

CB-C8VX/VM 3-Volt, 0.5-Micron Cell-Based CMOS ASIC

Preliminary April 1996

Description

NEC's CB-C8VX/VM CMOS cell-based ASIC family facilitates the design of complete cell-based silicon systems composed of user-defined logic, complex macrofunctions such as microprocessors, intelligent peripherals, analog functions, and compiled memory blocks.

The CB-C8VX cell-based ASIC series employs a 0.5-micron (0.35-micron effective) silicon gate CMOS process with silicidation. This advanced process greatly reduces the number of contacts per cell, leading to areaefficient library elements optimized on speed with a 3.3-volt power supply. CB-C8VM, a derivative of CB-C8VX, features a unique I/O structure that provides a full 5-volt CMOS interface. For both technologies, the Titanium-Silicide process results in overall reduced power consumption per cell. Combining very high integration, high speed, and low power consumption, this technology meets today's rigorous application demands.

Fully supported by NEC's sophisticated OpenCAD® design framework, CB-C8VX/VM maximizes design quality and flexibility while minimizing ASIC design time. NEC's OpenCAD system combines popular third-party design tools with proprietary NEC tools, including advanced floorplanner and clock tree synthesis tools.

Figure 1. BGA Package Examples

Full 5-Volt CMOS Interface

CB-C8VM offers a full voltage swing interface to a 5-volt CMOS signal environment. This option is realized by implementing a section of thicker gate oxide into the I/O buffer to guarantee the necessary breakdown voltages. The 5-volt I/O buffers can be placed at any location of the I/O area and are freely mixable with 3.3-volt buffers. The internal core is identical to CB-C8VX.

Table 1. CB-C8VX/VM Series Features and Benefits

CB-C8VX/VM Series Features	CB-C8VX/VM Series Benefits
0.5-micron (drawn), Ti-Silicide CMOS technology	High-density cell structure
True 3.3 V process	High speed at low power supply
36 base sizes, each with 2- and 3-metal layer options	Flexible base sizes to best fit design needs
Usable gates from 14K to 703K gates	High integration capabilities
True 5 V CMOS interface by multi-oxide I/O structure	Supports flexible interfacing to different signal voltages
Staggered pad ring for high gate-to-pad ratio	Minimizes device cost for high I/O requirement
5 V and 3.3 V PCI buffer, including 66-MHz PCI	Full PCI support compliant with latest PCI specification
GTL and HSTL buffer in development	High-speed I/F to memory and processor buses
Low power dissipation: 1.04 mW/MHz/gate (3.3 V)	Ideally-suited for hand-held applications
Extensive macro range (CPUs, peripherals, analog)	Advanced system-on-silicon capabilities
Memory compiler for various types of memory blocks	Area-effective memory integration on chip
Extensive package support: PQFP, TQFP, BGA, TBGA	Delivers the latest package requirements
Automatic clock skew control by clock tree synthesis	Minimizes on-chip clock skew
OpenCAD: popular, third-party CAE tools supported	Smooth design flow from customer design to silicon

5-Volt-Tolerant Interface

CB-C8VX supports both 3.3-volt and 5-volt-tolerant signaling. The 5-volt-tolerant buffers enable CB-C8VX devices to communicate with 5-volt TTL signals while protecting the ASIC. CB-C8VX requires only a 3.3-volt power supply.

Integration and Performance

Gate complexities up to 703K usable gates can be integrated on the largest of 36 die sizes, each routable with 2- or 3-metal layers. This gives enough flexibility to optimally fit design needs. Twenty-two die sizes offer a single I/O pad ring and 14 are equipped with a staggered dual pad ring in order to achieve a high padto-gate ratio. For details, please refer to Table 2 and Table 3.

The family offers an extensive library of primitive macrofunctions characterized for 3.3-volt operation.

Table 2. CB-C8VX/VM Die Steps (124µ pad pitch)

Step	I/O	Max. Usable Gates ⁽¹⁾				
		2 Layer	3 Layer			
B18	88	13078	19617			
B57	104	18797	28195			
B97	120	25438	38156			
C37	136	33219	49828			
C76	152	42016	63023			
D16	168	51703	77555			
D55	184	62547	93820			
D75	192	67969	101953			
E15	208	80484	120727			
E54	224	93875	140813			
E94	240	106000	159000			
F34	256	120969	181453			
F74	272	136641	204961			
G14	288	153500	230250			
G53	304	171234	256852			
G93	320	183078	274617			
H33	336	202328	303492			
H72	352	222219	333328			
J32	376	254094	381141			
J71	392	275813	413719			
K11	408	298797	448195			
K90	440	347031	520547			

Single pad ring die steps.

(1) Glue logic only, with average utilization.

Each of these blocks has several different drive strengths, allowing the synthesis tool to select the most suitable block for the required internal load. This generally reduces the design overhead without influencing design performance. The internal gate delay for a two-input NAND gate is 110 picoseconds (ps), (F/O=1, L=0mm) and 220 ps under loaded conditions (F/O=2, L=2mm).

To meet today's high-speed demands, high-performance I/O macros are mandatory. CB-C8VX/VM supports macros such as GTL and HSTL for fast, low-power data transfer, PLLs to synchronize on-chip system clocks, and PCI signaling standards. Also, CB-C8VX/VM offers a variety of macrofunctions to be incorporated on a single chip. These macrofunctions include CPU cores, peripheral devices, RAM/ROM and analog functions, enabling designers to create systems on silicon.

Low Power Consumption

NEC's CB-C8VX/VM Ti-Silicide process features exceptionally low power dissipation to facilitate high-speed operation without the need of costly package options, and drastically increases battery life for handheld applications. At 3.3-volts, power dissipation for internal cells is 1.04 $\mu W/gate/MHz.$

Table 3. CB-C8VX/VM Die Steps (80µ staggered pad pitch)

Step	I/O	Max. Usable Gates ⁽¹⁾			
		2 Layer	3 Layer		
B73T	148	18844	28266		
C37T	188	30250	45375		
C50T	196	32703	49055		
D01T	228	44000	66000		
D52T	260	57047	85570		
D90T	284	67797	101695		
E54T	324	88281	132422		
F18T	364	109125	163688		
F70T	396	128875	193313		
G34T	436	155297	232945		
H49T	508	202766	304148		
J51T	572	256047	384070		
K92T	660	337531	506297		
M97T	788	468984	703477		

Dual pad ring die steps.

(1) Glue logic only, with average utilization.

Multi-Voltage I/O Interface

For those systems not yet ready to migrate completely to 3.3-volts, CB-C8 has a full 5-volt CMOS interface available. Applying two additional process steps that realize a "multi-oxide" section in the I/O area, 5-volt speed and drive capabilities are available with the help of a separate 5-volt supply rail. The 5-volt I/O buffers include level shifters to convert the 5-volt signal levels to the internal core supply voltage of 3.3-volts. This CB-C8 derivative is called CB-C8VM and is, except for the different I/O structure, identical to CB-C8VX.

For moderate speed and driveable 5-volt I/O cell requirements, CB-C8VM's flexibility provides tolerant I/Os that safely interface to 5V devices using a single 3.3-volt power supply.

In both cases, the 3.3-volt and 5-volt interfaces can be mixed without restriction along the entire I/O ring.

	CB-C8VX	CB-C8VM
Device Names	μPD97xxx	μPD99xxx
Interface options	• true 3.3 V • 5 V tolerant	true 3.3 V5 V toleranttrue 5 V CMOS
Core voltage	3.3 V	3.3 V
I/O voltage	3.3 V	3.3 V and 5 V

System on Silicon

NEC offers a wide selection of CPU/MCU cores, industrystandard intelligent peripheral macros, and compilable RAM/ROM blocks as well as analog functions in hard macro form that can be integrated onto a single CB-C8VX/VM chip. Including such macrofunctions in an ASIC design makes it possible to achieve a high level of integration, performance, and system security.

The range of NEC's on-chip macrofunctions includes NEC's proprietary 32-bit V810™ RISC CPU, and an upgraded high-speed version of the popular 16-bit CPU V30HL™, called V30MX™, which operates at clock speeds of 33 MHz at 3.3-volts, and offers an improved 286-compatible address pipelining and uses a 24-bit address bus. Other specific cores can be implemented on request. For details about the full range of on-chip macrofunctions, refer to Table 4.

Embedded macrofunctions are easy to place, route, and simulate. Because these macros are derived from NEC's standard parts, they have fully characterized parameters and can be tested with standard test vectors to ensure full functionality and reliability.

NEC's test bus architecture allows complete system simulation, production testing of the internal circuits of the macrofunctions, and seamless embedded CPU core emulation. The CPU may be connected externally and can be replaced by an in-circuit emulator (ICE). All this is performed with only two dedicated test control pins.

Table 4. Macrofunction Range

Macro	Comparable Device	Description
NZ 70008H	μPD70008A	Z80™: 8-bit microprocessor (16 MHz)
NZ V30MX	μPD70108H	V30MX: 16-bit microprocessor (16-bit data bus, 33 MHz)
NZ V810	μPD70732	V810™: 32-bit RISC microprocessor (25 MHz)
NZ 71037H	μPD71037	Programmable DMA controller (4 channels, 20 MHz)
NZ 71051H	μPD71051	USART: serial data control (full-duplex Tx/Rx, 300kbit/s, 20 MHz)
NZ 71054H	μPD71054	Programmable timer/counter (16-bit, 3 counter, 6 modes, 20 MHz)
NZ 71055H	μPD71055	Programmable parallel interface (8-bit, 3 I/O ports, 3 modes)
NZ 71059H	μPD71059	Programmable interrupt control (64 interrupt request inputs)
NA 4993	μPD4993	8-bit parallel I/O real-time clock
NA 72065BL	μPD72065B	Single-double density floppy disk controller
NZ 72103	μPD72103	HDLC Controller: Full duplex, Baud rate 4 Mbps, built-in DMA
M I ² C™	_	I ² C Bus interface: receive, transmit, master and slave
NA 16450L	NS16C450	UART: for PC-compatible serial ports
NA 16550L	NS16550A	UART with FIFO: for PC-compatible serial ports

Z80 is a trademark of Zilog, Inc.

V30HL, V30MX and v810 are trademarks of NEC Corporation

I²C is a trademark of Philips

Memory Macros

All memory blocks in NEC's CB-C8VX/VM technology are realized as embedded hard macros and are generated by a memory compiler. To ease the task of RAM testing for the designer, NEC supplies standard test pattern sets, which help to save valuable development time. NEC offers seven different types of memory blocks, as shown in Table 5.

Packaging

NEC offers a wide variety of over 60 package types. The CB-C8VX/VM family can be packaged in NEC's most popular surface-mount and through-hole packages. These include plastic quad-flat packs (PQFPs) with up to 376 pins. The QFP range includes thin packages (TQFP, LQFP), QFPs with integrated heatspreader, and tape-automated-bonding QFPs (TAB-QFP) with up to 304 pins. Pin grid arrays (PGAs) with up to 528 pins, BGA packages with up to 672 pins, and TBGA packages with up to 696 pins can be used.

CB-C8VX/VM Applications

CB-C8VX/VM devices are targeted for 3.3-volt products in telecommunications, electronic data processing (EDP), and consumer applications. Typical telecommunications applications include cellular telephones, high-end pagers, and PCMCIA devices, as well as broad-band communication systems up to 156 Mbit/s. In the EDP segment, applications range from personal computers to high-end workstations and

mainframes, multimedia platforms, graphic accelerators, personal digital assistants (PDAs), notebook and pen-based devices, hand-held data terminals, and hard disk controllers. Consumer applications include games, video cameras, portable printers, and sophisticated calculators.

Each of these applications demands the benefits of increased integration and low power consumption that only a cell-based family using an optimized 3.3-volt process technology can deliver. CB-C8VX/VM provides the flexibility needed when a 3.3-volt process is required.

Design Tool Support

The CB-C8VX/VM family is fully supported by NEC's OpenCAD Design System, a unified front-to-back-end design package that allows designers to mix and match tools from the industry's most popular third-party vendors and from NEC's offering of powerful proprietary software tools. These tools perform schematic capture, logic synthesis, floorplanning, logic and timing simulation, layout, design and circuit rule check, and memory compilations.

The company's proprietary clock tree synthesis tool automatically buffers clock lines as needed to minimize clock skew, which is essential for half-micron designs. The nonlinear delay calculator ensures timing accuracy throughout the simulation, synthesis, and silicon stages. Finally, NEC's memory compiler software enables memory block generation based on size and performance requirements.

Table 5. Memory Blocks

Macro Type	Word Range	Bit Range	Step (Word / Bit)
ROM	128 - 8192	4 - 64	128 / 2
	256 - 16384	2 - 32	256 / 1
	512 - 32768	1 - 16	512 / 1
Low-power RAM, single-port	64 - 512	1 - 32	16 / 1
(asynchronous, bi-directional I/O)	128 - 1024	1 - 16	32 / 1
	256 - 2048	1 - 8	64 / 1
Low-power RAM, single-port	64 - 512	1 - 32	16 / 1
(synchronous, separate I/O)	128 - 1024	1 - 16	32 / 1
	256 - 2048	1 - 8	64 / 1
High-density RAM, single-port (synchronous, separate I/O)	128 - 2048	1 - 64	16 / 1
High-speed RAM, single-port (synchronous, separate I/O)	32 - 2048	1- 32	32 / 1
Register files, dual-port	8 - 256	4 - 32	4 / 1
Register files, triple-port	8 - 256	4 - 32	4 / 1

Absolute Maximum Ratings

Power supply voltage, V _{DD}	
3.3 V supply	–0.5 to +4.6 V
5 V supply	-0.5 to +6.0 V
I/O voltage, V _I /V _O	
3.3 V interface block	-0.5 to +4.6 V and (V _I /V _O < V _{DD} +0.5 V)
5 V-tolerant block	-0.5 to +6.6 V and (V _I /V _O < V _{DD} +3.0 V)
5 V swing block	-0.5 to +6.0 V and $(V_I/V_O < V_{DD} +0.5 V)$
Latch-up current, I _{LATCH}	>1 A (typ)
Operating temperature, T _{OP}	-40 to +85°C
Storage temperature, T _{STG}	−65 to +150°C

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance (V_{DD}=V_I=0 V; f=1 MHz)

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF

⁽¹⁾ Values include package pin capacitance

Power Consumption

Description	Limits	Unit
Internal gate ⁽¹⁾	1.04	μW/MHz
Input block	_	μW/MHz
Output block	_	μW/MHz

 $^{^{\}left(1\right) }$ Assumes 30% internal gate switching at one time

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Recommended Operating Conditions ($V_{DD} = 3.3 \text{ V} \pm 0.165 \text{ V}; V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}; T_J = -40 \text{ to } +125 ^{\circ}\text{C}$)

		3.3 V Interface Block		5 V Tolerant Block (CB-C8VX/VM)		5 V Swing CMOS Level (CB-C8VM)		5 V Swing TTL Level (CB-C8 VM)			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
I/O power supply voltage	V _{DD}	3.0	3.6	3.0	3.6	4.5	5.5	4.75	5.25	V	
Junction temperature	T _J	-40	+125	-40	+125	-40	+125	-40	+125	°C	
High-level input voltage	V _{IH}	2.0	V_{DD}	2.0	5.5	0.7 V _{DD}	V_{DD}	2.0	V_{DD}	V	
Low-level input voltage	V _{IL}	0	0.8	0	0.8	0	0.3 V _{DD}	0	0.8	V	
Positive trigger voltage	V _P	1.2	2.4	1.2	2.4	1.8	4.0	1.2	2.4	V	
Negative trigger voltage	V _N	0.6	1.8	0.6	1.8	0.6	3.1	0.6	1.8	V	
Hysteresis voltage	V _H	0.3	1.5	0.3	1.5	0.3	1.5	0.3	1.5	V	
Input rise/fall time	t _R , t _F	0	200	0	200	0	200	0	200	ns	
Input rise/fall time, Schmitt	t _R , t _F	0	10	0	10	0	10	0	10	ms	

AC Characteristics ($V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40 \text{ to } +125 ^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Toggle frequency	f _{TOG}		480		MHz	D-F/F; F/O = 2 mm
Delay time						
2-input NAND (F322)	t _{PD}		236		ps	F/O = 1; L = 0 mm
	t_{PD}		272		ps	F/O = 2; $L = typ$
Flip-flop (F661)	t _{PD}		777		ps	F/O = 1; $L = 0 mm$
	t _{PD}		865		ps	F/O = 2; $L = typ$
	t _{SETUP}		420		ps	_
	t _{HOLD}		580		ps	_
Input buffer (FI01)	t _{PD}		126		ps	F/O = 1; $L = 0 mm$
	t_{PD}		228		ps	F/O = 2; $L = typ$
Output buffer (9 mA) 3.3 V	t _{PD}		1.24		ns	C _L = 15 pF
Output buffer (9 mA) 5 V-tolerant	t _{PD}		4.262		ns	C _L = 15 pF
Output buffer (6 mA) 5 V-swing	t _{PD}		2.698		ns	C _L = 15 pF
Output rise time (9 mA)	t _R		1.88		ns	C _L = 15 pF
Output fall time (9 mA)	t _F		1.32		ns	C _L = 15 pF

DC Characteristics (V_{DD}= $3.3~V\pm0.3~V$, $5~V\pm0.5~V$; T_A = -40~to +125°C)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Static current consumption	Ι _L	$V_I = V_{DD}$ B18 to H33			200	μΑ
		or GND H72 to K90			300	μΑ
Off-state output current	l _{oz}	$V_O = V_{DD}$ or GND			±10	μΑ
Output short-circuit current	I _{OS}	V _O = 0V			-250	mA
Input leakage current	I _I					
Normal input		V _I = V _{DD} or GND		±10 ⁻⁵	±10	μΑ
With pull-up resistor (50 ký)		V _I = GND	-10	-40	-80	μA
With pull-up resistor (5 ký)		V _I = GND	-130	-350	-640	μA
With pull-down resistor (50 ký)		$V_I = V_{DD}$	10	65	130	μA
Low-level output current	I _{OL}					
3 V interface buffer		$V_{OL} = 0.4V$				mA
3 mA	I _{OL}		3			mA
6 mA	I _{OL}		6			mA
9 mA	I _{OL}		9			mA
12 mA	I _{OL}		12			mA
18 mA	I _{OL}		18			mA
24 mA	I _{OL}		24			mA
5 V-tolerant buffer		V _{OL} = 0.4V				mA
1 mA	I _{OL}		1			mA
2 mA	I _{OL}		2			mA
3 mA	I _{OL}		3			mA
6 mA	I _{OL}		6			mA
9 mA	I _{OL}		9			mA
5 V swing buffer		V _{OL} = 0.4V				mA
1 mA	I _{OL}		1			mA
2 mA	I _{OL}		2			mA
3 mA	I _{OL}		3			mA
6 mA	I _{OL}		6			mA
9 mA	I _{OL}		9			mA
12 mA	I _{OL}		12			mA
18 mA	I _{OL}		18			mA
High-level output current	I _{OH}					
3 V interface buffer	-	V _{OH} = 2.4V				
3 mA	I _{OH}		-3			mA
6 mA	I _{OH}		-6			mA
9 mA	I _{OH}		-9			mA
12 mA	I _{OH}		-12			mA
18 mA	I _{OH}		-18			mA
24 mA	I _{OH}		-24			mA

DC Characteristics (continued) ($V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$, 5 V $\pm 0.5 \text{ V}$; $T_A = -40 \text{ to } +125^{\circ}\text{C}$)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level output current	I _{OH}					
5 V-tolerant buffer		V _{OH} = 2.4 V				
1 mA	I _{OH}		-1			mA
2 mA	I _{OH}		-2			mA
3 mA	I _{OH}		-3			mA
6 mA	I _{OH}		-6			mA
9 mA	I _{OH}		-9			mA
5 V swing buffer		V _{OH} = -0.4 V				
1 mA	I _{OH}		–1			mA
2 mA	I _{OH}		-2			mA
3 mA	I _{OH}		-3			mA
6 mA	I _{OH}		-6			mA
9 mA	I _{OH}		-9			mA
12 mA	I _{OH}		-12			mA
18 mA	I _{OH}		-18			mA
Low-level output voltage	V_{OL}	$I_{OL} = 0 \text{ mA}$		0.1		V
3 V interface buffer	V_{OL}				0.1	V
5 V interface buffer	V _{OL}				0.1	V
5 V swing buffer	V _{OL}				0.1	V
High-level output voltage	V _{OH}	I _{OH} = 0 mA				V
3 V interface buffer	V_{OH}		V _{DD} -0.1			V
5 V interface buffer	V_{OH}		V _{DD} -0.2			V
5 V swing buffer	V_{OH}		V _{DD} -0.1			V

NEC ASIC DESIGN CENTERS

WEST

 3033 Scott Boulevard Santa Clara, CA 95054

TEL 408-588-5008 FAX 408-588-5017

 One Embassy Centre 9020 S.W. Washington Square Road, Suite 400 Tigard, OR 97223

TEL 503-671-0177 FAX 503-643-5911

SOUTH CENTRAL/SOUTHEAST

 16475 Dallas Parkway, Suite 380 Dallas, TX 75248

TEL 972-735-7444 FAX 972-931-8680

 Research Triangle Park 2000 Regency Parkway, Suite 455 Cary, NC 27511

TEL 919-460-1890 FAX 919-469-5926

 Two Chasewood Park 20405 SH 249, Suite 580 Houston, TX 77070

TEL 713-320-0524 FAX 713-320-0574

NORTH CENTRAL/NORTHEAST

 The Meadows, 2nd Floor 161 Worcester Road Framingham, MA 01701

TEL 508-935-2200 FAX 508-935-2234

 Greenspoint Tower 2800 W. Higgins Road, Suite 765 Hoffman Estates, IL 60195

TEL 708-519-3945 FAX 708-882-7564

THIRD-PARTY DESIGN CENTERS

SOUTH CENTRAL/SOUTHEAST

 Koos Technical Services, Inc. 385 Commerce Way, Suite 101 Longwood, FL 32750

TEL 407-260-8727 FAX 407-260-6227

 Integrated Silicon Systems Inc. 2222 Chapel Hill Nelson Highway Durham, NC 27713

TEL 919-361-5814 FAX 919-361-2019

 Applied Systems, Inc. 1761 W. Hillsboro Blvd., Suite 328 Deerfield Beach, FL 33442

TEL 305-428-0534 FAX 305-428-5906

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: **1-800-366-9782** or FAX your request to: **1-800-729-9288**

2880 Scott Boulevard P.O. Box 58062 Santa Clara, CA 95052 TEL 408-588-6000 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL's willingness to support a given application.