

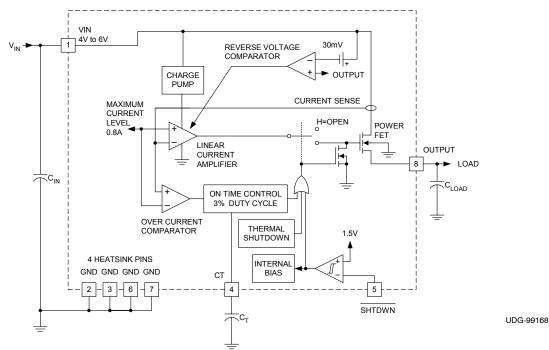
UCC39161 LOW CURRENT HOT SWAP POWER MANAGER

SLUS410C - NOVEMBER 1999 - REVISED FEBRUARY 2000

- Integrated 0.2-Ω Power FET
- 1μA I_{CC} When Disabled
- Programmable On Time
- Accurate 0.8-A (MAX) Current
- Fixed 3% Duty Cycle
- Unidirectional Switch
- Thermal Shutdown

description

The UCC39161 low-current hot-swap power manager provides complete power management, hot-swap capability, and circuit-breaker functions with minimal external components. For most applications, the only external component required to operate the device, other then supply bypassing, is a timing capacitor that sets the fault time.


The maximum current level is internally programmed for 0.8 A. While the output current is below 0.8 A, the internal power MOSFET is switched on at a nominal 220 m Ω . When the output current exceeds 0.8 A, the MOSFET transitions from a switch to a constant current source and the fault timer starts charging CT. Once the fault time is reached, the current shuts off for a time, which equates to a 3% duty cycle.

The UCC39161 also provides unidirectional current flow, emulating a diode in series with the power MOSFET.

The UCC39161 can be put into sleep mode by grounding the \overline{SHTDWN} pin. In sleep mode, the UCC39161 draws under 5 μ A of supply current.

Other features include thermal shutdown and a low thermal-resistance small-outline power package.

block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLUS410C - NOVEMBER 1999 - REVISED FEBRUARY 2000

absolute maximum ratings over operating free-air temperature (unless otherwise noted)^{†‡} Input voltage (VIN) 6 V Output current, dc Self Limiting Storage temperature, T_{stq}-65°C to 150°C Junction temperature, T_J -55°C to 150°C

electrical characteristics at T_J = 0°C to 70°C, VIN = 5 V, \overline{SHTDWN} = 2.4 V, T_A = T_J (unless otherwise noted) (see Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current Section	·	•			
I _{CC} supply current			1.00	2.00	mA
I _{CC} supply current (sleep mode)	SHTDWN = 0.2 V		0.50	5	μΑ
Output Section					
Voltage drop	I _{OUT} = 0.5 A		0.10	0.16	V
Max current		-1.0	-0.8	-0.6	Α
Reverse leakage	$VIN = 4.5 V,$ $V_{OUT} = 5 V$		6	20	μΑ
	$VIN = 0 V,$ $V_{OUT} = 5 V$		0.50	9	μΑ
Soft start time	Initial Startup		50		μS
Short circuit response			100		ns
Fault Section					
CT charge current	V _{CT} = 1.0 V	-45	-36.0	-27	μΑ
CT discharge current	V _{CT} = 1.0 V	0.90	1.0	1.50	μΑ
Output duty cycle	V _O = 0 V	2.00	3.00	6.00	%
CT charge threshold		0.4	0.5	0.6	V
CT discharge threshold		1.2	1.4	1.8	V
Thermal shutdown			170		°C
Thermal hysteresis			10		°C
Shutdown Section	·				
Shutdown threshold			1.5	3.0	V
Shutdown hysteresis			150	300	mV
Shutdown bias current	SHTDWN = 1.0 V		100	500	nA

NOTE: All voltages are with respect to ground.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[‡] Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages.

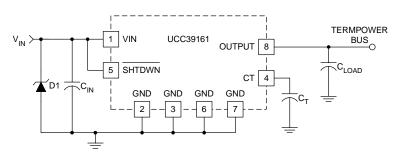
pin description

CT: A capacitor is applied between this pin and ground to set the maximum fault time. The maximum fault time must be more than the time to charge external capacitance. The maximum fault time is defined as:

$$T_{FAULT} = 28 \times 10^3 \times CT$$

Once the fault time is reached the output will shutdown for a time given by:

$$T_{SD} = 1 \times 10^6 \times CT$$


this results in a 3% duty cycle.

SHTDWN: The IC enters a low-power sleep mode when this pin is low and exits the sleep mode when this pin is high.

VIN: Input voltage to the circuit breaker, ranging from 4 V to 6 V.

VOUT: Output voltage of the circuit breaker. When switched, the output voltage is approximately:

$$V_{OUT} = VIN - 220 \text{ m}\Omega \times I_{OUT}$$

UDG-99167

Figure 1. Typical Application

APPLICATION INFORMATION

protecting the ucc39161 from voltage transients

The parasitic inductance associated with the power distribution can cause a voltage spike at V_{IN} if the load current is suddenly interrupted by the UCC39161. It is important to limit the peak of this spike to less than 6 V to prevent damage to the UCC39161. This voltage spike can be minimized by:

- Reducing the power distribution inductance (e.g., twist the positive (+) and negative (-) leads of the power supply feeding V_{IN}, locate the power supply close to the UCC39161 or use a PCB ground plane).
- Decoupling V_{IN} with a capacitor, C_{IN} (refer to Figure 1), located close to the VIN pin. This capacitor is typically less than 1 μ F to limit the inrush current.
- Clamping the voltage at V_{IN} below 6 V with a zener diode, D1 (refer to Figure 1), located close to the VIN pin.

SLUS410C - NOVEMBER 1999 - REVISED FEBRUARY 2000

APPLICATION INFORMATION

safety recommendations

Although the UCC39161 is designed to provide system protection for all fault conditions, all integrated circuits can ultimately fail short. For this reason, if the UCC39161 is intended for use in safety critical applications where UL™ or some other safety rating is required, a redundant safety device such as a fuse should be placed in series with the device. The UCC39161 prevents the fuse from blowing virtually all fault conditions, increasing system reliability and reducing maintainence cost, in addition to providing the hot-swap benefits of the device.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated