PRELIMINARY DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT

μ PC8204TK

VARIABLE GAIN AMPLIFIER FOR TRANSMITTER AGC

DESCRIPTION

The μ PC8204TK is a silicon monolithic integrated circuit designed as variable gain amplifier. The package is 6-pin lead-less minimold suitable for surface mount.

This IC is manufactured using our 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process.

This IC is as same circuit current as conventional μ PC8119T and μ PC8120T, but operates at higher frequency and wider gain control range.

FEATURES

• Gain control range : GCR = 40 dB TYP. @ f = 1.9 GHz

: GCR = 40 dB TYP. @ f = 2.4 GHz

• Maximum power gain : GPMAX = 14.5 dB TYP. @ f = 1.9 GHz

: GPMAX = 14.0 dB TYP. @ f = 2.4 GHz

Operating frequency : f = 0.8 to 2.5 GHz
 Supply voltage : Vcc = 2.7 to 3.3 V

High-density surface mounting : 6-pin lead-less minimold package

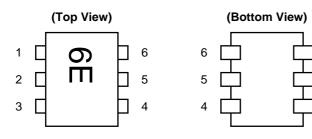
APPLICAION

• 0.8 to 2.5 GHz transmitter/receiver system (PHS, WLAN and so on)

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPC8204TK-E2	6-pin lead-less minimold (1511)	6E	 Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: μPC8204TK

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PIN CONNECTIONS

Pin No.	Pin Name		
1	INPUT		
2	GND		
3	GND		
4	OUTPUT		
5	Vcc		
6	Vagc		

VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP

Parameter		0.95 GHz output port matching frequency		1.44 GHz output port matching frequency		1.9 GHz output port matching frequency			2.4 GHz output port matching frequency				
Part No.	lcc (mA)	G _{PMAX} (dB)	GCR (dB)	NF (dB)	G _{PMAX} (dB)	GCR (dB)	NF (dB)	G _{PMAX} (dB)	GCR (dB)	NF (dB)	G _{PMAX} (dB)	GCR (dB)	NF (dB)
μPC8204TK	11.5	_	_	_	-	_	-	14.5	40	7.5	14.0	40	7.5
μPC8119T	11.0	12.5	50	8.5	13.0	45	7.5	(12.5)	(22)	(7.2)	-	-	-
μPC8120T	11.0	13.0	50	9.0	13.5	45	7.5	(13.0)	(22)	(7.3)	_	_	_

Remarks 1. Typical performance. Please refer to **ELECTRICAL CHARACTERISTICS** in detail. (): reference.

2. To know the associated product, please refer to each latest data sheet.

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Function and Applications	Internal Equivalent Circuit
1	INPUT	=	1.2	RF input pin. This pin should be coupled with capacitor (example 100 pF) for DC cut. Input return loss can be improved with external impedance matching circuit.	
2 3	GND	0	-	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pa- ttern on the board should be formed as wide as possible. Ground pins must be connected together with wide ground pattern to decrease impedance difference.	Control circuit Bias circuit 2
4	OUTPUT	Voltage as same as Vcc through external inductor	-	RF output pin. This pin is de-signed as open collector of high impedance. This pin must be externally equipped with matching circuits.	ĞND
5	Vcc	2.7 to 3.3	-	Supply voltage pin. This pin must be equipped with bypass capacitor (example 1 000 pF) to minimize its RF impedance.	
6	Vagc	0 to 3.3	-	Gain control pin.	© Control circuit

Note Pin voltage is measured at Vcc = 3.0 V

ABSOLUTE MAXIMUM RATINGS

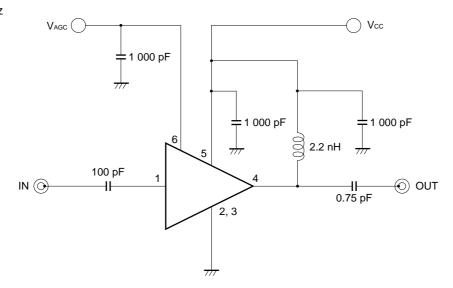
Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C, Pin 4, 5	3.6	V
Total Circuit Current	Icc	T _A = +25°C	30	mA
Gain Control Voltage	Vagc	T _A = +25°C	3.6	V
Power Dissipation	P□	T _A = +85°C Note	203	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+5	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

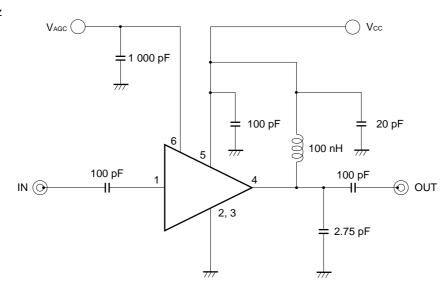
RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply Voltage	Vcc	2.7	3.0	3.3	V	Same voltage should be applied to pin 4 and pin 5.
Operating Ambient Temperature	TA	-40	+25	+85	°C	
Operating Frequency Range	fin	0.8	-	2.5	GHz	With external output-matching
Gain Control Voltage	Vagc	0	-	3.3	V	

ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = Vout = 3.0 V, Zs = ZL = 50 Ω , external matched output port, unless otherwise specified)

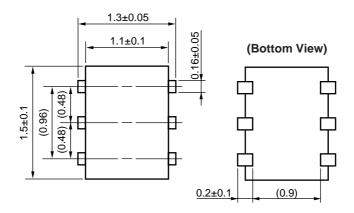

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signal	8.5	11.5	15.0	mA
Maximum Power Gain	G РМАХ	f = 1.9 GHz, Pin = -20 dBm	11.5	14.5	17.5	dB
		f = 2.4 GHz, Pin = -20 dBm	11.0	14.0	17.0	
Gain Control Range Note	GCR	f = 1.9 GHz, Pin = -20 dBm	35	40	_	dB
		f = 2.4 GHz, Pin = -20 dBm	35	40	_	
Gain 1 dB Compression Output	Po(1 dB)	f = 1.9 GHz, GPMAX	+2.0	+5.0	_	dBm
Power		f = 2.4 GHz, GPMAX	+2.0	+5.0	_	
Input Return Loss	RLin	f = 1.9 GHz, GPMAX	8	11	_	dB
		f = 2.4 GHz, GPMAX	9	13	_	
Isolation	ISL	f = 1.9 GHz, GPMAX	25	30	_	dB
		f = 2.4 GHz, GPMAX	25	30	-	
Noise Figure	NF	f = 1.9 GHz, GPMAX	_	7.5	10.0	dB
		f = 2.4 GHz, GPMAX	-	7.5	10.0	

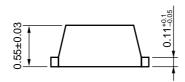
Note Gain control range GCR specification : GCR = GPMAX – GPMIN (dB)


Conditions $G_{PMAX}@V_{AGC} = V_{CC}, G_{PMIN}@V_{AGC} = 0 V$

TEST CIRCUITS

<1> f = 1.9 GHz




<2> f = 2.4 GHz

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511) (UNIT: mm)

Remark (): reference

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the Vcc pin.
- (4) Impedance matching circuit must be each externally attached to input and output ports.
- (5) The DC capacitor must be attached to input pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

NEC μ PC8204TK

The information in this document is current as of June, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8F 00 4-0110

NEC μ PC8204TK

$\blacktriangleright \text{For further information, please contact}$

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

E-mail: salesinfo@csd-nec.com (sales and general) techinfo@csd-nec.com (technical)

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-01 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279