

2.5-GHz Quadrature Up-Converter

Description

The U2891B is a silicon monolithic IC made with Atmel Wireless & Microcontrollers' advanced UHF process. The IC consists of a 500-MHz I/Q quadrature modulator and a 2.5-GHz mixer. Both parts can be connected via an external filter in order to suppress harmonics and spurious products. The device features 3-V operation, low-current consumption and furthermore two separate power-down functions for modulator and mixer. The RF ports are single-ended and the device can be operated adjustment

free. These features and the double-conversion concept of U2891B make this device perfectly suited for all digital radio applications from 900 MHz up to 2.5 GHz (e.g., GSM, DCS 1800, JDC, PHP and WLAN).

Electrostatic sensitive device. Observe precautions for handling.

Features

- Low power consumption: 25 mA / 3 V (typical at –8 dBm output level)
- 2.5 GHz output frequency
- Excellent sideband suppression by means of duty cycle regeneration and 90° phase control
- Separate power-down mode for modulator and mixer
- Low LO input level: -10 dBm (typical)
- LO and RF port 50-Ω single-ended

Benefits

- Extended talk time due to increased battery life
- Few external components results in cost and board space saving
- Adjustment free, hence saves time and cost
- One TX platform for different systems
- Reduced costs and space for battery (3-V operation)

Block Diagram

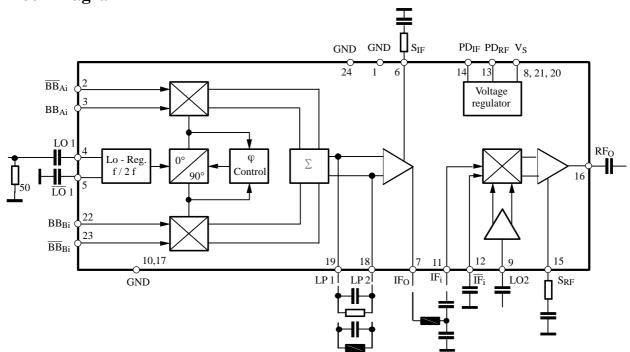


Figure 1. Block diagram

Rev. A5, 10-Oct-00

Ordering Information

Extended Type Number	Package	Remarks
U2891B-MFS	SSO24	Tube, MOQ 690 pcs.
U2891B-MFSG3	SSO24	Taped and reeled, MOQ 4000 pcs.

Pin Description

GND	1		24	GND
\overline{BB}_{Ai}	2		23	\overline{BB}_{Bi}
BB_{Ai}	3		22	BB_{Bi}
LO 1	4		21	V_{S}
TO 1	5		20	V_{S}
$S_{ m IF}$	6		19	LP 1
IFO	7		18	LP 2
V_{S}	8		17	GND
LO 2	9		16	RF_{O}
GND	10		15	S_{RF}
IF_i	11		14	PD_{IF}
$\overline{\text{IF}}_i$	12		13	PD_{RF}
	_	94 8581 e	-	

Pin	Symbol	Function
1, 10, 17, 24	GND	Ground
2	$\overline{\mathrm{BB}}_{\mathrm{Ai}}$	Baseband input A inverse
3	BB_{Ai}	Baseband input A
4	LO 1	LO 1 input
5	TO 1	LO 1 input inverse
6	S _{IF}	Output symmetry IF
7	IFO	IF output
8	V_{S}	Supply voltage
9	LO 2	LO 2 input
11	IFi	IF input
12	ĪFi	IF input inverse
13	PD_{RF}	Power-down RF
14	PD_{IF}	Power-down IF
15	S_{RF}	Output symmetry RF
16	RFO	RF output
18	LP 2	Filter and IF level adjustment
19	LP 1	Filter and IF level adjustment
20	V_{S}	Supply voltage
21	V_{S}	Supply voltage
22	BB_{Bi}	Baseband input B
23	$\overline{\mathrm{BB}}_{\mathrm{Bi}}$	Baseband input B inverse

Absolute Maximum Ratings

	Parameters	Symbol	Value	Unit
Supply voltage	Pins 8, 20 and 21	V _S , V _{SRF}	6	V
Input voltage	Pins 2, 3, 4, 5, 9, 11, 12, 22 and 23	Vi	0 to V _S	V
Junction temperature		Tj	125	°C
Storage temperatur	re range	T _{stg}	-40 to +125	°C

Operating Range

	Parameters	Symbol	Value	Unit
Supply voltage	Pins 8, 20 and 21	V _S , V _{SRF}	2.7 to 5.5	V
Ambient temperature	e range	T _{amb}	-40 to +85	°C

2 (6) Rev. A5, 10-Oct-00

Thermal Resistance

	Parameters	Symbol	Value	Unit
Junction ambient	SSO24	R_{thJA}	140	K/W

Electrical Characteristics: General Data

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Power supply						
Supply voltage range	Pin 8, 20 and 21	$V_{S,}V_{SRF}$	2.7		5.5	V
Supply current	Pin 8, 20 and 21, $V_S = 3 \text{ V}$	I _S , I _{SRF}		25		mA

Electrical Characteristics: I/Q Modulator

Test conditions (unless otherwise specified): $V_S=3~V,~T_{amb}=25^{\circ}C,~referred$ to test circuit. System impedance Zo = 50 Ω , $f_{LO1}=100~MHz,~P_{LO1}=-10~dBm$.

Parameters	Test Conditions / Pin	Symbol	Min.	Typ.	Max.	Unit		
IF output Pin 7	IF output Pin 7							
Output level	$R_{LP} = \infty$	P _{IFo}		- 8		dBm		
LO1 suppression		LO _{RFo}		40		dB		
Voltage standing wave ratio		VSWR _{IFo}		1.4	2			
Sideband suppression		SBS _{IFo}		45		dB		
Baseband inputs Pins 2,	3, 22 and 23							
Input voltage range (diff.)		V_{BBi}		500	900	mVpp		
Input impedance		Z_{BBi}		150		kΩ		
Input frequency		f_{BBi}			200	MHz		
LO1 input Pins 4 a	and 5							
Frequency range		f_{LOi}	30		500	MHz		
Input level ¹⁾		P _{LOi}		-10	-2	dBm		
Input impedance		Z _{iLO}		tbd.		Ω		
Duty cycle range		DCR _{LO1}	0.4		0.6			
Power-down mode								
Supply current	$V_{PD} \le 0.5 \text{ V Pin } 14$	I_{PD}		<5		μΑ		
Settling time	C _{SPD} 100 pF, C _{LO} = 100 pF, C _{RFo} = 1 nF	t_{S}		10		μs		
Power down voltage I	Pin 14							
"Power on"	$V_S = 3.5 \text{ to } 5.5 \text{ V}$ $V_S = 2.7 \text{ to } 3.5 \text{ V}$	V _{PON}	$V_S - 0.5$ V_S		V _S +0.5 V _S +0.5	V V		
"Power down"		V _{PDN}			1	V		
Power down current	Power on Power down	I _{PON} I _{PDN}		0.15 < 1		mA μA		

Note: 1) Required LO level is a function of the LO frequency

Rev. A5, 10-Oct-00 3 (6)

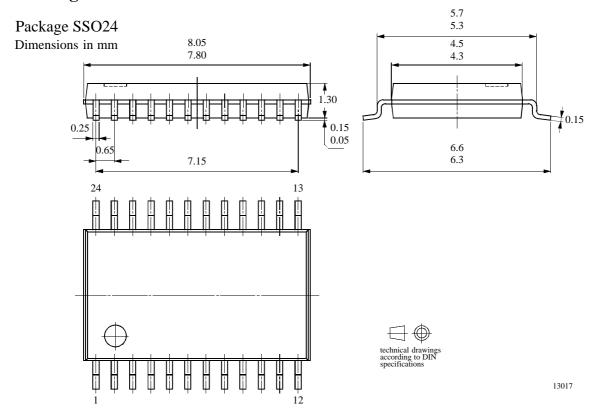
U2891B

Electrical Characteristics: Mixer

 $V_S=3~V,~f_{LO2}=800~MHz,~f_{IF}=100~MHz,~P_{LO2}=-~10dBm,~system~impedance~Zo=50~\Omega,~T_{amb}=25~^{\circ}C,~reference~point~Pin~10,~unless~otherwise~specified$

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Operating frequencies						•
RF _O frequency	Pin 16	RFO	50		2500	MHz
LO2 frequency	Pin 9	f_{LO2}	50		2500	MHz
Isolation		,				•
LO2 spurious at RF _o	Pin 9–16 P _{iLO} = –10 to 0 dBm	IS _{LO2} -RFo		-30		dBm
RFo to LO2	Pin 16–9	IS _{RFo-LO2}		tbd.		dB
Output level						
Output compression point	Pin 16 R _{Po} = ∞	CP _o – 1 dB		-7		dBm
Input level						•
Input compression point 1)	Pins 11 and 12	CP _i – 1dB		-15		dBm
Input LO2	Pin 9	P _{LO2}		-10		dBm
Third order input intercept point ¹⁾	Pins 11 and 12	P _{iIIP3}		-6		dBm
Voltage standing wave rati	io (VSWR)					
Input IF	Pins 11 and 12	VSWR _{IFi}		tbd.		
Input LO2	Pin 9	VSWR _{LO2}		tbd.		
Output RF	Pin 16	VSWR _{RF}		tbd.		
Conversion power gain	$R_L = 50 \Omega$	PG _C		9		dB
Noise Figure (SSB) ²⁾	$P_{iLO} = -6 \text{ dBm}$	NF50		13		dB
Power-down mode						•
Supply current	$V_{PD} \le 0.5 \text{ V Pin } 13$	I _{PD}		<5		μΑ
Settling time	C _{SPD} 100 pF, C _{LO} = 100 pF, C _{RFo} = 1 nF	t_{S}		10		μs
Power down voltage	Pin 13					
"Power on"	$V_S = 3.5 \text{ to } 5.5 \text{ V}$ $V_S = 2.7 \text{ to } 3.5 \text{ V}$	V _{PON}	$V_S - 0.5$ V_S		V _S +0.5 V _S +0.5	V V
"Power down"		V _{PDN}			1	V
Power down current	Power on Power down	I _{PON} I _{PDN}		0.15 < 1		mA μA

Note:


1) 2) with 50 Ω termination resistor at Pin 11

without termination resistor

Rev. A5, 10-Oct-00 4 (6)

Packing Information

Rev. A5, 10-Oct-00 5 (6)

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

6 (6) Rev. A5, 10-Oct-00