-900		-300	
Input Data Rise/Fall Time, 10%–90%	t _R , t _F	100		375	ps
Receiver					
Input Center Wavelength	λ _C	770		860	nm

Notes

- 1. For V_{CC} – V_{EE} (min., max.). 50% duty cycle. The supply current does not include the load drive current of the receiver output. Add max. 45 mA for the three outputs. Load is 50 Ω to V_{CC} –2 V.
- 2. Data inputs are AC coupled with 100 Ω differential termination built into the transceiver.

Transmitter Electro-Optical Characteristics

Transmitter	Symbol	Min.	Тур.	Max.	Units
Launched Power (Average) ⁽¹⁾	PO	-10		-4	dBm
Center Wavelength	λ_{C}	830	850	860	nm
Spectral Width (RMS)	σΙ			0.85	
Relative Intensity Noise	RIN			-117	dB/Hz
Extinction Ratio (Dynamic)	ER	9			dB
Reset Threshold ⁽²⁾	V _{TH}		2.9		V
Reset Time Out ⁽²⁾	t _{RES}	140	240	560	ms
Rise Time, 20%-80%	t _R			0.26	ns
Supply Current			75		mA

Notes

- 1. Into multimode fiber, 62.5 μm or 50 μm diameter.
- 2. Laser power is shut down if power supply is below V_{TH} and switched on if power supply is above V_{TH} after t_{RES}.

Receiver Electro-Optical Characteristics

Receiver	Symbol	Min.	Тур.	Max.	Units
Sensitivity (Average Power) ⁽¹⁾	P _{IN}		-19	-17	dBm
Saturation (Average Power)	P _{SAT}	0			
Signal Detect Assert Level ⁽²⁾	P _{SDA}		-24	-20	
Signal Detect Deassert Level ⁽³⁾	P _{SDD}	-30	-27		
Signal Detect Hysteresis	P _{SDA} - P _{SDD}		3		dB
Signal Detect Assert Time	t _{ASS}			100	μs
Signal Detect Deassert Time	t _{DAS}			350	
Output Low Voltage ⁽⁴⁾	V _{OL} -V _{CC}	-1950		-1620	mV
Output High Voltage ⁽⁴⁾	V _{OH} -	-1100		-720	
Output Data Rise/Fall Time, 20%–80%	t , t R F			375	ps
Return Loss of Receiver	A _{RL}	12			dB
Supply current ⁽⁵⁾			60		mA

Notes

- 1. Average optical power at which the BER is 1 x 10E–12. Measured with a 2^7 –1 NRZ PRBS and ER=9 dB.
- 2. An increase in optical power above the specified level will cause the SIGNAL DETECT output to switch from a Low state to a High state.
- 3. A decrease in optical power below the specified level will cause the SIGNAL DETECT to change from a High state to a Low state.
- 4. PECL compatible. Load is 50 Ω into VCC–2V. Measured under DC conditions. For dynamic measurements a tolerance of 50 mV should be added.
- 5. Supply current excluding Rx output load.

Regulatory Compliance

Feature	Standard	Comments		
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD 883C Method 3015.4	Class 1 (>1000 V)		
Immunity: Electrostatic Discharge (ESD) to the Duplex SC Receptacle	EN 61000-4-2 IEC 1000-4-2	Discharges of ±15kV with an air discharge probe on the receptacle cause no damage.		
Immunity: Radio Frequency Electromagnetic Field	EN 61000-4-3 IEC 1000-4-3	With a field strength of 10 V/m rms, noise frequency ranges from 10 MHz to 1 GHz. No effect on transceiver perfor- mance between the specification limits.		
Emission: Electromagnetic Interference (EMI)	FCC Class B EN 55022 Class B CISPR 22	Noise frequency range: 30 MHz to 1 GHz		

LASER SAFETY

This multimode Gigabit Ethernet transceiver is a Class 1 laser product. It complies with IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated under recommended operating conditions. Because the transceiver design is designed to be inherently eye safe, it does not require open fiber control thus eliminating complex electronics or mechanics.

Caution

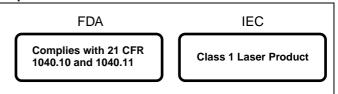
The use of optical instruments with this product will increase eye hazard!

General Restrictions

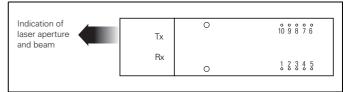
Classification is valid only if the module is operated within the specified temperature and voltage limits. The system using the module must provide power supply protection that guarantees that the system power source will cease to provide power if the maximum recommended operation limit or more is detected on the +3.3 V at the power source. The case temperature of the module must be in the temperature range given in the recommended operating limits. These limits guarantee the laser safety.

Usage Restrictions

The optical ports of the modules shall be terminated with an optical connector or with a dust plug.


Note

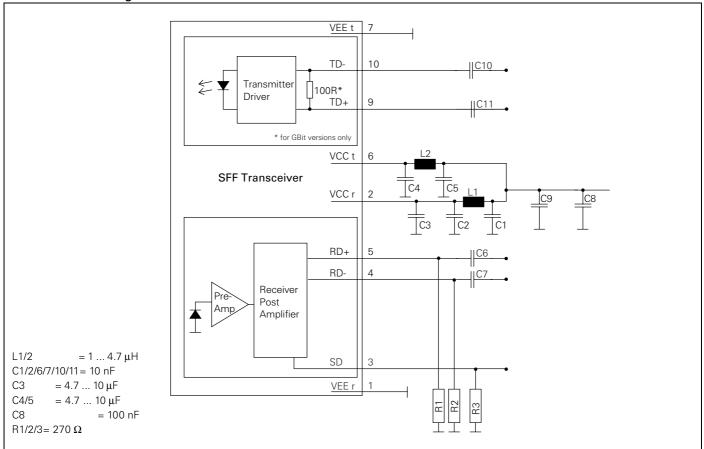
Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing," and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).


Laser Data

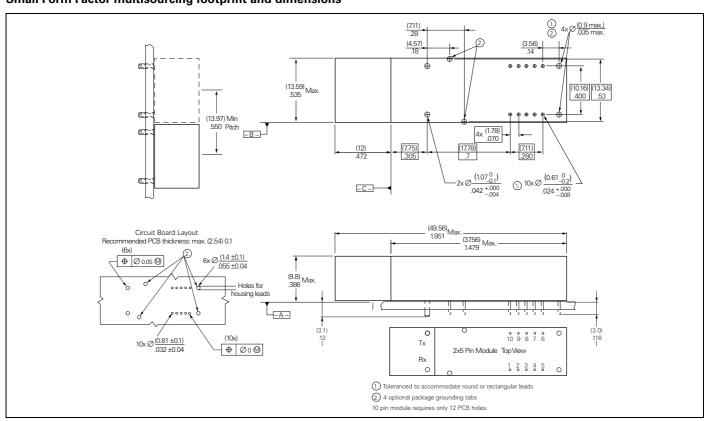
Wavelength	850 nm
Total output power (as defined by IEC: 50 mm aperture at 10 cm distance)	<400 μW
Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)	<70 μW
Beam divergence	12°

Required Labels

Laser Emission



Pin Description


Pin Name		Level/Logic	Pin#	Description
V_{EEr}	Receiver Signal Ground	N/A	1	
V_{CCr}	Receiver Power Supply	N/A	2	
SD	Signal Detect	PECL	3	Normal Operation: Logic "1" Output, represents that light is present at receiver input Fault Condition: Logic "0" Output
RD-	Received Data Out Not	PECL	4	
RD+	Received Data Out	PECL	5	
V_{CCt}		N/A	6	Transmitter Power Supply
V_{EEt}		N/A	7	Transmitter Signal Ground
TDis		TTL	8	Optional use for Laser based products only.
TD+	Transmit Data	PECL	9	Transmitter Data In
TD-	Transmit Data Not	PECL	10	Transmitter Data In
MS	MS	N/A	MS	Mounting Studs The mounting studs are provided for transceiver mechanical attachment to the circuit board. They also provide an optional connection of the transceiver to the equipment chassis ground. The holes in the circuit board must be tied to chassis ground.

APPLICATION NOTE

Multimode 850nm Gigabit Ethernet 2x5 Transceiver

Small Form Factor multisourcing footprint and dimensions

