VME01 # **16-Bit TTL Compatible Data Transceiver with Incident Wave Switching** #### **General Description** The VME01 contains sixteen non-inverting bidirectional buffers with TRI-STATE® outputs designed with incident wave switching, live insertion support and enhanced noise margin for TTL backplane applications. $\rm A\,V_{CC}$ bias pin provides for the precharging of the A side outputs during live insertion. When set at 5.0V, this pin will establish a voltage of 1.5V on the A port before $\rm V_{CC}$ is connected. This precharge will minimize the capacitive discharge, and associated discontinuity, onto the active backplane during board insertion. The B port includes a bus hold circuit to latch the output to the value last forced on that pin. The B port of this device includes 25Ω series output resistors, which minimize undershoot and ringing. #### **Features** - Supports the VME64 ETL specification - Functionally and pin compatible with TI SN74ABTE16245 - Improved TTL-compatible input threshold range - High drive TTL-compatible outputs (I_{OH} = -60 mA, I_{OL} = 90 mA) - Supports 25Ω incident wave switching on the A port - V_{CC} Bias pin minimizes signal distortion during live insertion - BiCMOS design significantly reduces power dissipation. - Distributed V_{CC} and GND pin configuration minimizes high-speed switching noise - 25Ω series-dampening resistor on B-port - Available in 48-pin SSOP and ceramic flatpak - Guaranteed output skew - Guaranteed simultaneous switching noise level and dynamic threshold performance - Guaranteed latchup protection #### **Logic Symbol** #### **Pin Description** | Pin Names | Description | |-----------------------------------|-----------------------------------| | 1DIR-2DIR | Transmit/Receive Inputs | | ŌĒ | Output Enable Input (Active LOW) | | 1A _n , 2A _n | Backplane Bus Inputs or TRI-STATE | | | Outputs, with Live Insertion | | 1B _n , 2B _n | Local Bus Input Pins or TRI-STATE | | | Outputs, with Bus Hold | | V _{CC} Bias | Live Insertion Power Supply | TRI-STATE® is a registered trademark of National Semiconductor Corporation #### **Connection Diagram** ## Pin Assignment for SSOP and Flatpak #### **Functional Description** The device uses byte-wide Direction (DIR) control and a singular Output Enable (\overline{OE}) control. The DIR inputs determine the direction of data flow through the device. The \overline{OE} input disables both the A and the B ports, effectively isolating both busses The part contains active circuitry which keeps all outputs disabled when $\rm V_{CC}$ is less than 2.2V to aid in live insertion applications. #### **Truth Table** (Each 8-bit Section) | Inj | outs | Operation | |-----|------|-----------------| | ŌĒ | DIR | | | L | L | A Data to B Bus | | L | Н | B Data to A Bus | | Н | X | Isolation | #### Logic Diagram (Positive Logic) #### **ETL's Improved Noise Immunity** TTL input thresholds are typically determined by temperature-dependent junction voltages which result in worst case input thresholds between 0.8V and 2.0V. By contrast, ETL provides greater noise immunity because its input thresholds are determined by current mode input circuits similar to those used for ECL or BTL. ETL's worst case input thresholds, between 1.4V and 1.6V, are compensated for temperature, voltage and process variations. #### Improved Input Threshold Characteristics of ETL TTL Worst Case $V_{OUT} - V_{IN}$ ETL Worst Case V_{OUT}-V_{IN} #### **Incident Wave Switching** When TTL logic is used to drive fully loaded backplanes, the combination of low backplane bus characteristic impedance, wide TTL input threshold range and limited TTL drive generally require multiple waveform reflections before a valid signal can be received across the backplane. The VME International Trade Association (VITA) defined ETL to provide incident wave switching which increases the data transfer rate of a VME backplane and extends the life of VME applications. TTL compatibility with existing VME backplanes and modules was maintained. To demonstrate the incident wave switching capability, consider a VME application. A VME bus must be terminated to ± 2.94 V with ± 190 at each end of its 21 card backplane. The surge impedance presented by a fully loaded VME backplane is approximately ± 250 . If the output voltage/current of an ABTC driver is plotted with this load, the intersection at ± 1.2 V for a falling edge and at ± 1.6 V for a rising edge does not reach the worst case input threshold of a second ABTC circuit. This is shown in the two figures below. However, an ETL driver located at one end of the backplane is able to provide incident wave switching because it has a higher drive and a tighter input threshold. #### Estimated ETL/ABTC Initial Falling Edge Step #### Incident Wave Switching (Continued) #### Estimated ETL/ABTC Initial Rising Edge Step Because ETL has a much more precise input threshold region, an ETL receiver will interpret its predicted falling input of 0.85V as a logic ZERO and the initial rising edge of 1.9V as a logic ONE. This comparison is for the case of a 25Ω surge impedance backplane driven from one end. The resulting ABTC and ETL waveform predictions and their input thresholds are compared below. This shows how ETL can achieve backplane speeds not always possible with conventional TTL compatible logic families. #### Comparing the Incident Wave Switching of ETL with ABTC #### **Live Insertion Module Replacement** To allow a system module to be replaced without disturbing signals passing between other operating modules requires careful design of operating systems, applications software and hardware. ETL supports live insertion module replacement with features that minimize backplane signal disturbance while a module is inserted. As specified by VITA, live insertion requires several backward-compatible system enhancements including: an improved backplane connector with an embedded ground plane and differential length connector pins. The differential length connector pins allow power sequencing to the module so that the signal pins can be controlled to a biased high impedance before they make contact with the backplane. VITA's ETL modules will use an early $V_{\rm CC}$ power input, called $V_{\rm CC}$ Bias, to control the ETL transceivers to a high impedance to minimize insertion disturbance. In addition, $V_{\rm CC}$ # Live Insertion Module Replacement (Continued) Bias is used to precharge the backplane driver output capacitance including the module connector pin and module etch. The precharge voltage is to 1.5V using a switched 40 $k\Omega$ resistor. This precharge will minimize the capacitive discharge onto an active backplane as the signal connection is made. To allow designers to maintain this condition until after a module is fully powered and initialized, the $\overline{\text{OE}}$ pin can be used to maintain outputs in the high impedance, precharged state. Contact bounce during live insertion will charge each output pin to a logic ONE or ZERO. If the contact bounces open, the 40 k Ω resistor will reestablish the 1.5V level in a few microseconds. When applying power to a printed circuit board containing ETL transceivers, the system V_{CC} can be connected to V_{CC} . Bias without damage to the device. If the advantages of Live Insertion are to be included in the system, then $V_{\rm CC}$ Bias should be allowed to reach normal operating levels before $V_{\rm CC}$ becomes higher than 2.2 volts. In addition, when removing a module, or turning off system power, $V_{\rm CC}$ should be reduced below 2.2 volts before $V_{\rm CC}$. Bias is allowed to drop below normal operating limits. This sequencing is shown below. The figure V_{CC} Power-up Critical Voltages shows the relationship between V_{CC} and \overline{OE} while power is being applied and removed. This relationship holds if V_{CC} Bias is within normal operating conditions or if V_{CC} Bias is equal to V_{CC} . Power Sequencing to Achieve Live Insertion Precharging V_{CC} and \overline{OE} Power-Up Relationship #### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature -65°C to +150 $^{\circ}\text{C}$ Ambient Temperature under Bias -55°C to +125 $^{\circ}\text{C}$ Junction Temperature under Bias Ceramic -55°C to +175°C Plastic -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -50 mA to +5.0 mA Voltage Applied to Any Output in the Disabled or Power-off State $$-0.5V to 5.5V$ in the HIGH State <math display="inline">-0.5V$ to $V_{\rm CC}$$ Current Applied to Output in LOW State (Max) 128 mA DC Latchup Source Current -500 mA Over Voltage Latchup (I/O) 10V # Recommended Operating Conditions Free Air Ambient Temperature Military -55°C to $+125^{\circ}\text{C}$ Commercial -40°C to $+85^{\circ}\text{C}$ Supply Voltage $\begin{tabular}{llll} Military & +4.5V to +5.5V \\ Commercial & +4.5V to +5.5V \\ Minimum Input Edge Rate & $(\Delta t/\Delta V)$ \\ Data Input & 20 ns/V \\ Enable Input & 50 ns/V \\ \end{tabular}$ **Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs. #### **DC Electrical Characteristics** | Symbol | ol Parameter | | | VME | 1 | Units | V _{cc} | Conditions | |-------------------|-------------------------------------|--------------|------|-----|---------------------|-------|-----------------|---| | | | | Min | Тур | Max |] | | | | V _{IH} | Input HIGH Voltage | ŌĒ | 2.0 | | | V | | Recognized HIGH Signal | | | | Other Inputs | 1.6 | | |] | | | | V _{IL} | Input LOW Voltage | ŌĒ | | | 0.8 | V | | Recognized LOW Signal | | | | Other Inputs | | | 1.4 | | | | | V _{CD} | Input Clamp Diode Voltage | | | | -1.2 | V | Min | $I_{IN} = -18 \text{ mA } (\overline{OE}_n, DIR)$ | | V _{OH} | Output HIGH Voltage | | | | V _{CC} - 1 | V | | I _{OH} = -100 μA | | | | B Port | 2.4 | | | V | Min | I _{OH} = -1 mA | | | | | 2.0 | | | V | | I _{OH} = -12 mA | | | | | | | V _{CC} - 1 | V | | I _{OH} = -1 mA | | | | A Port | 2.4 | | | V | Min | I _{OH} = -32 mA | | | | | 2.0 | | | V | | I _{OH} = -60 mA | | V _{OL} | Output LOW Voltage | B Port | | | 0.4 | V | Min | I _{OL} = 1 mA | | | | | | | 0.8 | V | | I _{OL} = 12 mA | | | | A Port | | | 0.55 | V | Min | I _{OL} = 64 mA | | | | | | | 0.9 | V | | I _{OL} = 90 mA | | I _{HOLD} | Bus Hold Current | B Port | 100 | | | μΑ | Min | OE = HIGH, | | | | | | | | | | V _O = 0.8V | | | | | -100 | | | 1 | | OE = HIGH, | | | | | | | | | | V _O = 2.0V | | I _{cc} | V _{CC} Bias Supply Current | • | | | | | | V _{CC} = ≤ V _{CC} Bias | | | | | | | 10 | mA | | V _{CC} Bias = 0 to 5.5V | | | | | | | | | | I _O = 0 | | I _{OFF} | Output Current, Power Down | ı | | | 100 | μA | 0.0 | V _{CC} Bias = 0V | | | | | | | | | | V_I or $V_O \le 4.5V$ | | I ₁ | Input Current Control Pins | Military | | | ±10 | μA | 5.5 | V _{IN} = 0 or V _{CC} | | | | Commercial | | | ±5 | μA | 5.5 | V _{IN} = 0 or V _{CC} | | I _{IH} + | Output Leakage Current | A Port | | | 50 | μA | 5.5 | $V_{OUT} = 2.7V, \overline{OE} = 2.0V$ | | I _{OZH} | | | | | | | | | | | 1 | - | - | | | | - | 1 | | Symbol | Paramete | r | | VME0 | 1 | Units | V _{cc} | Conditions | |---------------------------------------|--|--------|------|------|------|------------|-----------------|--| | | | | Min | Тур | Max | 1 | | | | I _{IL} +
I _{OZL} | Output Leakage Current | A Port | | | -50 | μA | 5.5 | V _{OUT} = 0.5V, OE = 2.0V | | I _{CCH} | Power Supply Current | | | | 40 | mA | Max | All Outputs HIGH, OE = LOW, DIR = HIGH or LOW | | I _{CCL} | Power Supply Current | | | | 80 | mA | Max | All Outputs LOW, $\overline{\text{OE}} = \text{LOW}, \text{DIR} = \text{HIGH}$ or LOW | | I _{CCZ} | Power Supply Current | | | | 40 | mA | Max | OE = HIGH All Others at V _{CC} or GND | | I _{CCD} | Dynamic I _{CC} No Load (Note 3) | | | | 0.15 | mA/
MHz | Max | DIR = HIGH or LOW Outputs Open OE n = GND, DIR = HIGH One Bit Toggling, 50% Duty Cycle | | V _{LI} | Output Live
Insertion Voltage | A Port | 1.3 | | 1.7 | V | 5.0 | $I_{OUT} = 0 \text{ mA}, \overline{OE} = \text{HIGH}$ $V_{CC} \text{ Bias} = 5.0 \text{V}$ | | I _{PRE} | Precharge Current | A-Port | -20 | | -100 | μA | 5.0 | \overline{OE} = HIGH, V _O = 0V,
V _{CC} Bias = 5.0V | | | | | 20 | | 100 | μA | 5.0 | $V_O = 3V$, V_{CC} Bias = 5.0V \overline{OE} = High | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | | | | 1.0 | V | 5.0 | $T_A = 25^{\circ}C \text{ (Note 4)}$
$C_L = 50 \text{ pF; } R_L = 500\Omega$ | | V _{OLV} | Quiet Output Minimum Dynamic V _{OI} | | -1.4 | | | V | 5.0 | $T_A = 25^{\circ}C \text{ (Note 4)}$
$C_L = 50 \text{ pF; } R_L = 500\Omega$ | | V _{OHV} | Minimum High Level Dynamic Output Voltage (Note 3) | | | 2.7 | | V | 5.0 | $T_A = 25^{\circ}C \text{ (Note 6)}$
$C_L = 50 \text{ pF; } R_L = 500\Omega$ | | V _{IHD} | Minimum High Level Dynam
Input Voltage (Note 3) | nic | 2.0 | 1.5 | | V | 5.0 | $T_A = 25^{\circ}C \text{ (Note 5)}$
$C_L = 50 \text{ pF; } R_L = 500\Omega$ | | V _{ILD} | Maximum Low Level Dynam Input Voltage (Note 3) | nic | | 1.2 | 0.8 | V | 5.0 | $T_A = 25^{\circ}C \text{ (Note 5)}$
$C_L = 50 \text{ pF; } R_L = 500\Omega$ | Note 3: Guaranteed, but not tested. Note 4: Max. number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested. Note 5: Max. number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested. Note 6: Max. number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested. #### **AC Electrical Characteristics** | Symbol | Parameter | Co | mmercial | Mil | itary | Commercial | | Units | Fig. | |------------------|------------------------|----------------|---------------------|---------------------|-------------|---|----------|-------|------------------| | | | TA | = +25°C | $T_A = -55^{\circ}$ | C to +125°C | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | | No. | | | | V _c | _{cc} = +5V | V _{cc} = 4 | .5V-5.5V | V _{cc} = 4 | .5V-5.5V | | | | | | Min | Typ Max | Min | Max | Min | Max | | | | t _{PLH} | Propagation | 1.5 | 7.0 | 1.5 | 7.0 | 1.5 | 7.0 | ns | Figures 1, 2, 3, | | t_{PHL} | Delay A-Port to B-Port | 1.5 | 7.0 | 1.5 | 7.0 | 1.5 | 7.0 | | 4, 6 | | t _{PLH} | Propagation | 1.5 | 7.0 | 1.5 | 7.0 | 1.5 | 7.0 | ns | Figures 1, 2, 3, | | t_{PHL} | Delay B-Port to A-Port | 1.5 | 7.0 | 1.5 | 7.0 | 1.5 | 7.0 | | 4, 6 | | t _{PZH} | Output Enable | 1.0 | 7.0 | 1.0 | 7.0 | 1.0 | 7.0 | | Figures 1, 2, 3, | | t_{PZL} | Time | 1.0 | 7.0 | 1.0 | 7.0 | 1.0 | 7.0 | ns | 4, 5 | ## AC Electrical Characteristics (Continued) | Symbol | Parameter | Co | mmercial | Mil | itary | Commercial | | Units | Fig. | |------------------|--------------------------------|----------------|----------|---------------------|-------------|---------------------|------------|-------|------------------| | | | TA | = +25°C | $T_A = -55^{\circ}$ | C to +125°C | $T_A = -40^{\circ}$ | C to +85°C | | No. | | | | V _c | cc = +5V | V _{cc} = 4 | .5V-5.5V | V _{CC} = 4 | .5V-5.5V | | | | | | Min | Тур Мах | Min | Max | Min | Max | | | | t _{PHZ} | Output Disable | 1.0 | 7.0 | 1.0 | 7.0 | 1.0 | 7.0 | ns | Figures 1, 2, 3, | | t _{PLZ} | Time | 1.0 | 7.0 | 1.0 | 7.0 | 1.0 | 7.0 | | 4, 5 | | t _r | Rise Time 1V \rightarrow 2V, | 1.2 | 3.0 | 0.8 | 4.0 | 1.2 | 3.0 | ns | Figures 1, 2, 3, | | | A-Port Outputs | | | | | | | | 4, 6 | | t _f | Fall Time 2V → 1V, | 1.2 | 3.0 | 0.8 | 4.0 | 1.2 | 3.0 | ns | Figures 1, 2, 3, | | | A-Port Outputs | | | | | | | | 4, 6 | #### Skew | Symbol | Parameter | Commercial | Military | Units | Conditions | |------------------|------------------------|---|----------------------------------|-------|------------------| | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | T _A = -55°C to +125°C | | | | | | $V_{CC} = 4.5V - 5.5V$ | $V_{CC} = 4.5V - 5.5V$ | | | | | | 16 Outputs | 16 Outputs | | | | | | Switching | Switching | | | | | | Max | Max | | | | t _{OHS} | Pin-to-Pin Skew | 1.3 | 1.3 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | LH/HL A-Port to B-Port | | | | 4, 6 | | t _{OHS} | Pin-to-Pin Skew | 1.3 | 1.3 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | LH/HL B-Port to A-Port | | | | 4, 6 | | t _{PS} | Duty Cycle Skew | 2.0 | 2.0 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | B-Port to A-Port | | | | 4, 6 | | t _{PS} | Duty Cycle Skew | 2.0 | 2.0 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | A-Port to B-Port | | | | 4, 6 | #### **VME Extended Skew** | Symbol | Parameter | Commercial | Military | Units | Conditions | |------------------|------------------------------|---|----------------------------------|-------|------------------| | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | T _A = -55°C to +125°C | | | | | | $V_{CC} = 4.5V - 5.5V$ | $V_{CC} = 4.5V - 5.5V$ | | | | | | 16 Outputs | 16 Outputs | | | | | | Switching | Switching | | | | | | Max | Max | | | | t _{PV} | Device-to-Device Skew LH/HL | 4.0 | 4.5 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | Transitions B-Port to A-Port | | | | 4, 6 | | t _{PV} | Device-to-Device Skew LH/HL | 2.5 | 3.0 | ns | Figures 1, 2, 3, | | (Notes 7, 8) | Transitions A-Port to B-Port | | | | 4, 6 | | t _{CP} | Change in Propagation Delay | 4.0 | 4.5 | ns | Figures 1, 2, 3, | | (Notes 7, 9) | with Load B-Port to A-Port | | | | 4, 6 | | t _{CPV} | Device-to-Device, Change | | | | Figures 1, 2, 3, | | (Notes 7, 8, 9) | in Propagation Delay with | 6.0 | 7.0 | ns | 4, 6 | | | Load B-Port to A-Port | | | | | Note 7: Skew is defined as the absolute difference in delay between two outputs. The specification applies to any outputs switching HIGH to LOW, LOW to HIGH, or any combination switching HIGH-to-LOW or LOW-to-HIGH. This specification is guaranteed but not tested. Note 8: This is measured with both devices at the same value of V_{CC} ±1% and with package temperature differences of 20°C from each other. Note 9: This is measured with Rx in Figure 1 at 13Ω for one unit and at 56Ω for the other unit. ## Capacitance | Symbol | Symbol Parameter | | Max | Units | Conditions, T _A = 25°C | |----------------------------|--------------------|---|-----|-------|--| | C _{IN} | Input Capacitance | 5 | 8 | pF | $V_{CC} = 0.0V (\overline{OE}_n, DIR)$ | | C _{I/O} (Note 10) | Output Capacitance | 9 | 12 | pF | $V_{CC} = 5.0V (A_n)$ | Note 10: $C_{I/O}$ is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012. ### **AC** Loading *Includes jig and probe capacitance #### FIGURE 1. Standard AC Test Load **Note 11:** Defined to emulate the range of VME bus transmission line loading as a function of board population and driver location. Rx = 13Ω , 26Ω or 56Ω depending on test. FIGURE 2. Input Pulse Requirements | Amplitude | Rep. Rate | Rep. Rate t _w | | t _f | |-----------|-----------|--------------------------|--------|----------------| | 3.0V | 1 MHz | 500 ns | 2.5 ns | 2.5 ns | FIGURE 3. Test Input Signal Requirements | Test | Port | SW1 | SW2 | Rx | |---------------------------------|------|------|--------|------------| | t _{PHZ.} | A, B | Open | Open | TIA. | | t _{PZH} | | | · | | | t _{PLZ} , | A, B | +7 | Open | | | t _{PZL} | | | | | | t _{PLH} , | Α | Open | Closed | 26 | | t _{PHL} | | | | | | t _{PLH} , | В | Open | Open | | | t _{PHL} | | | | | | t _r , t _f | Α | Open | Closed | 26 | | t _{PV} | Α | Open | Closed | 26 | | t _{PV} | В | Open | Open | | | t _{CP} | Α | Open | Closed | 13 then 56 | | t _{CPV} | Α | Open | Closed | 13 and 56 | FIGURE 4. FIGURE 5. TRI-STATE Output HIGH and LOW Enable and Disable Times FIGURE 6. Rise, Fall Time and Propagation Delay Waveforms # **Ordering Information** The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows: VME01 SS C Special Variations X = Devices shipped in 13" reels QB = Military grade device with environmental and burn-in processing shipped in tubes. Device Type Package Code SS = Small Outline (SSOP) FPFP = Fine Pitch Flatpak Temperature Range $C = Commercial (-40^{\circ}C to +85^{\circ}C)$ $M = Military (-55^{\circ}C to +125^{\circ}C)$ DS100228-15 #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86 Email: europe support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179