MOS INTEGRATED CIRCUIT $\mu PD720110A$

USB2.0 HUB CONTROLLER

The μ PD720110A is an USB 2.0 hub device that comply with the Universal Serial Bus (USB) Specification Revision 2.0 and work up to 480 Mbps. USB2.0 compliant transceivers are integrated for upstream and all downstream ports. The μ PD720110A works backward compatible either when any one of downstream ports is connected to an USB 1.1 compliant device, or when the upstream port is connected to a USB 1.1 compliant host.

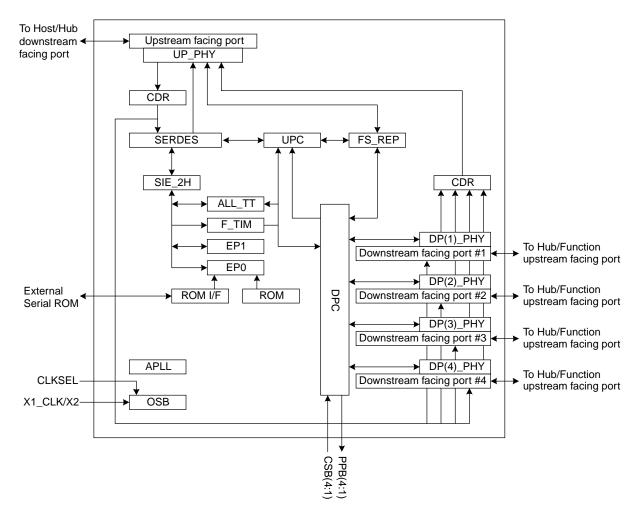
Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing. μ PD720110A User's Manual: S15738E

FEATURES

NEC

- Compliant with Universal Serial Bus Specification Revision 2.0 (Data Rate 1.5/12/480 Mbps)
- · Certified by USB implementers forum and granted with USB 2.0 high-Speed Logo
- High-speed or full-speed packet protocol sequencer for Endpoint 0/1
- 4 (Max.) downstream facing ports
- All downstream facing ports can handle high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) transaction.
- Supports split transaction to handle full-speed and low-speed transaction at downstream facing ports when Hub controller is working at high-speed mode.
- One Transaction Translator per Hub and supports 4 non-periodic buffers
- Supports self-powered mode only
- · Supports Over-current detection and Individual power control
- · Supports configurable vendor ID and product ID with external Serial ROM
- · Supports "non-removable" attribution on individual port
- · Uses 30 MHz X'tal, 30 MHz clock input, or 48 MHz clock input
- · Supports downstream port status with LED
- HS detection indicator output
- 3.3 V power supply

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

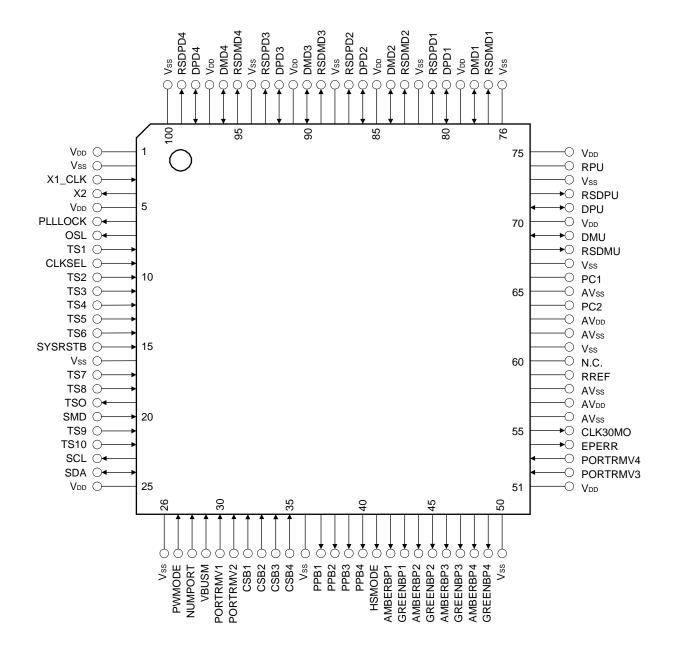

ORDERING INFORMATION

Part Number

μPD720110AGC-8EA

Package100-pin plastic LQFP (Fine pitch) (14×14)

BLOCK DIAGRAM



APLL	: Generates all clocks of Hub.
ALL_TT	: Translates the high-speed transactions (split transactions) for full/low-speed device to full/low-speed transactions. ALL_TT buffers the data transfer from either upstream or downstream direction. For OUT transaction, ALL_TT buffers data from upstream port and sends it out to the downstream facing ports after speed conversion from high-speed to full/low-speed. For IN transaction, ALL_TT buffers data from downstream ports and sends it out to the upstream facing ports after speed conversion from full/low-speed to high-speed.
CDR	: Data & clock recovery circuit
DPC	: Downstream Port Controller handles Port Reset / Enable / Disable / Suspend / Resume
DP(n)_PHY	: Downstream transceiver supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) transaction
EP0	: Endpoint 0 controller
EP1	: Endpoint 1 controller
F_TIM (Frame Timer)	: Manages hub's synchronization by using micro-SOF which is received at upstream port, and generates SOF packet when full/low-speed device is attached to downstream facing port.
FS_REP	: Full/low-speed repeater is enabled when the µPD720110A is worked at full-speed mode
OSB	: Oscillator Block
ROM	: Contains default Descriptors
ROM I/F	: Interface block for external Serial ROM which contains user-defined Descriptors
SERDES	: Serializer and Deserializer
SIE_2H	: Serial Interface Engine (SIE) controls USB2.0 and 1.1 protocol sequencer
UP_PHY	: Upstream Transceiver supports high-speed (480 Mbps), full-speed (12 Mbps) transaction
UPC	: Upstream Port Controller handles Suspend and Resume

PIN CONFIGURATION (TOP VIEW)

• 100-pin plastic LQFP (Fine pitch) (14 × 14)

μPD720110AGC-8EA

Pin No.	Pin Name						
1	Vdd	26	Vss	51	Vdd	76	Vss
2	Vss	27	PWMODE	52	PORTRMV3	77	RSDMD1
3	X1_CLK	28	NUMPORT	53	PORTRMV4	78	DMD1
4	X2	29	VBUSM	54	EPERR	79	Vdd
5	Vdd	30	PORTRMV1	55	CLK30MO	80	DPD1
6	PLLLOCK	31	PORTRMV2	56	AVss	81	RSDPD1
7	OSL	32	CSB1	57	AVDD	82	Vss
8	TS1	33	CSB2	58	AVss	83	RSDMD2
9	CLKSEL	34	CSB3	59	RREF	84	DMD2
10	TS2	35	CSB4	60	N.C.	85	Vdd
11	TS3	36	Vss	61	Vss	86	DPD2
12	TS4	37	PPB1	62	AVss	87	RSDPD2
13	TS5	38	PPB2	63	AVDD	88	Vss
14	TS6	39	PPB3	64	PC2	89	RSDMD3
15	SYSRSTB	40	PPB4	65	AVss	90	DMD3
16	Vss	41	HSMODE	66	PC1	91	Vdd
17	TS7	42	AMBERBP1	67	Vss	92	DPD3
18	TS8	43	GREENBP1	68	RSDMU	93	RSDPD3
19	TSO	44	AMBERBP2	69	DMU	94	Vss
20	SMD	45	GREENBP2	70	Vdd	95	RSDMD4
21	TS9	46	AMBERBP3	71	DPU	96	DMD4
22	TS10	47	GREENBP3	72	RSDPU	97	Vdd
23	SCL	48	AMBERBP4	73	Vss	98	DPD4
24	SDA	49	GREENBP4	74	RPU	99	RSDPD4
25	Vdd	50	Vss	75	Vdd	100	Vss

1. PIN INFORMATION

Pin Name	I/O	Buffer Type	Active Level	Function
X1_CLK	I	Input		System clock input or oscillator in
X2	0	Output		Oscillator out
SYSRSTB	I	5 V tolerant Input	Low	Asynchronous chip reset
CLK30MO	O (I/O)	Output		30 MHz clock output
CLKSEL	I	Input		Clock select signal
RPU	А	Analog		External 1.5 k Ω pull-up resistor control
DPD(4:1)	В	USB high speed D+ I/O		Downstream high-speed data D+
DPU	В	USB high speed D+ I/O		Upstream high-speed data D+
DMD(4:1)	В	USB high speed D– I/O		Downstream high-speed data D-
DMU	В	USB high speed D– I/O		Upstream high-speed data D-
RSDPD(4:1)	0	USB full-speed D+ O		Downstream full-speed data D+ and Rs resistor terminal
RSDPU	0	USB full-speed D+ O		Upstream full-speed data D+ and Rs resistor terminal
RSDMD(4:1)	0	USB full-speed D– O		Downstream full-speed data D– and Rs resistor terminal
RSDMU	0	USB full-speed D– O		Upstream full-speed data D– and Rs resistor terminal
RREF	А	Analog		Reference resistor
PC1	А	Analog		Capacitor for PLL
PC2	А	Analog		Capacitor for PLL
CSB(4:1)	I (I/O)	5 V tolerant input	Low	Port's overcurrent status input
PPB(4:1)	0	5 V tolerant N-ch open drain	Low	Port's power supply control output
NUMPORT	I	Input		Number of available ports
PWMODE	I	Input		Power mode select
VBUSM	I	Input		VBus monitor
PORTRMV(2:1)	I	Input		Removable/Non-removable select
PORTRMV(4:3)	l (I/O)	Input		Removable/Non-removable select
OSL	O (I/O)	Output	High	Indication for suspend state
HSMODE	0	Output	Low	Indication for high-speed operation
AMBERBP(4:1)	0	Output	Low	Indication for downstream port status with amber colored LED
GREENBP(4:1)	0	Output	Low	Indication for downstream port status with green colored LED
SCL	O (I/O)	Output		Serial ROM clock out
SDA	I/O	I/O with 5 kΩ pull-up R		Serial ROM data
SMD	I	Input		Serial ROM input enable
EPERR	O (I/O)	Output		Indication for serial ROM error

				(2/2)
Pin Name	I/O	Buffer Type	Active Level	Function
PLLLOCK	O (I/O)	Output		Indication when PLL is locked
TS(1)	Ι	Input with 12 k Ω pull-down R		Test signal
TS(10:2)	Ι	Input		Test signal
TSO	I/O	I/O		Test signal
Vdd				Vdd
AVDD				VDD for analog circuit
Vss				Vss
AVss				Vss for analog circuit
N.C.				Not connected

Remarks 1. "5 V tolerant" means that the buffer is 3 V buffer with 5 V tolerant circuit.

2. The signal marked as "(I/O)" in the above table operates as I/O signals during testing. However, they do not need to be considered in normal use.

2. ELECTRICAL SPECIFICATIONS

- 2.1 Buffer List
 - 5 V schmitt buffer
 - SYSRSTB, CSB(4:1)
 - 3.3 V oscillator block
 X1_CLK, X2
 - 3.3 V input buffer
 CLKSEL, TS(10:1), SMD, PWMODE, NUMPORT, VBUSM, PORTRMV(4:1)
 - 3.3 V IoL = 6 mA output buffer
 - PLLLOCK, OSL, TSO, SCL, CLK30MO
 - 3.3 V IoL = 12 mA output buffer
 - EPERR
 - 3.3 V IoL = 6 mA schmitt I/O buffer with 5 k Ω pull-up resistor
 - SDA
 - 5 V IoL = 12 mA output buffer HSMODE, AMBERBP(4:1), GREENBP(4:1)
 - 5 V IoL = 12 mA N-ch open drain buffer PPB(4:1)
 - USB2.0 interface

RPU, DPU, DMU, RSDPU, RSDMU, DPD(4:1), DMD(4:1), RSDPD(4:1), RSDMD(4:1), RREF, PC1, PC2

Above, "5 V" refers to a 3 V buffer that is 5 V tolerant (has 5 V maximum voltage). Therefore, it is possible to have a 5 V connection for an external bus, but the output level will be only up to 3 V, which is the VDD voltage.

2.2 Terminology

Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates voltage range within which damage or reduced reliability will not result when power is applied to a V_{DD} pin.
Input voltage	Vi	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Output current	lo	Indicates absolute tolerance values for DC current to prevent damage or reduced reliability when a current flow out of or into an output pin.
Operating temperature	TA	Indicates the ambient temperature range for normal logic operations.
Storage temperature	Tstg	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current are applied to the device.

Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	Vdd	Indicates the voltage range for normal logic operations occur when $V_{\rm SS}$ = 0V.
High-level input voltage	Vін	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer.
		* If a voltage that is equal to or greater than the "MIN." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage	VIL	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer.
		* If a voltage that is equal to or lesser than the "MAX." value is applied, the input voltage is guaranteed as low level voltage.
Hysteresis voltage	Vн	Indicates the differential between the positive trigger voltage and the negative trigger voltage.

Terms Used in DC Characteristics

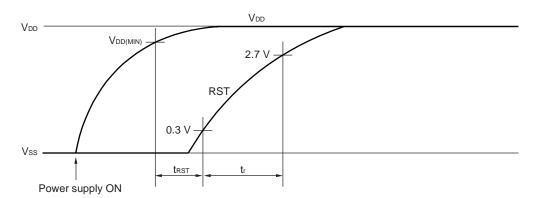
Parameter	Symbol	Meaning
Off-state output leakage current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.
Output short circuit current	los	Indicates the current that flows when the output pin is shorted (to GND pins) when output is at high-level.
Low-level output current	lol	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.
High-level output current	Іон	Indicates the current that flows from the output pins when the rated high- level output voltage is being applied.

2.3 Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	Vdd		-0.5 to +4.6	V
Input voltage	Vi			
3.3 V input voltage		$V_{\text{I}} < V_{\text{DD}} + 0.5 \ V$	-0.5 to +4.6	V
5 V input voltage		$V_{\text{I}} < V_{\text{DD}} + 3.0 \text{ V}$	-0.5 to +6.6	V
Output voltage	Vo			
3.3 V output voltage		$V_{\text{O}} < V_{\text{DD}} + 0.5 \text{ V}$	-0.5 to +4.6	V
5 V output voltage		$V_{O} < V_{DD} + 3.0 V$	-0.5 to +6.6	V
Operating temperature	TA		0 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.


The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Recommended Operating Ranges

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating voltage	Vdd		3.14	3.30	3.46	V
High-level input voltage	Vін					
3.3 V High-level input voltage			2.0		Vdd	V
5.0 V High-level input voltage			2.0		5.5	V
Low-level input voltage	VIL					
3.3 V Low-level input voltage			0		0.8	V
5.0 V Low-level input voltage			0		0.8	V
Hysteresis voltage	Vн		0.3		1.5	V
Input rise time for SYSRSTB Note	tr				10	ms
Reset time	t rst		0.005		90	ms

Note Drive Low on SYSRSTB pin when only in Power On Reset timing.

Figure 2-1. Power On Reset Timing

DC Characteristics

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Off-state output leakage current	loz	Vo = VDD or GND		±10	μA
Output short circuit current	los ^{Note}			-250	mA
Low-level output current	lol				
3.3 V low-level output current		Vol = 0.4 V	6		mA
3.3 V low-level output current		Vol = 0.4 V	12		mA
5.0 V low-level output current		Vol = 0.4 V	12		mA
High-level output current	Іон				
3.3 V high-level output current		Vон = 2.4 V	-6		mA
3.3 V high-level output current		V _{OH} = 2.4 V	-12		mA
5.0 V high-level output current		V _{OH} = 2.4 V	-2		mA

Note The output short circuit time is one second or less and is only for one pin on the LSI.

USB Interface Block

Parameter	Symbol	Conditions	MIN	MAX	Unit
Serial Resistor between DPx (DMx) and RSDPx (RSDMx).	Rs		35.64	36.36	Ω
Output pin impedance	Zhsdrv	Includes Rs resistor	40.5	49.5	Ω
Bus pull-up resistor on upstream facing port	Rpu		1.425	1.575	kΩ
Bus pull-up resistor on downstream facing port	Rpd		14.25	15.75	kΩ
Termination voltage for upstream facing port pullup (full-speed)	Vterm		3.0	3.6	V
Input Levels for Low-/full-speed:		·			
High-level input voltage (drive)	VIH		2.0		V
High-level input voltage (floating)	VIHZ		2.7	3.6	V
Low-level input voltage	VIL			0.8	V
Differential input sensitivity	VDI	(D+) – (D–)	0.2		V
Differential common mode range	Vсм	Includes VDI range	0.8	2.5	V
Output Levels for Low-/full-speed:					
High-level output voltage	Vон	R∟ of 14.25 kΩ to GND	2.8	3.6	V
Low-level output voltage	Vol	R∟ of 1.425 kΩ to 3.6 V	0.0	0.3	V
SE1	Vose1		0.8		V
Output signal crossover point voltage	Vcrs		1.3	2.0	V
Input Levels for High-speed:					
High-speed squelch detection threshold (differential signal)	Vhssq		100	150	mV
High-speed disconnect detection threshold (differential signal)	VHSDSC		525	625	mV
High-speed data signaling common mode voltage range	Vнsсм		-50	+500	mV
High-speed differential input signaling level	See Figure	e 2-5.			
Output Levels for High-speed:					
High-speed idle state	VHSOI		-10.0	+10	mV
High-speed data signaling high	Vнsoн		360	440	mV
High-speed data signaling low	VHSOL		-10.0	+10	mV
Chirp J level (different signal)	VCHIRPJ		700	1100	mV
Chirp K level (different signal)	VCHIRPK		-900	-500	mV

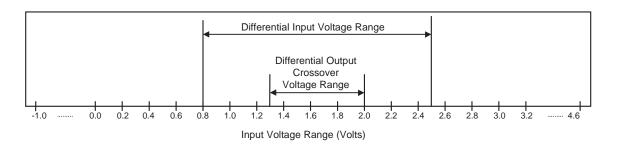


Figure 2-2. Differential Input Sensitivity Range for Low-/full-speed

Figure 2-3. Full-speed Buffer VoH/IoH Characteristics for High-speed Capable Transceiver

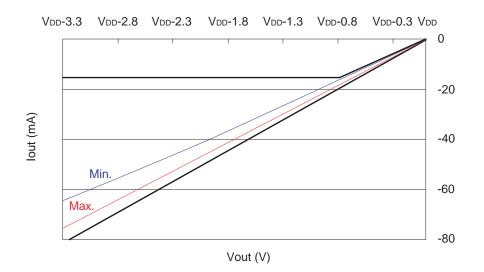



Figure 2-4. Full-speed Buffer VoL/IoL Characteristics for High-speed Capable Transceiver

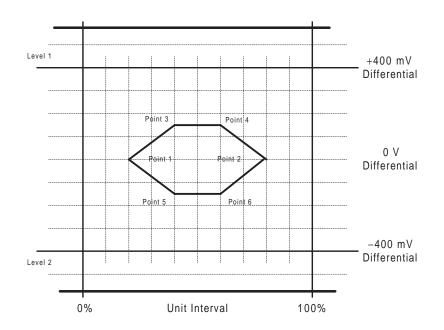
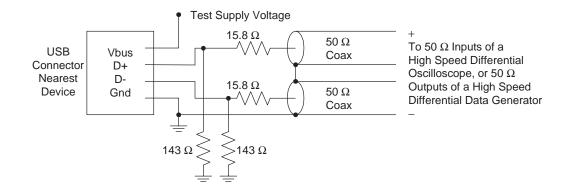



Figure 2-5. Receiver Sensitivity for Transceiver at DP/DM

Power Consumption

Parameter	Symbol	Condition	TYP.	Unit
Power Consumption	Pw-0	The power consumption under the state without suspend. All the ports does not connect to any function. Note 1		
		Hub controller is operating at full-speed mode.	185	mA
		Hub controller is operating at high-speed mode.	270	mA
	Pw-2	The power consumption under the state without suspend. The number of active ports is 2. Note 2		
		Hub controller is operating at full-speed mode.	190	mA
		Hub controller is operating at high-speed mode.	400	mA
	Pw-3	The power consumption under the state without suspend. The number of active ports is 3. Note 2		
		Hub controller is operating at full-speed mode.	193	mA
		Hub controller is operating at high-speed mode.	460	mA
	Pw-4	The power consumption under the state without suspend. The number of active ports is 4. Note 2		
		Hub controller is operating at full-speed mode.	196	mA
		Hub controller is operating at high-speed mode.	525	mA
	Pw_s	The power consumption under suspend state. The internal clock is stopped.	1.3	mA

Notes1. When any device is not connected to all the ports of HC, the power consumption for HC does not depend on the number of active ports.

2. The number of active ports is set by the value of Port No field in PCI configuration space EXT register.

System Clock Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock frequency	fськ	X'tal	-500	30	+500	MHz
			ppm		ppm	
		Oscillator block	-500	48	+500	MHz
			ppm		ppm	
Clock Duty cycle	t duty		40	50	60	%

Remarks 1. Recommended accuracy of clock frequency is \pm 100 ppm.

2. Required accuracy of X'tal or oscillator block is including initial frequency accuracy, the spread of X'tal capacitor loading, supply voltage, temperature, and aging, etc.

AC Characteristics (VDD = 3.14 to 3.46 V, TA = 0 to +70°C)

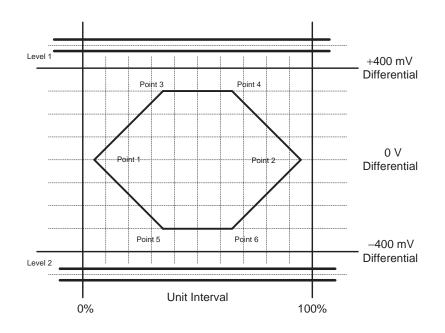
USB Interface Block

					(1/
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Low-speed Electrical Characteristics		-	-		
Rise time (10% to 90%)	tlr	C∟ = 50 pF to 150 pF, Rs = 36 Ω	75	300	ns
Fall time (90% to 10%)	t∟F	C∟ = 50 pF to 150 pF, Rs = 36 Ω	75	300	ns
Differential rise and fall time matching	t lrfm	(tlr/tlf) Note	80	125	%
Low-speed data rate	t LDRATHS	Average bit rate	1.49925	1.50075	Mbps
Hub differential data delay (Figure 2-9)	t lhdd			300	ns
Hub differential driver jitter (including cable) (Figure 2-9):					
Downstream facing port To next transition For paired transitions	tldhj1 tldhj2		-45 -45	+45 +45	ns ns
Upstream facing port To next transition For paired transitions	tluhj1 tluhj2		-45 -15	+45 +15	ns ns
Data bit width distortion after SE0 (Figure 2-9)	t lsop		-60	+60	ns
Hub EOP delay relative to THDD (Figure 2-10)	t leopd		0	200	ns
Hub EOP output width skew (Figure 2-10)	t lhesk		-300	+300	ns
Full-speed Electrical Characteristics					•
Rise time (10% to 90%)	tfr	CL = 50 pF, Rs = 36 Ω	4	20	ns
Fall time (90% to 10%)	tff	C∟ = 50 pF, Rs = 36 Ω	4	20	ns
Differential rise and fall time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed data rate	t FDRATHS	Average bit rate	11.9940	12.0060	Mbps
Frame interval	t FRAME		0.9995	1.0005	ms
Consecutive frame interval jitter	t _{RFI}	No clock adjustment		42	ns
Source jitter total (including frequency tolerance) (Figure 2-11): To next transition	t _{DJ1}	Note	-3.5	+3.5	ns
For paired transitions	t _{DJ2}		-4.0	+4.0	ns
Source jitter for differential transition to SE0 transition (Figure 2-12)	t fdeop		-2	+5	ns

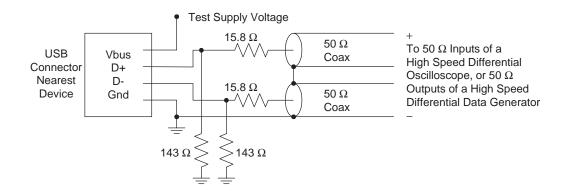
Note Excluding the first transition from the Idle state.

1 . 2 . 1 . 2 		-18.5 -9 160 82 -3 -1 -5 0 -15	$ \begin{array}{r} +18.5 \\ +9 \\ 175 \\ \hline \\ 14 \\ 70 \\ 44 \\ +3 \\ +1 \\ +5 \\ 15 \\ +15 \\ \end{array} $	
PR		-9 160 82 -3 -1 -5 0	+9 175 14 14 70 44 +3 +1 +5 15	
PR		-9 160 82 -3 -1 -5 0	+9 175 14 14 70 44 +3 +1 +5 15	
PR		-3 -1 -5 0	175 14 70 44 +3 +1 +5 15	
PR		82 -3 -1 -5 0	14 70 44 +3 +1 +5 15	n: n: n: n: n: n:
1		-3 -1 -5 0	70 44 +3 +1 +5 15	n: n: n: n: n:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-1 -5 0	70 44 +3 +1 +5 15	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-1 -5 0	44 +3 +1 +5 15	
2 2 20 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		-1 -5 0	+3 +1 +5 15	n: n: n:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-1 -5 0	+1 +5 15	n: n: n:
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-1 -5 0	+1 +5 15	n: n: n:
р Парадана и Парадана		0	+5 15	n: n:
ър		0	15	n
SK				
		-15	+15	n
		500		p
		500		p
Figure 2-7	7	I		1
RAT		479.760	480.240	Mb
RAM		124.9375	125.0625	μ
FI			4 high-	В
			speed	tim
Figure 2-7	7.			
Figure 2-5	5.			
DD			36 high-	В
			speed+4 ns	tim
Figure 2-5	5, Figure 2-7.			
VC			5 high- speed	Bi tim
		I	<u> </u>	
N				
		2.5	2000	μ
				μ
	Figure 2-8	e Figure 2-5, Figure 2-7.	e Figure 2-5. IDD e Figure 2-5, Figure 2-7. IDV IN 2.5 2.5 2.5	a Figure 2-5. NDD 36 high-speed+4 ns a Figure 2-5, Figure 2-7. NDV 5 high-speed NN 2.5 2000 2.5 12000

NEC


Parameter	Symbol	Conditions	MIN.	MAX.	(3/4 Unit
	Symbol	Conditions	MIN.	MAX.	Unit
Hub Event Timings (Continued)					
Duration of driving resume to a downstream port (only from a controlling hub)	torsmon		20		ms
Time from detecting downstream resume to rebroadcast	t ursm			1.0	ms
Duration of driving reset to a downstream facing port (Figure 2-16)	t drst	Only for a SetPortFeature (PORT_RESET) request	10	20	ms
Time to detect a long K from upstream	turlk		2.5	100	μs
Time to detect a long SE0 from upstream	turlse0		2.5	10000	μs
Duration of repeating SE0 upstream (for low-/full-speed repeater)	turpse0			23	FS Bit times
Inter-packet delay (for high-speed) of packets traveling in same direction	t HSIPDSD		88		Bit times
Inter-packet delay (for high-speed) of packets traveling in opposite direction	t HSIPDOD		8		Bit times
Inter-packet delay for device/root hub response with detachable cable for high- speed	thsrspipd1			192	Bit times
Time of which a Chirp J or Chirp K must be continuously detected (filtered) by hub or device during Reset handshake	t⊧⊫⊤		2.5		μs
Time after end of device Chirp K by which hub must start driving first Chirp K in the hub's chirp sequence	twтосн			100	μs
Time for which each individual Chirp J or Chirp K in the chirp sequence is driven downstream by hub during reset	tоснвіт		40	60	μs
Time before end of reset by which a hub must end its downstream chirp sequence	tdchse0		100	500	μs
Time from internal power good to device pulling D+ beyond V _{IHZ} (Figure 2-16)	t sigatt			100	ms
Debounce interval provided by USB system software after attach (Figure 2-16)	t attdb			100	ms
Maximum duration of suspend averaging interval	tsusavgi			1	S
Period of idle bus before device can initiate resume	twtrsm		5		ms
Duration of driving resume upstream	t drsmup		1	15	ms
Resume recovery time	t RSMRCY	Remote-wakeup is enabled	10		ms
Time to detect a reset from upstream for non high-speed capable devices	t detrst		2.5	10000	μs
Reset recovery time (Figure 2-16)	t RSTRCY			10	ms

				1	(4/4
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Hub Event Timings (Continued)					
Inter-packet delay for full-speed	tipd		2		Bit times
Inter-packet delay for device response with detachable cable for full-speed	trspipd1			6.5	Bit times
SetAddress() completion time	t dsetaddr			50	ms
Time to complete standard request with no data	t drqcmpltnd			50	ms
Time to deliver first and subsequent (except last) data for standard request	tdretdata1			500	ms
Time to deliver last data for standard request	t dretdatan			50	ms
Time for which a suspended hub will see a continuous SE0 on upstream before beginning the high-speed detection handshake	tfiltse0		2.5		μs
Time a hub operating in non-suspended full-speed will wait after start of SE0 on upstream before beginning the high-speed detection handshake	twtrstfs		2.5	3000	ms
Time a hub operating in high-speed will wait after start of SE0 on upstream before reverting to full-speed	t wtrev		3.0	3.125	ms
Time a hub will wait after reverting to full- speed before sampling the bus state on upstream and beginning the high-speed will wait after start of SE0 on upstream before reverting to full-speed	twrrsths		100	875	ms
Minimum duration of a Chirp K on upstream from a hub within the reset protocol	tucн		1.0		ms
Time after start of SE0 on upstream by which a hub will complete its Chirp K within the reset protocol	t UCHEND			7.0	ms
Time between detection of downstream chip and entering high-speed state	twтнs			500	μs
Time after end of upstream Chirp at which hub reverts to full-speed default state if no downstream Chirp is detected	twifes		1.0	2.5	ms


Clock & Overcurrent Response Timing

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CLK30MO cycle time	tсзс			33.33		ns
CLK30MO high level width	tсзн		15.9		17.5	ns
CLK30MO low level width	tc₃∟		15.9		17.5	ns
Overcurrent response time from CSB low to PPB high (Figure 2-19)	toc		500		625	μs

Figure 2-7. Transmit Waveform for Transceiver at DP/DM

Timing Diagram

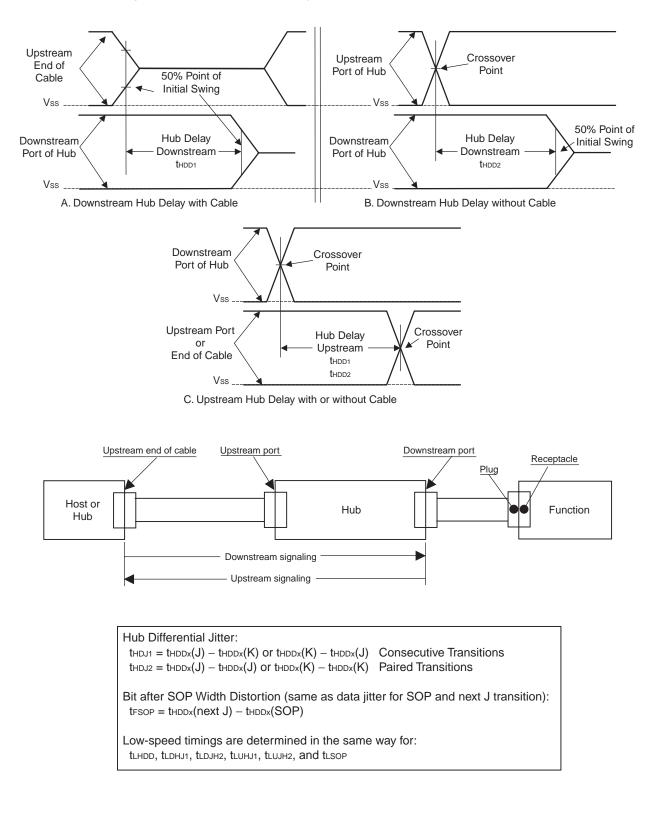


Figure 2-9. Hub Differential Delay, Differential Jitter, and SOP Distortion

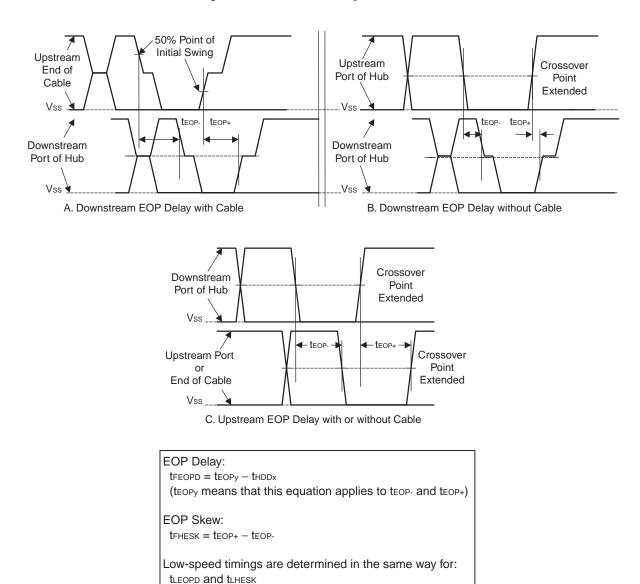


Figure 2-10. Hub EOP Delay and EOP Skew

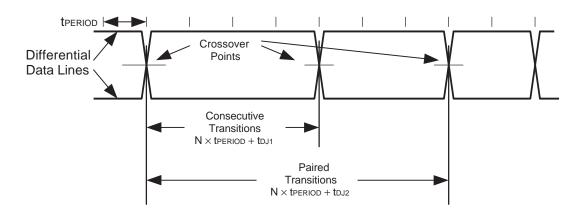


Figure 2-11. USB Differential Data Jitter for Full-speed

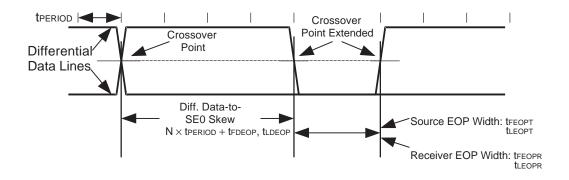
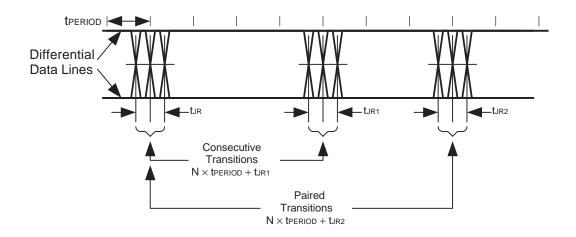



Figure 2-13. USB Receiver Jitter Tolerance for Full-speed

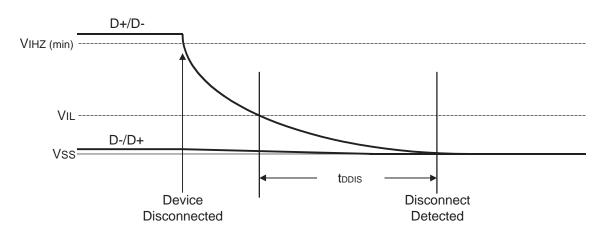
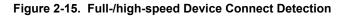
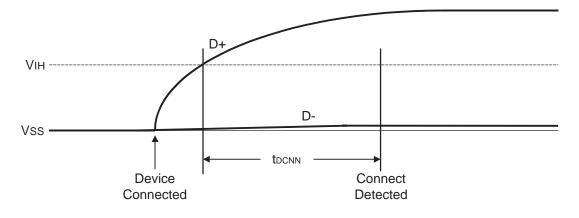
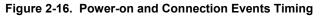
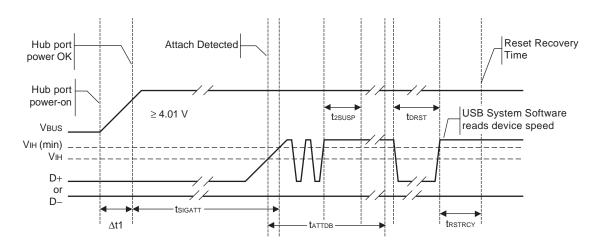
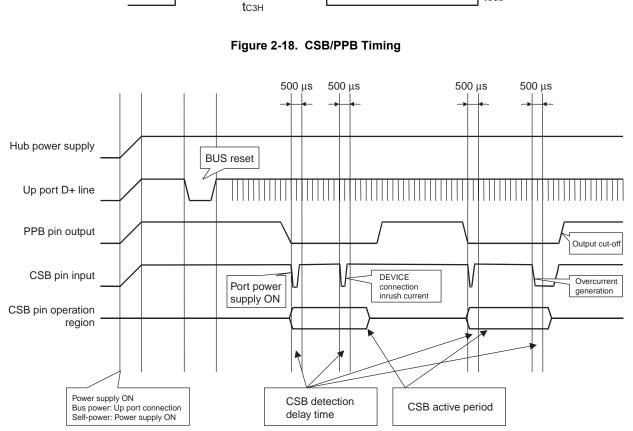
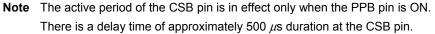
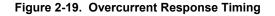






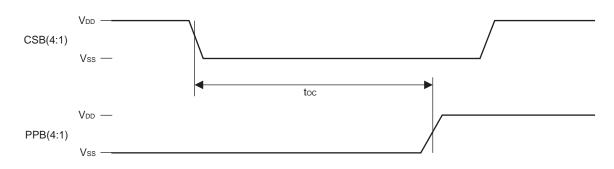
Figure 2-14. Low-/full-speed Disconnect Detection



CLKO30MO

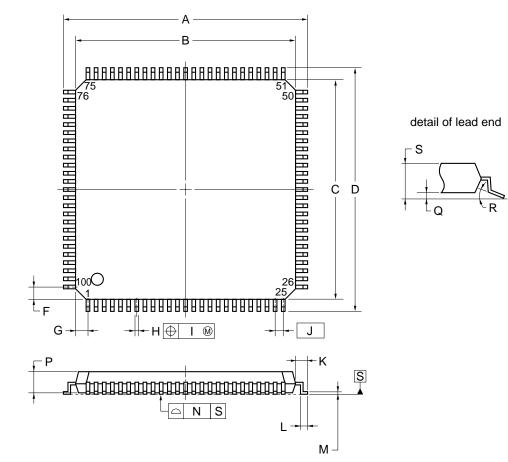

tc3∟




Figure 2-17. Clock Output

tc3c

⋗



3. PACKAGE DRAWING

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS				
Α	16.00±0.20				
В	14.00±0.20				
С	14.00±0.20				
D	16.00±0.20				
F	1.00				
G	1.00				
Н	$0.22^{+0.05}_{-0.04}$				
I	0.08				
J	0.50 (T.P.)				
К	1.00±0.20				
L	0.50±0.20				
М	$0.17\substack{+0.03 \\ -0.07}$				
Ν	0.08				
Р	1.40±0.05				
Q	0.10±0.05				
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$				
S	1.60 MAX.				
S100GC-50-8EU, 8EA-2					

NEC

4. RECOMMENDED SOLDERING CONDITIONS

The μ PD720110A should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact your NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

μ PD720100AGC-8EA: 100-pin plastic LQFP (Fine pitch) (14 × 14)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),	IR35-102-3
	Count: Three times or less	
	Exposure limit: 2 days ^{Note} (after that, prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

USB logo is a trademark of USB Implementers Forum, Inc.

• The information in this document is current as of November, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).