

GreenCoder™ UR5HCFJL

Extremely Low-Power Keyboard Encoder for Portable Systems

HID & SYSTEM MANAGEMENT PRODUCTS, KEYCODER® FAMILY

PRELIMINARY

DESCRIPTION

The GreenCoder™ UR5HCFJL is a unique, extremely low-power keyboard encoder that performs optimally in both battery-operated and desktop systems.

The GreenCoder™ scans, debounces, and encodes an 8 X 16* keyboard matrix, and provides direct drive for 3 LEDs and a bi-directional port for communication with a BIOS-compatible system as well as an external port* for a keyboard-type device. It fully supports all three PS/2 scan code sets and can implement up to four keyboard layers for full 101/102/104 functionality.

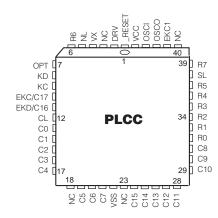
The GreenCoderTM employs a unique Self-Power ManagementTM method that reduces the power consumption of the keyboard sub-system to an unprecedented minimum, transparently and without user intervention. In "Active" mode, the encoder consumes less than 2 mA (Typ @5V). In "Sleep" mode the encoder consumes less than 2 μA (Typ @5V). The encoder can even nap between keystrokes, and therefore it is rarely active and rarely consumes significant levels of power.

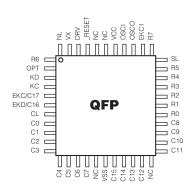
A "stand-by" mode (600 μA Typ @5V) is entered for as long as a periodic task is active. After a programmed period of inactivity the GreenCoderTM gradually dims the LEDs for further power savings.

The GreenCoder™ is ideal for use in battery laptop/notebook designs and Energy Star compliant keyboards.

Semtech and KeyCoder are registered trademarks of Semtech Corporation. GreenCoder and Self-Power management are trademarks of Semtech Corporation. All other trademarks belong to their respective companies.

FEATURES

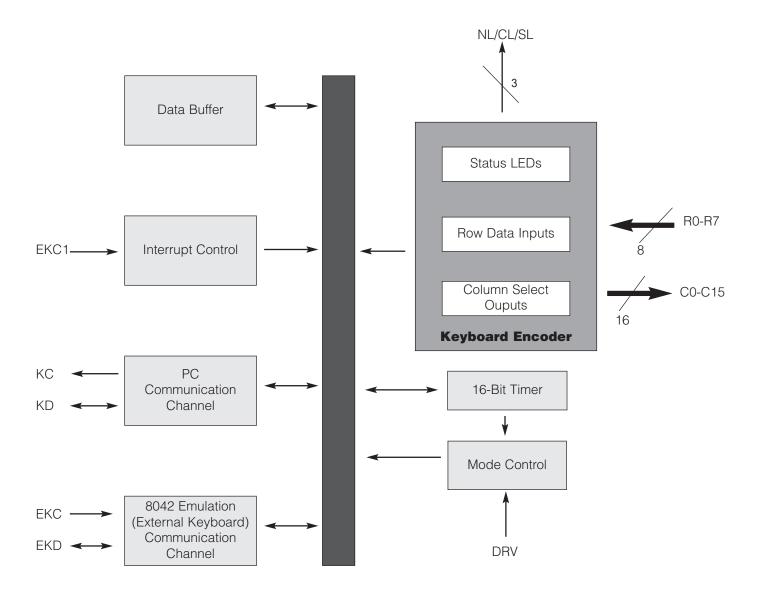

- Optimized power-saving operation with idle consumption of less than 2 µA
- Programmable LED dimming for further power savings
- Ready to interface to Fujitsu's 1406, 7211, 7316, 7401, and 7654 keyboards
- 3, 3.3, and 5 Volt operation
- Wakes-up only to respond to an external event and for a minimum period of time (2 mA current consumption)
- Provides interface for external keyboard/keypad or other 8042compatible device*
- Energy Star compliant


APPLICATIONS

- Laptops / notebooks
- Portable equipment

- Medical instruments
- Palmtops / PDAs

PIN ASSIGNMENTS


***Note:** The UR5HCFJL-7401 scans an 8 x 18 keyboard matrix, and does not provide a port for an external keyboard.

ORDERING CODE		
Package options	Pitch	TA = -40°C to +85°C
44-pin, Plastic PLCC	1.27 mm	UR5HCFJL-xxxx-FN
44-pin, Plastic QFP	0.8 mm	UR5HCFJL-xxxx-FB

Note: "xxxx" = "16" for FKB7316 matrix compatibility, "11" for FKB7211, "06" for FKB1406, "7401" for FKB7401, "7654" for FKB7654

FUNCTIONAL DIAGRAM

FUNCTIONAL DESCRIPTION

The GreenCoder™ consists functionally of seven major sections (see Functional Diagram, previous page). These are the Keyboard Encoder, a 16-Bit Timer, the Mode Control Unit, the Data Buffer, the Interrupt Control, the PC Communication Channel and the 8042 Emulation Channel. All sections communicate with each other and operate concurrently.

KEYBOARD ENCODER

The encoder scans a keyboard organized as an 8 row by 16 column matrix for a maximum of 128 keys. Smaller-size keyboards are supported provided that all unused row lines are pulled to Vcc. When active, the encoder selects one of the column output lines every 512 µs and then reads the row input data lines (R0-R7). A key closure is detected as a 0 in the corresponding position of the matrix. A complete scan cycle for the entire keyboard takes approximately 9.2 ms. Each key found pressed is debounced for a period of 20 ms. Once the key is verified, the corresponding key code(s) are loaded into the transmit buffer of the PC keyboard communication channel.

Scan Code Table Sets

The GreenCoder™ supports all three scan code table sets. Scan code table set 3 allows the user to program individual key attributes such as Make/Break and Typematic or Single-Touch Action. For more information, refer to the IBM technical reference manuals.

PIN DEFINITIONS

Mnemonic	PLCC	QFP	Туре	Name and Function
VCC	44	38	I	Power supply: +5V or +3V or +3.3V
VX	4	43	I	Tie to Vcc
VSS	22	17	- 1	Ground
_RESET	1	41	- 1	Reset: apply 0V to provide orderly start-up
OSCI	43	37	- 1	Oscillator input
OSCO	42	36	0	Oscillator output
OPT	7	2	- 1	Used for options selection
DRV	2	42	- 1	Wake-up line: used for sleep mode
KC	9	4	I/O	Keyboard clock: connects to PC keyboard port data line
KD	8	3	I/O	Keyboard data: connects to PC port data line
EKC1	41	35	I	External keyboard clock 1:connects to external keyboard clock line and is used to generate an interrupt for every clock line transmission. For UR5HCFJL-7401 only: tie to Vcc
EKC / C17	10	5	I/O	External keyboard clock: connects to external keyboard data line. For UR5HCFJL-7401 only: column 17 select output
EKD / C16	11	6	I/O	External keyboard data: connect to external keyboard clock line. For UR5HCFJL-7401 only: column 16 select output
C0-C4	13-17	8-12	I/O	Column select outputs: select one
C5-C7	19-21	13-15	O	column
C8-C15	31-24	26-18	O	
R0-R5	32-37	27-32		Row data inputs
R6	6	1	1	•
R7	39	34	1	
CL	12	7	0	Caps lock LED
NL	5	44	0	Num lock LED
SL	38	33	0	Scroll lock LED
NC	3,18 23, 40	39, 40 16, 22		No connect: these pins are unused

Note: An underscore before a pin mnemonic denotes an active low signal.

KEYBOARD ENCODER (CONT'D)

Embedded Numeric Keypad

The GreenCoder™ implements an embedded numeric keypad. The Numeric Keypad Function is invoked by pressing the Num Lock Key.

Status LED indicators

The controller provides an interface for three LED shift status indicators. All three pins are active low to indicate the status of the host system (Num Lock, Caps Lock and Scroll Lock) and are set by the system. After approximately a one-minute period of keyboard inactivity, LEDs are dimmed to conserve power. They are set to full brightness again upon a new keystroke.

N-KEY ROLLOVER

N-Key Rollover

In this mode, the code(s) corresponding to each key press are transmitted to the host system as soon as that key is debounced, independently of the release of other keys.

If a key is defined to be Typematic, the corresponding make code(s) are transmitted while the key is held pressed. When a key is released, the corresponding break code(s) are then transmitted to the host system. If the released key happens to be the most recently pressed, then Typematic action is terminated. There is no limitation in the number of keys that can be held pressed at the same time. However, two or more key closures, occurring within a time interval less than 5 ms, will set an error flag and will not be processed. This procedure protects against the effects of accidental key presses.

GHOST KEYS

"Ghost" Keys

In any scanned contact switch matrix, whenever three keys defining a rectangle on the switch matrix are held pressed at the same time, a fourth key positioned on the fourth corner of the rectangle is sensed as being pressed. This is known as the "ghost" or "phantom" key problem. Although the problem cannot be totally eliminated without using external hardware,

there are methods to neutralize its negative effects for most practical applications. Keys that are intended to be used in combinations or are likely to be pressed at the same time by a fast typist (i.e., keys located in adjacent positions on the keyboard) should be placed in the same row or column of the matrix whenever possible. Shift Keys (Shift, Alt, Ctrl) should not reside in the same row (or column) with any other keys. The GreenCoder™ has built-in mechanisms to detect the presence of a "ghost" key, thus eliminating the necessity of external hardware.

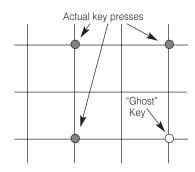


Figure 1: "Ghost" or "Phantom" Key Problem

8042 EMULATION CHANNEL

The GreenCoder™ fully emulates a system's keyboard port*, available to any PS/2 keyboard-type 8042-compatible device. The GreenCoder™ communicates with the external device using clock and data lines connected to the EKC and EKD pins, respectively. The EKC1 pin also connects to the clock line, and interrupts the GreenCoder™ whenever the external device initiates a communication session.

When power is first applied, the GreenCoder™ performs the standard reset sequence with the external device. Data and commands initiated from the external device are buffered in the GreenCoder™'s FIFO along with data from the scanned matrix; all these are presented to the host as if from a single keyboard. Once they are acknowledged, commands and data from the system are relayed to the external device.

SPECIAL HANDLING

Connection of External Device*

The GreenCoder™ detects the presence of an external device. If an external keyboard or other device was not connected during power-on and is connected at a later time, the GreenCoder™ proceeds with the normal reset routine in order to properly initialize the external device. After communication has been established, the GreenCoder™ continues to check for the presence of the external device. While the external device is connected, the GreenCoder™ does not enter the sleep mode. If the device is disconnected at a later time, the GreenCoder™ becomes aware of it. If a subsequent connection takes place, the GreenCoder™ reinitiates a reset sequence. This unique feature allows the user to connect or disconnect an external device at any time without having to reset the system.

Shift Status LEDs

Shift Status LEDs (Num Lock, Caps Lock and Scroll Lock) indicate the status of the system and are controlled by commands sent from the system. Set/Reset Status Indicator Commands from the system are executed both by the external keyboard and the scanned matrix.

For example, if the user presses the Caps Lock Key on either keyboard, the Caps Lock LED is affected on both keyboards. The LED status indicators are properly set after each new connection of an external keyboard.

*Note: The UR5HCFJL-7401 does not provide a port for an external device.

PC COMMUNICATION

The GreenCoder™ implements all the standard functions of communication with a BIOS-compatible PC/XT or AT / PS/2 host system. Two lines, KC and KD, provide bi-directional clock and data signals. In addition, the GreenCoder™ supports all commands from and to the system, as described in the IBM technical reference manuals.

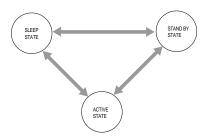
The following table shows the commands that the system may send and their values in hex.

Command	Hex Value					
Set/Reset Status Indicators	0xED					
Echo	0xEE					
Invalid Command	0xEF					
Select Alternate Scan Codes	0xF0					
Invalid Command	0xF1					
Read ID	0xF2					
Set Typematic Rate/Delay	0xF3					
Enable	0xF4					
Default Disable	0xF5					
Set Default	0xF6					
Set All Keys ■ Typematic ■ Make/Break ■ Make ■ Typematic/Make/Break	0xF7 0xF8 0xF9 0xFA					
Set Key Type ■ Typematic ■ Make/Break ■ Make	0xFB 0xFC 0xFD					
Resend	0xFE					
Reset	0xFF					

Table 2: Keyboard commands from the system (AT / PS/2 protocol)

These commands are supported in the AT / PS/2 protocol and can be sent to the keyboard at any time. The following table shows the commands that the keyboard may send to the system.

Command	Hex Value
Key Detection Error/Overrun	0x00*
Keyboard ID	0x83AB
BAT Completion Code	0xAA
BAT Failure Code	0xFC
Echo	0xEE
Acknowledge (Ack)	0xFA
Resend	0xFE
Key Detection Error/Overrun	0xFF**
*Code Sets 2 and 3 **Code Set 1	


Table 3: Keyboard Commands to the System (AT / PS/2 protocol)

When an external keyboard is connected, commands from the system will also be directed to the external keyboard. Presence or absence of an external device will not effect the normal operation of the GreenCoderTM.

STATES OF OPERATION

The GreenCoderTM has three states of operation, implemented to minimize the power consumption of the keyboard subsystem. The following diagram illustrates the three states of operation of the GreenCoderTM.

Figure 2: States of Operation of UR5HCFJL

Most of the time, the GreenCoderTM is in the sleep state. Power consumption in this state is approximately 2 μ A at 5 Volts of operation. The GreenCoderTM enters the active state only when there is an event to process, such as a keystroke, a command from the system, or data from the external PS/2-compatible device.

The GreenCoder™ enters and stays in the stand-by state if an external device is connected to the auxiliary port or if one or more LEDs are turned on.

In the stand-by state, the GreenCoder™ consumes approximately 600 µA at 5 Volts. Transition from one state to the other does not require any input from the system.

USING THE GREENCODER™ FOR SYSTEM MANAGEMENT TASKS

The GreenCoder™ provides an ideal complement to low-power chip sets targeted to the portable and mobile computing market. The GreenCoder™ can be used to handle several system management tasks for small, portable system designs, thus saving space and additional components for the system designer. Such system management tasks include those listed below.

However, since most of the system management tasks are application and hardware-dependent, detailed implementation information is outside the scope of this document. For application examples and sample schematics, contact Semtech technical support.

System shut-down/wake-up signal

The GreenCoder[™] can provide the system power management unit with a shut-down/wake-up signal which can be invoked either by a special keyboard combination or after a programmed period of user inactivity.

Note: Self-Power Management[™] is a feature protected under Semtech Corporation patent and copyright rights. Purchase of any version of the GreenCoder[™] conveys a license to utilize the Self-Power Management[™] feature only through use of the GreenCoder[™] in a PS/2-compatible keyboard subsystem.

KEY MAP FOR FKB7211 (UR5HCFJL-11)

						Column	is (C0-C1	3)					
0	1	2	3	4	5	6	7	8	9	10	11	12	13
LCtrl*	Esc	Tab	Fn	LAIt*	Space		` (BkQt)	Insert	Delete	ArrLft	ArrDn	LShift	ArrRt
	F1*	Z			Х	С		. (per) Pad .	/ Pad /		ArrUp	RShift	End
	1	CapLk			V	В	N	M Pad 0	, (com)	, (appos) Enter		PgDn
	F2*	Α			S	D	F	J Pad 1	K Pad 2	L Pad 3	; Pad +		PgUp
	2	3			4	Т	Y	U Pad 4	I Pad 5	O Pad 6	P Pad -		BkSpc
	F4	F5			F6	F7	F8	F9	F10	NumLk	ScrLk		PrtScr
	F3	% 5			6	7 Pad 7	8 Pad 8	9 Pad 9	0 Pad *	- (dash)	=		Pause
	Q	W			Е	R	G	Н	[]	\		Home

*Note:

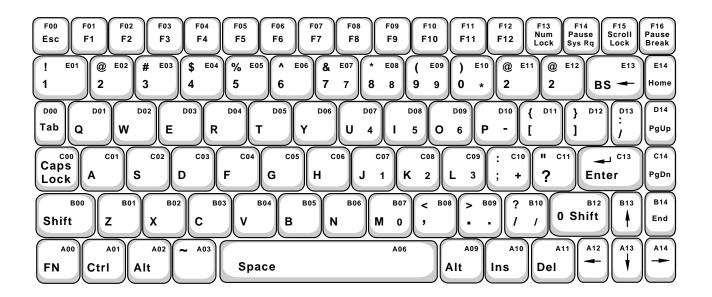
Rows (R0-R7)

Fn + F1 = F11

Fn + F2 = F12

Fn + LCtrl = RCtrl

Fn + LAIt = RAIt


KEY MAP FOR FUJITSU FKB7316-001 (UR5HCFJL-16)

								Co	lumns C	0-C15						
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0				Space	В				Ν		/		RAIt	ArrDn	ArrRt	ArrLft
		Es	c F4	F5	G		F6		Н		RQ		LAlt			ArrUp
1		Tab	F3	BkSpc	Т	CapLk	RSB		Υ	LShift	LBS	F7				
(R0-R7)	PgU	p LQ	F2	F9	K5	F1	=	FN	K6		Dash	F8		Del	Ins	Home
	LCtrl	ΙΑ	D	\	F	S	K		J		SCol	L				
SMON 5		Z	С	Enter	V	Χ	Comma	a	М	RShift		Period		NumLk		Pause
- 5	PgDi	n K1	КЗ	F10	K4	K2	K8		K7		K0	PK	PrtScr	F11	F12	End
7		Q	E		R	W	I		U		Р	0	ScrLk			

*Note:

Fn + LCtrl = RCtrl

KEYBOARD LAYOUT FOR FUJITSU FKB7316-001 (URHCFJL-16)

KEY MAP FOR FUJITSU FKB1406 (UR5HCFJL-06)

								Column	is (CO-C	13)					
		0	1	2	3	4	5	6	7	8	9	10	11	12	13
	0														
	1	LAIt	` (BkQt)		LCtrl	FN	Esc	1	2	9/Pad 9	0/ Pad *	- (dash)	=		BkSpc
	Fn	RAIt			RCtrl			F1	F2	F9	F10	NmLk	BkSp		
	2		\	LShift			Del		T	Υ	U/Pad 4	I/Pad5	Enter	RShift	DArw
_	Fn														PgDn
-R7)	3		TAB				Q	W	Е	R	O/Pad 6	P/Pad -	[]
Ģ	Fn											Ins	Pause		ScrLk
(R0	4		Z				CapLk			K/Pad 2	L/Pad 3	;/Pad +	, (appos))	UArw
S	Fn											PrtScr	SysReq		PgUp
Rows	5		Α				S	D	F	G	Н	J/Pad 1	//Pad /		LArw
Œ	Fn														Home
	6		Х				С	V	В	N	M/Pad 0	, (com)	. (per)		Space
	7	-					3	4	5	6	7/Pad 7	8/Pad 8			RArw
	Fn						F3	F4	F5	F6	F7	F8	Prog		End

Note: The values obtained when the Fn key is held down are shown in the lines maked "Fn" in the table above.

KEY LAYOUT FOR FUJITSU FKB1406 (UR5HCFJL-06)

KEY MAP FOR THE GREENCODER™ UR5HCFJL-7654

					Rows	(R0-R7)		
	0	1	2	3	4	5	6	7
0								FN
1						LWin		
2	Tab	CapsLk	1	S	Z	А	Q	Esc
3					RAlt			LAIt
4	F1	F2	F3	Е	D	W	2	X
5	8/ <i>N8</i>	9/ <i>N</i> 9	I/N5	,	Space	K/N2	U/ <i>N4</i>	M/NO
6	F6	3	4	F	С	R	5	F4
7	F9	F5	6	V	В	G	Т	F7
8	F10	F11	F8	N	Н	Υ	7/N7	J/N1
9	F12	0/ <i>N</i> *	O/ <i>N6</i>	./N.			L/N3	NumLk/ FScrlLk
10	Pause	=]	\			[`
11	BkSp	DnArr/ FPgDn	UpArr/ FPgUp	í	WinApp	Enter		Ins/ FPrtScr
12				RWin				
13	RArr/ FEnd	LArr/ FHome	Del/ FSysReq	/ / N/		;/N+	P/N-	-
14		LCtrl					RCtrl	
15	LShft		RShft					
	Num C	ase.						ol, indicates that key in cates that key in Func

KEYBOARD LAYOUT FOR THE FUJITSU FKB7654 (UR5HCFJL-7654)

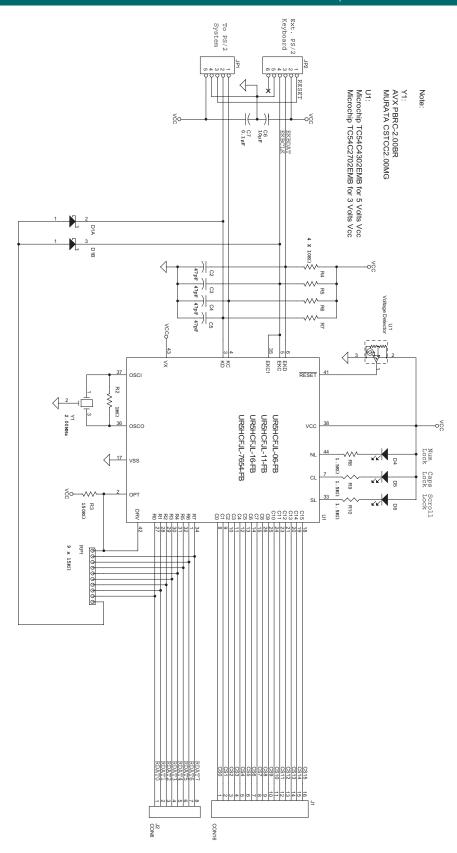
IMPLEMENTATION NOTES FOR THE GREENCODER™ UR5HCFJL

The following notes pertain to the suggested schematics found on the next pages.

The built-in oscillator on the GreenCoder™ requires the attachment of a 2.00 MHz ceramic resonators with built-in load capacitors. You can use either an AVX, part number PBRC-2.00 BR; or a Murata part number CSTCC2.00MG ceramic resonator.

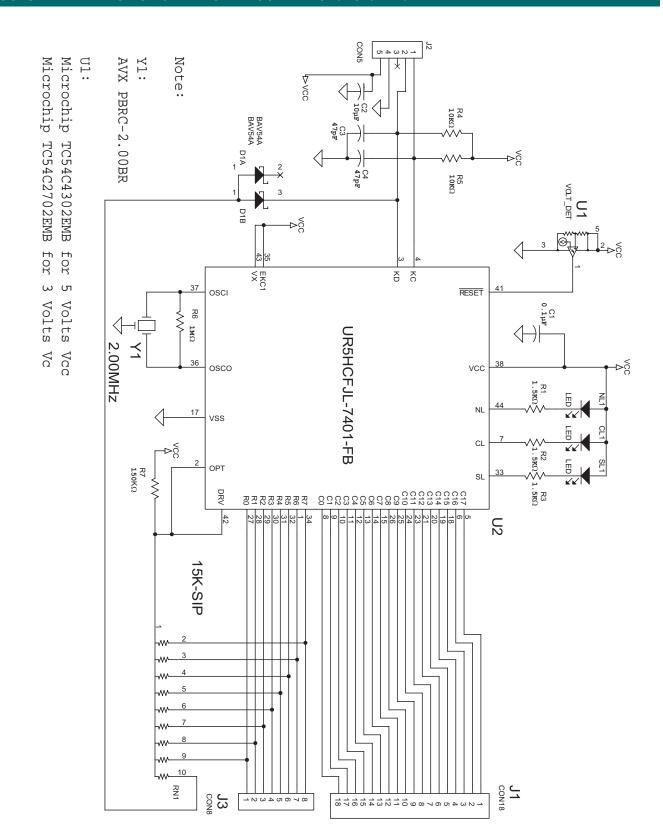
It may also be possible to operate with the 2.00 MHz crystal, albeit with reduced performance. Due to their high Q, the crystal oscillator circuits start-up slowly. Since the GreenCoder™ constantly switches the clock on and off, it is important that the ceramic resonator is used (it starts up much quicker than the crystal). Resonators are also less expensive than crystals.

Also, if crystal is attached, two load capacitors (33pF to 47pF) should be added, a capacitor between each side of the crystal and ground.

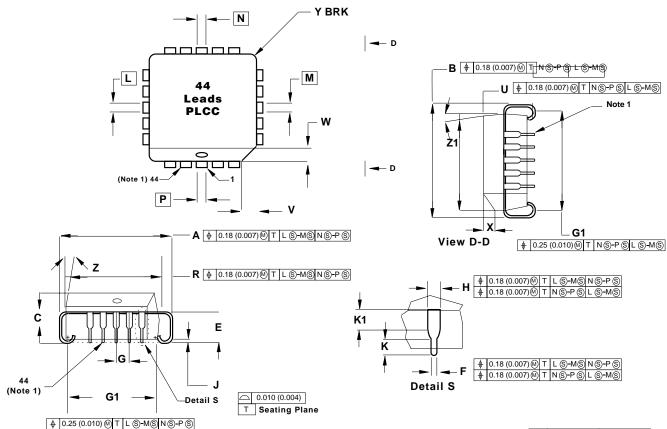

In both cases, using ceramic resonator with built-in load capacitors, or crystal with external load capacitors, a feedback resistor of 1 MegaOhm should be connected between OSCI and OSCO.

Troubleshoot the circuit by looking at the output pin of the oscillator. If the voltage it half-way between supply and ground (while the oscillator should be running), the problem is with the load caps / crystal. If the voltage it all the way at supply or ground (while the oscillator should be running), there are shorts on the PCB.

Note: when the oscillator is intentionally turned OFF, the voltage on the output pin of the oscillator is high (at the supply rail).



SUGGESTED INTERFACING FOR THE GREENCODER™ UR5HCFJL-xx-FB (NOT UR5HCFJL-7401-FB)



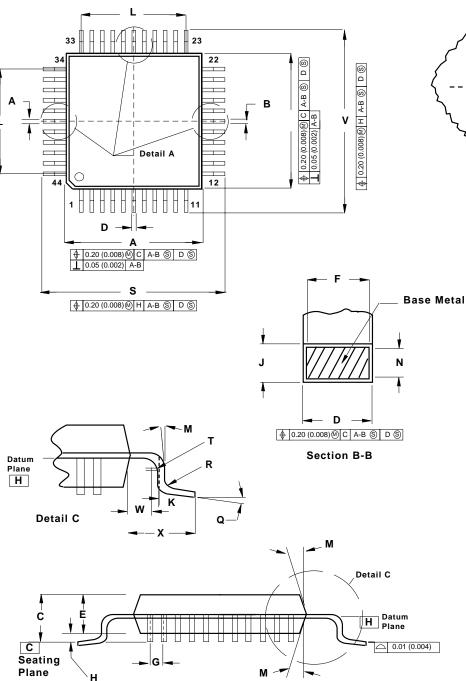
SUGGESTED INTERFACING FOR THE GREENCODER™ UR5HCFJL-7401-FB

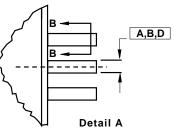
MECHANICALS FOR THE UR5HCFJL-FN

Notes:

- 1. Due to space limitation, the chip is represented by a general (smaller) case outline drawing rather than
- showing all 44 leads.

 2. Datums L, M, N, and P determine where the top of the lead shoulder exits plastic
- body at mold parting line


 3. DIM G1, true position to be measured at Datum T, Seating Plane
 4. DIM R and U do not include mold protusion. Allowable mold protusion is 0.25 (0.010) per side.


 5. Dimensioning and tolerancing per Apsi
- Dimensioning and tolerancing per Ansi Y14.5M, 1982
- 6. Controlling dimension: Inch

	MILLIM	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
Α	17.40	17.65	0.685	0.695
В	17.40	17.65	0.685	0.695
С	4.20	4.57	0.165	0.180
Е	2.29	2.79	0.090	0.110
F	0.33	0.48	0.013	0.019
G	1.27	BSC	0.050) BSC
Η	0.66	0.81	0.026	0.032
J	0.51	-	0.020	-
K	0.64	-	0.025	
R	16.51	16.66	0.650	0.656
U	16.51	16.66	0.650	0.656
٧	1.07	1.21	0.042	0.048
W	1.07	1.21	0.042	0.048
Χ	1.07	1.42	0.042	0.056
Υ	-	0.50	1	0.020
Ζ	2 °	10 °	2 °	10 ∘
G1	15.50	16.00	0.610	0.630
K1	1.02	-	0.040	-
Z1	2 °	10 °	2	10 °

MECHANICALS FOR THE UR5HCFJL-FB

Notes

- 1. Dimensioning and tolerancing per Ansi Y14.5-M, 1982
- 2. Controlling dimension: Millimeter
 3. Datum Plane "H" is located at the bottom of the lead and is coincident with the lead where the lead exits the plastic body at the bottom of the
- parting line.

 4. Datums -A-, -B-, and -D- to be determined at Datum Plane -H-.
- at Datum Plane -H-.

 5. Dimensions S and V to be determined at seating plane -C-.

 6. Dimensions A and B do not include Mold protusion. Allowable protusion is 0.25 (0.010) per side. Dimensions A and B do include mold mismatch and are determined at Datum Plane -H-.

 7. Dimension D does not include Danbar protrusion. Allowable Danbar protrusion is 0.08 (0.003) total in excess of the D dimension.
- excess of the D dimension at Maximum Material Condition. Danbar cannot be located on the lower radius or the foot.

	MILLIM	ETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	9.90	10.10	0.390	0.398		
В	9.90	10.10	0.390	0.398		
С	2.10	2.45	0.083	0.096		
D	0.30	0.45	0.012	0.018		
Е	2.00	2.10	0.079	0.083		
F	0.30	0.40	0.012	0.016		
G	0.80	BSC	0.03	1 BSC		
Н	-	0.25	-	0.010		
J	0.13	0.23	0.005	0.009		
K	0.65	0.95	0.026	0.037		
L	8.00	REF	0.315 REF			
М	5 °	10°	5°	10°		
N	0.13	0.17	0.005	0.007		
Q	0 °	7 º	0 0	7 °		
R	0.13	.30	0.005	0.012		
S	12.95	13.45	0.510	0.530		
Т	0.13	-	0.005	_		
U	0 0	-	0 0	-		
V	12.95	13.45	0.510	0.530		
W	0.40	_	0.016			
Χ	1.6 F	REF	0.06	3 REF		

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Ratings	Symbol	Value	Unit
Supply Voltage	Vdd	-0.3 to +7.0	V
Input Voltage	Vin	Vss -0.3 to Vdd +0.3	V
Current Drain per Pin	1	25	mA
(not including Vss or Vdd)			
Operating Temperature	TA	T low to T high	°C
UR5HCFJL-xx		-40 to +85	
Storage Temperature Range	Tstg	-65 to +150	°C
ESD rating (human body model)	VESD	TBD	KV

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance			
■ Plastic PLCC	Tja	70	°C per W

DC Electrical Characteristics (Vdd=5.0 Vdc +/-10%, Vss=0 Vdc, Temperature range=T low to T high unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (I load<10μA)	Vol			0.1	V
	Voh	Vdd-0.1			
Output High Voltage (I load=0.8mA)	Voh	Vdd-0.8			V
Output Low Voltage (I load=1.6mA)	Vol			0.4	V
Input High Voltage	Vih	0.7xVdd		Vdd	V
Input Low Voltage	Vil	Vss		0.2xVdd	V
User Mode Current	Ipp		5	3.5	mA
Data Retention Mode (0 to 70°C)	Vrm	2.0			V
Supply Current*	ldd				
■ Run			2.5	3.5	mA
■ Wait			0.8	1.5	mA
■ Start			2.0	50	μΑ
I/O Ports Hi-Z Leakage Current	lil			+/-10	μΑ
Input Current	lin			+/- 1	μΑ
I/O Port Capacitance	Cio		8	12	pF

^{*}In a typical application circuit, including external A/D.

Control Timing (Vdd=5.0 Vdc +/-10%, Vss=0 Vdc, Temperature range=T low to T high unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Frequency of operation				
■ Crystal option	fosc		2.0	MHz
■ External clock option	fosc	dc	2.0	MHz
Internal operating frequency				
■Crystal (fosc/2)	fop		1.0	MHz
■External clock option (fosc/2)	fop	dc	1.0	MHz
Cycle time	tcyc	1000		ns
Crystal oscillator startup time	toxov		100	ms
Stop recovery startup time	tiLCH		100	ms
Reset pulse width	trl	8		tcyc
Interrupt pulse width low	tliH	125		ns
Interrupt pulse period	tiLIL	*		tcyc
Oscillator input (OSCI) pulse width	toh, tol	90		ns

^{*}The minimum period till should not be less than the number of cycle times it takes to execute the interrupt service routine plus 21 tcyc.

This Page Left Intentionally Blank

For sales information and product literature, contact:

Semtech Corporation
Human Interface Device (HID) and
System Management Division
200 Flynn Road
Camarillo, CA 93012-8790
sales@semtech.com

http://www.semtech.com/

(805)498-2111 Telephone (805)498-3804 Fax

Copyright ©1997-2002 Semtech Corporation. All rights reserved. Semtech and KeyCoder are registered trademarks of Semtech Corporation. GreenCoder and Self-Power Management are trademarks of Semtech Corporation. All other trademarks belong to their respective companies.

INTELLECTUAL PROPERTY DISCLAIMER

This specification is provided "as is" with no warranties whatsoever including any warranty of merchantability, fitness for any praticular purpose, or any warranty otherwise arising out of any proposal, specification or sample. A license is hereby granted to reproduce and distribute this specification for internal use only. No other license, expressed or implied to any other intellectual property rights is granted or intended hereby. Authors of this specification disclaim any liability, including liability for infringement of proprietary rights, relating to the implementation of information in this specification. Authors of this specification also do not warrant or represent that such implementation(s) will not infringe such rights.