

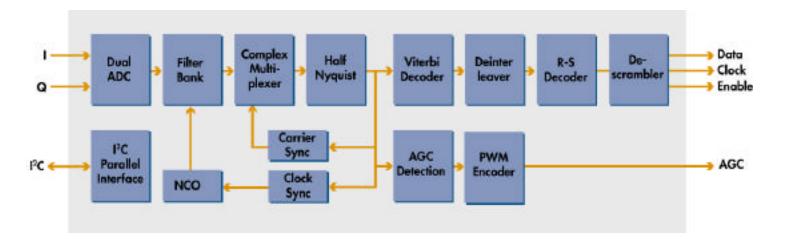
VISTA VES1893 Single-Chip DSS®/DVB-S

Single-Chip DSS®/DVB-S Continuously Variable Satellite Channel Receiver

OVERVIEW

The ViSTA VES1893 provides the ultimate solution for multi-rate systems targeted at single and dual-mode DSS®/DVB-S receivers based on VISI's industry leading Integrated Set-Top Architecture (ViSTA).

The VES1893 builds upon the ViSTA VES1877 (Dual-mode DSS®/DVB-compliant Satellite Receiver) and the ViSTA VES1643 (Digital anti-aliasing programmable low pass filter), featuring QPSK demodulation, FEC (Forward Error Correction) functions, integrated dual analog-to-digital converters (ADCs), and programmable anti-aliasing filters.


The integrated universal single chip satellite channel receiver provides true variable rate performance between 2 MHz and 90 MHz (1 Mbaud to 45 Mbaud) for both DVB and DSS®. The device enables continuous system-level tuning by providing programmable anti-aliasing filters on-chip. This feature allows multi-rate applications to tune from 1 to 45 Mbaud without changing any components on the system. The on-chip dual 6-bit Analog-to-Digital Converters (ADCs) are able to sample the incoming data at up to 90 MHz.

The VES1893 also provides digital inputs that bypass the ADCs allowing for more comprehensive system-level test and characterization. In bypass

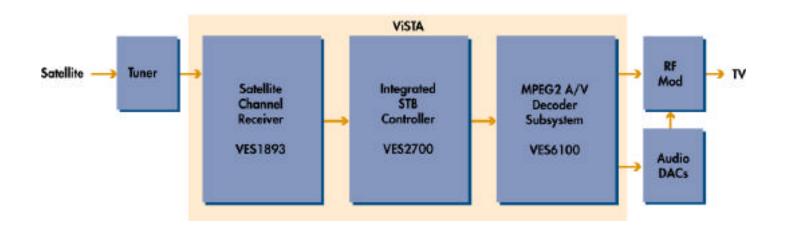
mode, the device interfaces directly with I and Q digital baseband signals that are filtered with half-Nyquist filters. Coherent demodulation is achieved internally, which negates the need for an external Voltage Controlled Crystal Oscillator (VCXO).

The on-chip Forward Error Correction (FEC) unit decodes two concatenated codes with the Reed-Solomon used as the outer code, and a Viterbi decoder used as the inner code. The Reed-Solomon decoder corrects up to 8 erroneous bytes among the N bytes of one data packet. A embedded deinter-leaver with a depth of 12 or 13 blocks is located between the Viterbi output and Reed-Solomon decoder input.

<u>Block Diagram</u>

A frame synchronization algorithm that uses timing information from the packet header automatically synchronizes the deinterleaver and Reed-Solomon decoder.

The VES1893 is controlled via an I²C bus interface. Through this interface the following DSS® or DVB programmable features are offered: Half-Nyquist filter; roll-off factor; deinterleaver; packet length; and Reed-Solomon decoder.


The device also has the ability to disable the energy dispersion descrambler, a feature required for DVB.

FEATURES

- DSS® and DVB-S compatible single chip demodulation and forward error correction
- 6-bit dual analog-to-digital converters (ADCs)
- Variable rate BPSK/QPSK coherent demodulator
- Modulation rates up to 45 Mbaud
- Analog power estimation for AGC
- Carrier recovery
- Programmable second-order loop filter.
- AFC output provision
- Acquisition Range up to +/- SR/2 (SR = Symbol Rate)
- Carrier Lock Detection
- On-chip Half-Nyquist baseband filters
- Selectable roll-off factors

- Viterbi decoder:
 - ·Supported rates: from 1/2 to 8/9
 - · Constraint length K=7 with G1 = 1718 and G2 = 1338
 - Automatic depuncturing and bit synchronization for all rates including spectral inversion resolution
 - · Coding gain of 5.4 dB at BER of 10-5, rate of 1/2
 - · VBER measurements provided
- Reed-Solomon decoder
 - · Programmable block length
 - Fixed power correction of t = 8
- Programmable convolutional deinterleaving
- Automatic frame synchronization
- I2C Bus interface, for easy control
- 100 MQFP package
- 0.35 µm CMOS technology

<u>Typical Application</u>

All brands, product names, and company names are trademarks or registered trademarks of their respective owners.

With respect to the information in this document, VISI ogy, Inc. (VISI) makes no guarantee or warranty of its accuracy or that the use of such information will not infringe upon the intellectual rights of third parties. VISI shall not be responsible for any loss or damage of whatever nature result-ing from the use of, or reliance upon it and no patent or other license is implied hereby. This document does not in any way extend or modify VLSI's warranty on any product beyond that set forth in its standard terms and conditions of sale. VLSI reserves the right to make changes in its products and specifications at any time and without notice.

LIFE SUPPORT APPLICATIONS:

VISI's products are not intended for use as critical components in life support appliances, devices, or systems, in which the failure of a VLSI product to perform could be expected to result in personal injury.

For update information, please visit our Web site: http://www.vlsi.com

© 1997 VLSI Technology, Inc. Printed in USA Document Control: PB-V/iSTA-1893 V1.2

December 97

VLSI Technology, Inc. 1109 McKay Drive San Jose, CA 95131