# REVERSIBLE MOTOR DRIVER ### **DESCRIPTION** The UTC A9287 is a reversible-motor driver with a maximum output current of 1.0A.Two logic inputs allow four output modes:forward,reverse,stop(iding),and brake.A built-in power saving circuit suppresses current consumption when the motor is in stop mode. ### **FEATURES** - \*Built-in power saving circuit suppresses the stop mode current dissipation. - \*Output voltage can be set arbitrarily with the VREF Pin. - \*Interfaces with TTL devices. - \*Built-in thermal shutdown circuit. VCRs and audio equipment in general # ABSOLUTE MAXIMUM RATINGS (Ta=25℃) | PARAMETER | SYMBOL | LIMITS | UNIT | |-----------------------|--------|--------------------|------| | Power supply voltage | Vcc | 18 | V | | Power dissipation | Pd | 650 <sup>*1</sup> | mW | | Operating temperature | Topr | -20∼ <b>+</b> 75 | °C | | Storage temperature | Tstg | -55∼+150 | °C | | Output current | Іомах. | 1000 <sup>*2</sup> | mA | <sup>\*</sup>When mounted on a glass epoxy board( $50 \times 50 \times 1.6$ mm) # RECOMMENDED OPERATING CONDITIONS(Ta=25°C) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | |---------------------------------------|--------|-----|-----|-----|------| | Power supply voltage | Vcc | 4.5 | | 15 | V | | Motor power supply voltage | VM | 4.5 | | 15 | V | | Output high level voltage setting pin | VREF | 4.5 | | 15 | VV | <sup>\*2</sup> Should not exceed Pd or ASO values. # **BLOCK DIAGRAM** # PIN DESCRIPTIONS | – – – • | | | | |---------|----------|-----------------------------------|--| | PIN NO. | PIN NAME | FUNCTION | | | 1 | OUT1 | Motor output | | | 2 | VM | Motor power supply | | | 3 | Vcc | Power supply | | | 4 | Fin | Logic input | | | 5 | Rin | Logic input | | | 6 | VREF | HIGH level output voltage setting | | | 7 | OUT2 | Motor output | | | 8 | GND | GND | | # INPUT/OUTPUT CIRCUITS UTC UNISONIC TECHNOLOGIES CO. LTD 2 #### ELECTRICAL CHARACTERISTICS(unless otherwise noted.Ta=25°C.Vcc=9V,Vm=9V,VREF=9V) | PARAMETER | SYMBOL | TEST CONDITIONS | | TYP | MAX | UNIT | |---------------------------|--------|-----------------------------------------------------|-----|-----|-----|---------| | Supply current1 | Icc1 | Forward or reverse mode | | 24 | 36 | mA | | Supply current2 | Icc2 | Brake mode | | 48 | 67 | mA | | Standby supply current | ls⊤ | Standby mode | | | 15 | $\mu$ A | | VREF pin sink current | IREF | Forward or reverse mode Io=200mA | | 12 | 18 | mA | | Input high level voltage | ViH | | 2.0 | | | V | | Input low level voltage | VIL | | | | 0.8 | V | | Input high level current | Iн | VIN=2.0V | 45 | 90 | 135 | $\mu$ A | | Output saturation voltage | | lo=200mA | | | | | | | VCE | Sum of output transistor high-and low-side voltages | | 1.0 | 1.5 | V | #### **CIRCUIT OPERATION** #### (1) Input section The four output modes are controlled by two logic inputs. Current flows from OUT1 to OUT2 when Fin is HIGH and RIN is LOW, and from OUT2 to OUT1 when RIN is HIGH and FIN is LOW(refer to the truth table). The input circuit can be operated by a logic circuit with a current capacity of 120 $\!\sim\!$ 170 $\mu$ A. ### Input/output truth table | Fin | RIN | OUT1 | OUT2 | MODE | |-----|-----|------|------|---------| | Н | L | Η | L | Forward | | L | Ι | L | Н | Reverse | | Н | Н | L | L | Brake | | L | L | OPEN | OPEN | Standby | # (2) Output section Current flows OUT1 to OUT2 during forward rotation, and from OUT2 to OUT1 during reverse rotation. The output voltages Voh and Vol are given by: VOH [V] =VREF-VCE(sat)(PNP)-VBE(NPN) Voh [V] = VcE(sat)(NPN) VcE and VBE are functions of the output current (see electrical characteristic curves). The output current can be set with the VREF pin. #### (3) Power saving circuit All circuits are turned OFF when the FIN and RIN input pins are both put to LOW level . This circuit saves power during standby mode by leaving the outputs OPEN. #### (4) Thermal shutdown circuit When the thermal shutdown circuit is activated at the chip temperature of about 175°C (typical),the outputs are left OPEN.The temperature difference between the activation and deactivation settings is about 15℃,When the thermal shutdown circuit is deactivated.the outputs revert to the status determined by input mode. #### APPLICATION EXAMPLE # **OPERATION NOTES** - (1) The quality of these products have been carefully checked; however, use of the products with applied voltages , operating temperatures, or other parameters that exceed the absolute maximum rating given may result in the damage of the IC and the product it is used in .If the IC is damaged , the short mode and open modes cannot be specified, so if the IC is to be used in applications where parameters may exceed the absolute maximum ratings, then be sure to incorporate fuses, or other physical safety measures. - (2) GND potential - The potential for pin1 must be kept lower than the potentials of the other pins regardless of the circumstances. - (3) Input pins Voltage should never be applied to the input pnins when the Vcc voltage is not applied to the IC.Similarly, when Vcc is applied, the voltage on each input pin should be less than Vcc and within the guaranteed range for the electrical characteristics. - (4) Back-rush voltage Depending on the ambient conditions,environment,or motor characteristics,the back-rush voltage may fluctuate.Be sure to confirm that the back-rush voltage will not adversely affect the operation of the IC. - (5) Large current line # UTC UNISONIC TECHNOLOGIES CO. LTD 4 # **UTC A9287** Large currents are carried by the motor power suply and motor ground for these lcs. Therefore, the layout of the pattern of the PC board and the constants of certain parameters for external components, such as the capacitor between the power supply and ground, may cause this large output current to flow back to the input pins, resulting in output oscillation or other malfunctions. To prevent this, make sure that the PC board layout and external circuit constants cause no problems with the characteristics of these Ics. - (6) Power dissipation - The power dissipation will fluctuate depending on the mounting conditions of the IC and the ambient environment. Make sure to carefully check the thermal design of the application where these Ics will be used. - (7) Power consumption - The power consumption by the IC varies widely with the power supply voltage and the output current. Give full consideration to the power dissipation rating and the thermal resistance data and transient thermal resistance data,to provide a thermal design so that none of the ratings for the IC are exceeded. - (8) ASO - Make sure that the output current and supply voltage do not exceed the ASO values. - Precaution for input mode switching - To ensure reliability, it is recommended that the mode switching for the motor pass once thrugh the open mode. - (10) In-rush current - There are no circuits built into these Ics that prevent inrush currents. Therefore, it is recommended to place a current limiting resistor or other physical countermeasure. - (11) Factors regarding the thermal, power supply, and motor conditions - If the potential of the output pin sways greatly and goes below the potential of ground, the operation of the IC may malfunction or be adversely affected. In such a case, place a diode between the output and ground, or other measure,to prevent this. - (12) HIGH level output voltage setting pin - Ensure that the voltage applied to VREF does not exceed the voltage on the motor power supply pin or the Vcc - (13) The input pins have temperature-dependent characteristics. Take the temperature effect into consideration when using the IC. - (14) To eliminate motor noise, connect a capacitor between OUT1 and GND and between OUT2 and GND.Alternatively,connect a capacitor between OUT1 and OUT2, and also a diode between OUT1 and GND and between OUT2 and GND(see Fig.2). Fig. 2 ### **ELECTRICAL CHARACTERISTIC CURVES** Fig.3 Thermal derating Fig.4 Supply current vs. power supply voltage Fig.5 Output high level voltage vs. output current Fig.6 Output low level voltage vs. output current Fig.7 VREF reference current vs. VREF reference voltage Fig.8 VREF-VOH voltage vs. VREF reference voltage UNISONIC TECHNOLOGIES CO. LTD 6