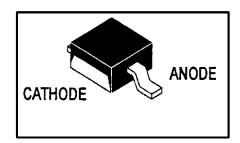


580 Pleasant St. Watertown, MA 02472 PH: (617) 926-0404 FAX: (617) 924-1235

UPS120

SURFACE MOUNT 1A SCHOTTKY RECTIFIER POWERMITEO Power Surface Mount Package


Features:

- Low Profile -- Maximum Height of 1.1 mm
- Small Footprint -- Footprint Area of 8.45 mm²
- Low V_F Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel -- 12,000 Units per Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

Mechanical Characteristics:

- Powermite is JEDEC Registered as DO-216AA
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 62 mg (appoximately)
- Device Marking: S20
- Lead and Mounting Surface Temperature for Soldering Purposes,
- 260°C Maximum for 10 Seconds

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

Description:

The UPS120 Powermite Schottky rectifier is designed to offer optimized forward voltage characteristics for battery powered portable products such as cellular and cordless phones, chargers, notebook computers, printers, PDA's and PCMCIA cards. Typical applications include ac/dc and dc-dc converters, reverse battery protection and "Oring" of multiple supply voltages.

The Powermite's patented heat sink design offers the same thermal performance rating as an SMA while being 50% smaller in footprint area and less than 1 mm in overall height. The result is a unique, highly efficient Schottky rectifier in a space saving surface mount package.

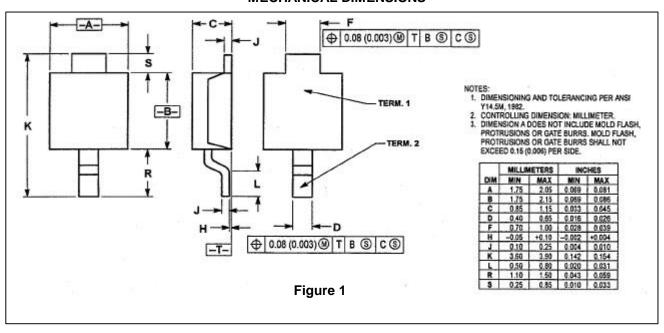
Maximum Ratings

RATING	SYMBOL	VALUE	UNIT
Peak Repetitive Reverse Voltage	V_{RRM}	20	V
Working Peak Reverse Voltage	V_{RWM}		
DC Blocking Voltage	V_{R}		
Average Rectified Forward Current (At Rated V _R , T _C = 135°C)	lo	1.0	Α
Peak Repetitive Forward Current		2.0	Α
(At Rated V _R , Square Wave, 100 KHz, T _C = 135°C	IFRM		
Non-Repetitive Peak Surge Current		50	Α
(Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	FSM	30	
Storage / Operating Case Temperature	T_{stg},T_{C}	-55 to 150	°C
Operating Junction Temperature	Τ _J	-55 to 125	ç
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/ms

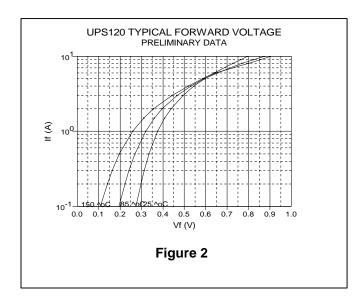
Thermal Characteristics

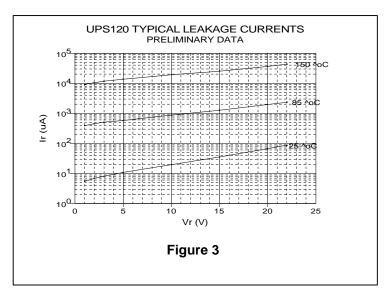
Thermal Resistance - Junction-to-Lead (Anode) (1)	Rtji	35	°C/W
Thermal Resistance - Junction-to-Tab (Cathode) (1)	Rtitab	15	
Thermal Resistance - Junction-to-Ambient (1)	Rtja	248	

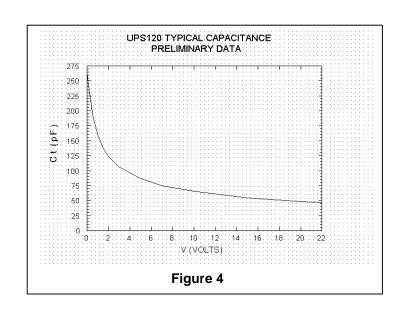
(1) Pulse Test: Pulse Width £250 $m\!s$, Duty Cycle £2%.

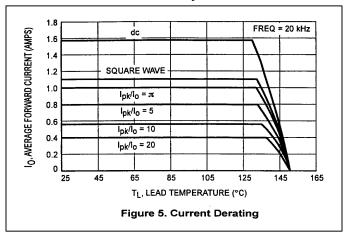


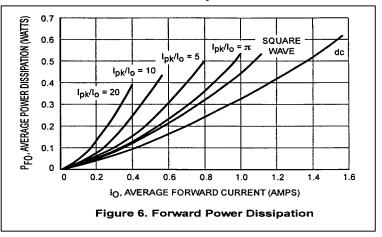
Electrical Characteristics

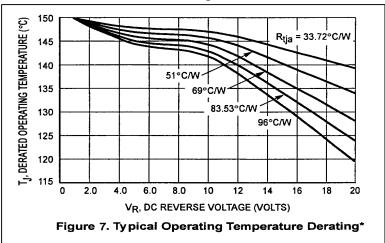

Maximum Instantaneous Forward Voltage (1), See Figure 2	V_{F}	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 A)$		0.34	0.25	
$(I_F = 1.0 \text{ A})$		0.45	0.415	
$(I_F = 3.0 \text{ A})$		0.65	0.67	
Maximum Instantaneous Reverse Current, See Figure 4	I _R	T _J = 25°C	T _J = 85°C	mA
$(V_R = 20 \text{ V})$		0.40	25	
$(V_R = 10 \text{ V})$		0.10	18	


⁽¹⁾ Pulse Test: Pulse Width £250 ms, Duty Cycle £2%.


MECHANICAL DIMENSIONS



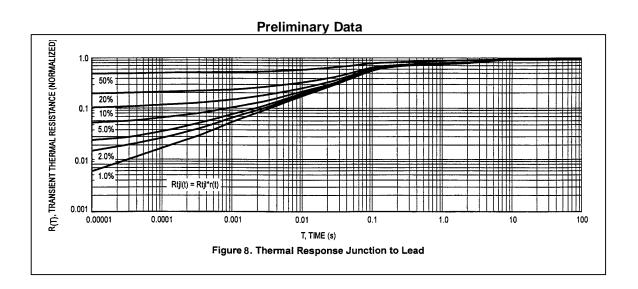


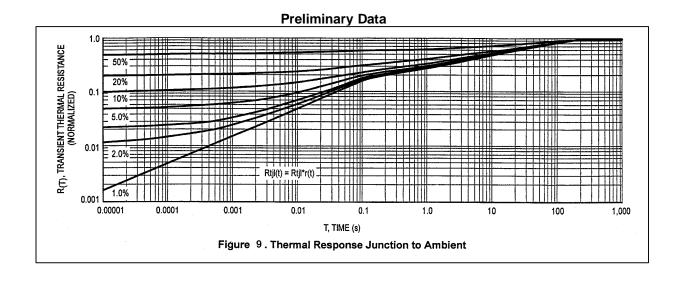

Preliminary Data

Preliminary Data

Preliminary Data

^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} = r(t)(Pf + Pr)$ where


r(t) = thermal impedance under given conditions.


Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{J \text{ max}} - r(t)Pr$, Where r(t) = Rthja. For other power applications further calculations must be performed.

