

PRELIMINARY DATA-SHEET

UGF19090

90W, 1.9 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

Designed for PCS base station applications in the frequency band 1.93 to 1.99 GHz. Rated with a minimum output power of 90W, it is ideal for CDMA, TDMA, WCDMA, GSM, and Multi-Carrier Power Amplifiers in Class AB operation.

- ALL GOLD metal system for highest reliability
- Industry standard package
- Suggested alternative to the MRF19090
- Internally matched for repeatable manufacturing
- High gain, high efficiency and high linearity

Package Type 440158

Application Specific Performance, 1.99 GHz

GSM: 80 Watts 12 dB

EDGE: 35 Watts 12 dB

IS95 CDMA: 10 Watts 12 dB

CDMA2000: TBD Watts 12 dB

Package Type 44 0164

• Typical CDMA Performance (IS-97)

Average Load Power – 9 W

PAE - 16%

Power Gain - 12 dB

ACPR -45dBc @ 885kHz (30kHz BW)

-55dBc @ 1.25MHz (12.5kHz BW)

-55dBc @ 2.25MHz (1MHz BW)

Rev 1. UGF19090

PRELIMINARY DATA-SHEET

Maximum Ratings

Rating	Symbol	Value	Unit
Drain to Source Voltage, Gate connected to Source	V_{DSS}	65	Volts
Gate to Source Voltage	V_{GSS}	+15 to5	Volts
Total Device Dissipation @ Tcase = 70°C Derate above 70°C	P _D		Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

Thermal Characteristics

Characteristic	Symbol	Typical	Unit
Thermal Resistance, Junction to Case	$\Theta_{\sf JC}$		°C/W

Electrical DC Characteristics (*Tc*=25C unless otherwise specified)

Rating	Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Voltage	BV _{DSS}	65	-	-	Volts
$(V_{GS}=0, I_D=1mA)$					
Drain to Source Leakage current	I _{DSS}	-	-	1.0	mA
$(V_{DS}=26V, V_{GS}=0)$					
Gate to Source Leakage current	I_{GSS}	-	-	1.0	μΑ
$(V_{GS}=15V, V_{DS}=0)$					
Threshold Voltage	$V_{GS(th)}$	-	3.5	-	Volts
$(V_{DS}=10V, I_{D}=1mA)$	` '				
Gate Quiescent Voltage	$V_{GS(Q)}$	3.0	4.0	6.0	Volts
$(V_{DS}=26 \text{ V}, I_{D}=900\text{mÅ})$					
Drain to Source On Voltage	$V_{DS(on)}$	-	.1	-	Volts
$(V_{GS}=10V, I_{D}=2A)$, ,				
Forward Transconductance	Gm			-	S
$(V_{DS}=10V, I_{D}=5A)$					

AC Characteristics (*Tc*=25C unless otherwise specified)

Rating	Symbol	Min	Тур	Max	Unit
Output capacitance * (V _{DS} = 26V, V _{GS} =0V, f = 1MHz)	C _{oss}	-		-	pF
Feedback capacitance * (V _{DS} =26V, V _{GS} =0V, f = 1MHz)	C _{rss}	-		-	pF

^{*} Part is internally matched on input.

Rev 1. UGF19090

PRELIMINARY DATA-SHEET

RF and Functional Tests (In UltraRF Broadband Fixture, Tc=25°C unless otherwise specified)

Rating	Symbol	Min	Тур	Max	Unit
CW Small Signal Gain, Pout=15W	G_L		12		dB
V_{DD} =26V, I_{DQ} =900mA					
CW Power Gain, $P_{out} = 90 \text{ W}$ $V_{DD}=26\text{V}$, $I_{DQ}=900\text{mA}$	G_{P}		11	-	dB
CW Drain Efficiency, $P_{out} = 90 \text{ W}$, $f=1960 \text{ MHz}$, $V_{DD}=26 \text{V}$, $I_{DQ}=900 \text{mA}$,	η_{D}		44		%
Two-Tone Common-Source Amplifier Power Gain V_{DD} =26V, I_{DQ} =900mA, P_{out} = 90 W PEP f_1 =1960 MHz and f_2 =1960.1 MHz	G _{TT}		12	_	dB
Two-Tone Intermodulation Distortion V_{DD} =26V, I_{DQ} =900mA, P_{out} = 90 W PEP f_1 =1960 MHz and f_2 =1960.1 MHz	I _{MD}		-27		dBc
Two-Tone Drain Efficiency V_{DD} =26V, I_{DQ} =900mA, P_{out} = 90 W PEP f_1 =1960 MHz and f_2 =1960.1 MHz	$\eta_{ extsf{D2T}}$		38	_	%
Input Return Loss V_{DD} =26V, P_{out} = 90 W PEP, I_{DQ} =900mA f_1 =1930 MHz and 1990 MHz, Tone Spacing = 100kHz	IRL	_	10		dB
Load Mismatch Tolerance V _{DS} =26V, I _{DQ} = 900 mA, Pout=90W, f=1990 MHz	VSWR	10:1	_	_	

Note: This transistor has been designed to work in the Motorola MRF19090 test fixture. Performance has been verified within that fixture.

CAUTION - MOS Devices are susceptible to damage from ElectroStatic Discharge (ESD). Appropriate precautions in handling, packaging and testing MOS devices must be observed.

Rev 1. UGF19090