

16/8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD784218 is a member of the μ PD784218 Subseries of the 78K/IV Series. Besides a high-speed and high-performance CPU, it features various peripheral hardware such as ROM, RAM, I/O ports, 8-bit resolution A/D and D/A converters, timer, serial interface, real-time output port, interrupts, etc.

A flash memory version, the μ PD78F4218, which can operate in the same supply voltage range as the mask ROM version, and various development tools are under development.

The functions are explained in detail in the following user's manuals. Be sure to read these manuals when designing your system.

μ PD784218, 784218Y Subseries User's Manual Hardware : Planned
78K/IV Series User's Manual Instructions : U10905E

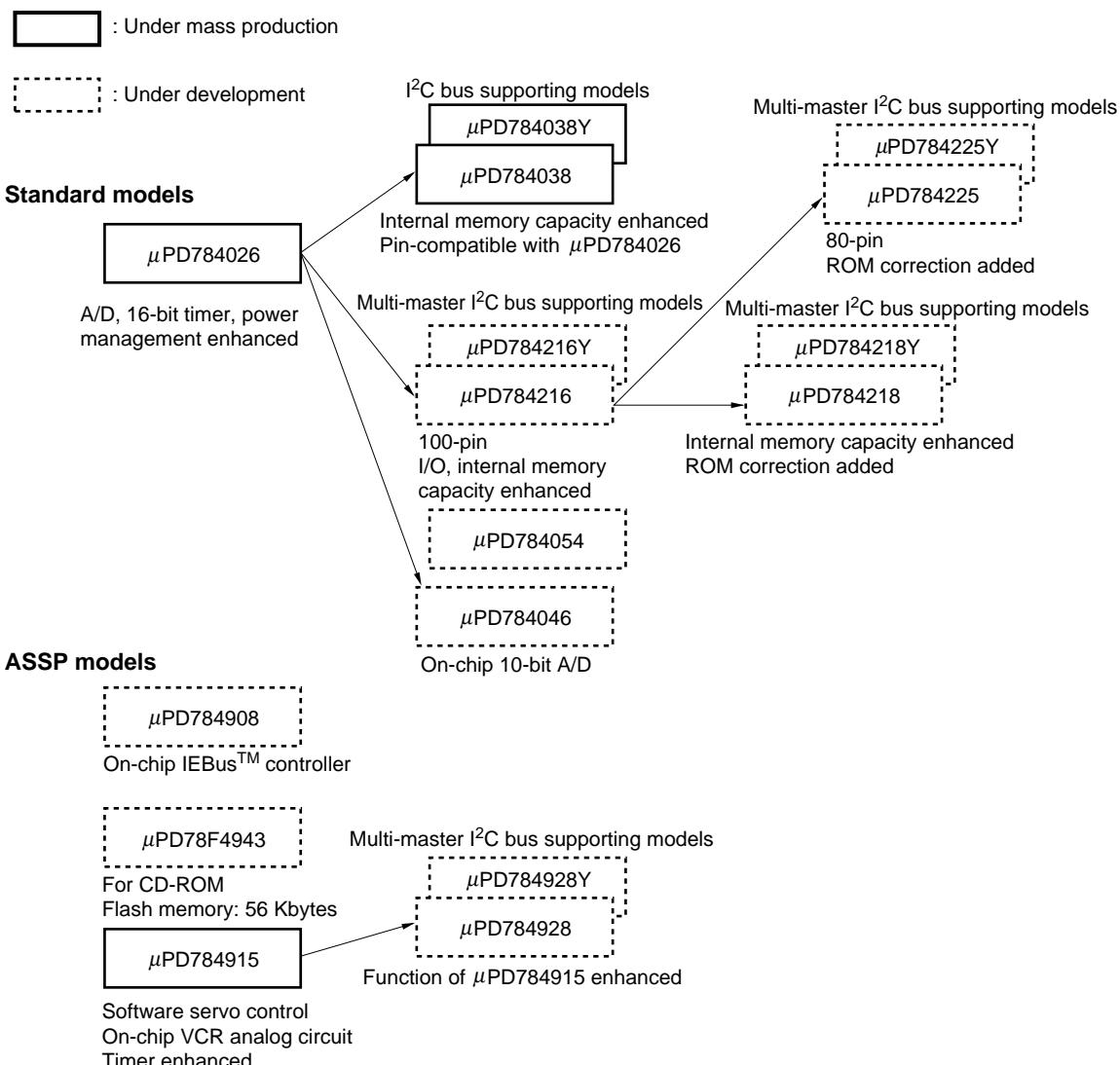
FEATURES

- ROM correction function
- Inherits peripheral functions of μ PD78078 Subseries
- Pin-compatible with μ PD784218Y Subseries
- Minimum instruction execution time
160 ns (main system clock $f_{xx} = 12.5$ MHz)
61 μ s (subsystem clock $f_{XT} = 32.768$ kHz)
- High-capacity memory
 - ROM: 192 Kbytes (μ PD784217)
256 Kbytes (μ PD784218)
 - RAM: 12 800 bytes (μ PD784217, 784218)
- I/O port: 86 pins
- Timer/counter: 16-bit timer/counter \times 1 unit
8-bit timer/counter \times 6 units
- Serial interface: 3 channels
 - UART/IOE (3-wire serial I/O): 2 channels
 - CSI (3-wire serial I/O): 1 channel
- Standby function
HALT/STOP/IDLE mode
In power-saving mode: HALT/IDLE mode (with subsystem clock)
- Clock division function
- Watch timer: 1 channel
- Watchdog timer: 1 channel
- Clock output function
 $f_{xx}, f_{xx}/2, f_{xx}/2^2, f_{xx}/2^3, f_{xx}/2^4, f_{xx}/2^5, f_{xx}/2^6, f_{xx}/2^7, f_{XT}$ selectable
- Buzzer output function
 $f_{xx}/2^{10}, f_{xx}/2^{11}, f_{xx}/2^{12}, f_{xx}/2^{13}$ selectable
- A/D converter: 8-bit resolution \times 8 channels
- D/A converter: 8-bit resolution \times 2 channels
- Supply voltage: $V_{DD} = 1.8$ to 5.5 V

APPLICATION FIELDS

Cellular telephones, PHS, cordless telephones, CD-ROM, AV systems, etc.

Unless mentioned otherwise, references in this document to the μ PD784218 refer to the μ PD784217 and μ PD784218.


The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

ORDERING INFORMATION

Part Number	Package	Internal ROM (Bytes)	Internal RAM (Bytes)
μPD784217GC-xxx-7EA	100-pin plastic QFP (fine pitch) (14 × 14 mm)	192 K	12 800
μPD784217GF-xxx-3BA	100-pin plastic QFP (14 × 20 mm)	192 K	12 800
μPD784218GC-xxx-7EA	100-pin plastic QFP (fine pitch) (14 × 14 mm)	256 K	12 800
μPD784218GF-xxx-3BA	100-pin plastic QFP (14 × 20 mm)	256 K	12 800

Remark xxx indicates a ROM code suffix.

78K/IV Series Product Development

FUNCTIONS (1/2)

Part Number		μPD784217	μPD784218
Item			
Number of basic instructions (mnemonics)		113	
General-purpose register		8 bits × 16 registers × 8 banks, or 16 bits × 8 registers × 8 banks (memory mapping)	
Internal memory	ROM	192 Kbytes	256 Kbytes
	RAM	12 800 bytes	
Memory space		1 Mbyte with program and data spaces combined	
I/O port	Total	86	
	CMOS input	8	
	CMOS I/O	72	
	N-ch open-drain I/O	6	
Pins with ancillary functions ^{Note}	Pins with pull-up resistor	70	
	LED direct drive output	22	
	Medium- voltage pin	6	
Real-time output port		4 bits × 2, or 8 bits × 1	
Timer/counter		16-bit timer/counter : Timer register × 1 Capture/compare register × 2	Pulse output • PWM/PPG output • Square wave output • One-shot pulse output
		8-bit timer/counter 1 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output
		8-bit timer/counter 2 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output
		8-bit timer/counter 5 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output
		8-bit timer/counter 6 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output
		8-bit timer/counter 7 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output
		8-bit timer/counter 8 : Timer register × 1 Compare register × 1	Pulse output • PWM output • Square wave output

Note The pins with ancillary functions are included in the I/O pins.

FUNCTIONS (2/2)

Item	Part Number	μPD784217	μPD784218
Serial interface		<ul style="list-style-type: none"> • UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) • CSI (3-wire serial I/O): 1 channel 	
A/D converter		8-bit resolution × 8 channels	
D/A converter		8-bit resolution × 2 channels	
Clock output		Selectable from f_{xx} , $f_{xx}/2$, $f_{xx}/2^2$, $f_{xx}/2^3$, $f_{xx}/2^4$, $f_{xx}/2^5$, $f_{xx}/2^6$, $f_{xx}/2^7$, f_{XT}	
Buzzer output		Selectable from $f_{xx}/2^{10}$, $f_{xx}/2^{11}$, $f_{xx}/2^{12}$, $f_{xx}/2^{13}$	
Watch timer		1 channel	
Watchdog timer		1 channel	
Standby		<ul style="list-style-type: none"> • HALT/STOP/IDLE mode • In power-saving mode (with subsystem clock): HALT/IDLE mode 	
Interrupt	Hardware	29 (internal: 20, external: 9)	
	Software	BRK instruction, BRKCS instruction, operand error	
	Non-maskable	Internal: 1, external: 1	
	Maskable	Internal: 19, external: 8 <ul style="list-style-type: none"> • 4 programmable priority levels • 3 service modes: vectored interrupt/macro service/context switching 	
Supply voltage		$V_{DD} = 1.8$ to 5.5 V	
Package		100-pin plastic QFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm)	

CONTENTS

1. DIFFERENCES AMONG MODELS IN μPD784218 SUBSERIES	7
2. DIFFERENCES BETWEEN μPD784218 AND μPD784216	8
3. MAIN DIFFERENCES FROM μPD78078 SUBSERIES	9
4. PIN CONFIGURATION (Top View)	10
5. BLOCK DIAGRAM	13
6. PIN FUNCTION	14
6.1 Port Pins	14
6.2 Non-port Pins	16
6.3 Pin I/O Circuits and Recommended Connections of Unused Pins	18
7. CPU ARCHITECTURE	21
7.1 Memory Space	21
7.2 CPU Registers	24
7.2.1 General-purpose registers	24
7.2.2 Control registers	25
7.2.3 Special function registers (SFRs)	26
8. PERIPHERAL HARDWARE FUNCTIONS	31
8.1 Ports	31
8.2 Clock Generation Circuit	32
8.3 Real-Time Output Port	34
8.4 Timer/Counter	35
8.5 A/D Converter	38
8.6 D/A Converter	39
8.7 Serial Interface	40
8.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)	41
8.7.2 Clocked serial interface (CSI)	43
8.8 Clock Output Function	43
8.9 Buzzer Output Function	44
8.10 Edge Detection Function	44
8.11 Watch Timer	44
8.12 Watchdog Timer	45
9. INTERRUPT FUNCTION	46
9.1 Interrupt Sources	46
9.2 Vectored Interrupt	48
9.3 Context Switching	49
9.4 Macro Service	49
9.5 Application Example of Macro Service	50

10. LOCAL BUS INTERFACE	51
10.1 Memory Expansion	52
10.2 Programmable Wait	52
10.3 External Access Status Function	52
11. STANDBY FUNCTION	53
12. RESET FUNCTION	55
13. ROM CORRECTION	56
14. INSTRUCTION SET	57
15. PACKAGE DRAWINGS	62
APPENDIX A. DEVELOPMENT TOOLS	64
APPENDIX B. RELATED DOCUMENTS	66

1. DIFFERENCES AMONG MODELS IN *μPD784218* SUBSERIES

The only difference among the *μPD784217* and *784218* lies in the internal memory capacity.

The *μPD78F4218* is provided with a 256-Kbyte flash memory instead of the mask ROM of the *μPD784218*. These differences are summarized in Table 1-1.

Table 1-1. Differences among Models in *μPD784218* Subseries

Part Number Item	<i>μPD784217</i>	<i>μPD784218</i>	<i>μPD78F4218</i>
Internal ROM	192 Kbytes (mask ROM)	256 Kbytes (mask ROM)	256 Kbytes (Flash memory)
Internal RAM	12 800 bytes		
Internal memory size switching register (IMS)	None		
V _{PP} pin	None		Provided

2. DIFFERENCES BETWEEN μPD784218 AND μPD784216

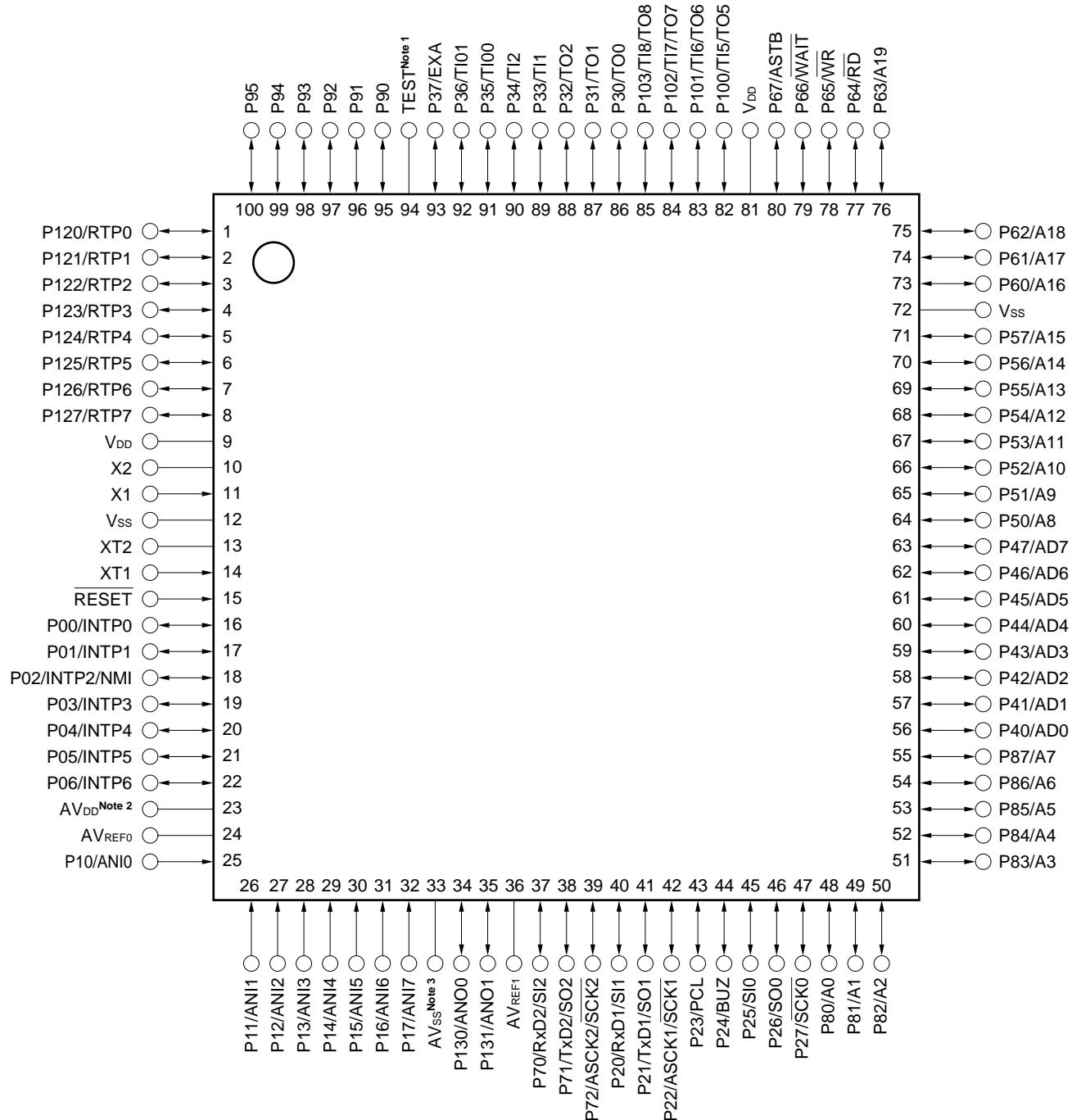
The differences between the μPD784218 and 784216 are summarized in Table 2-1.

Table 2-1. Differences between μPD784218 and μPD784216

Part Number Item	μPD784218	μPD784216
Internal ROM	256 Kbytes	128 Kbytes
Internal RAM	12 800 bytes	8 192 bytes
ROM correction	Provided	None
External access status function	Provided	None

3. MAIN DIFFERENCES FROM μPD78078 SUBSERIES

Item	Series Name	μPD784218 Subseries	μPD78078 Subseries
CPU		16-bit CPU	8-bit CPU
Minimum instruction execution time	With main system clock	160 ns (at 12.5 MHz)	400 ns (at 5.0 MHz)
	With subsystem clock	61 μ s (at 32.768 kHz)	122 μ s (at 32.768 kHz)
Memory space		1 Mbyte	64 Kbytes
I/O port	Total	86	88
	CMOS input	8	2
	CMOS I/O	72	78
	N-ch open-drain I/O	6	8
Pins with ancillary functions ^{Note}	Pins with pull-up resistor	70	86
	LED direct drive output	22	16
	Medium-voltage pin	6	8
Timer/counter		<ul style="list-style-type: none"> 16-bit timer/counter × 1 unit 8-bit timer/counter × 6 units 	<ul style="list-style-type: none"> 16-bit timer/counter × 1 unit 8-bit timer/counter × 4 units
Serial interface		<ul style="list-style-type: none"> UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O) × 1 channel 	<ul style="list-style-type: none"> UART/IOE (3-wire serial I/O) × 1 channel CSI (3-wire serial I/O, 2-wire serial I/O, SBI) × 1 channel CSI (3-wire serial I/O, 3-wire serial I/O with automatic transmit/receive function) × 1 channel
Interrupt	NMI pin	Provided	None
	Macro service	Provided	None
	Context switching	Provided	None
	Programmable priority	4 levels	None
Standby function		<ul style="list-style-type: none"> HALT/STOP/IDLE mode In power-saving mode: HALT/IDLE mode 	2 modes: HALT/STOP
ROM correction		Provided	None
External access status function		Provided	None
Package		<ul style="list-style-type: none"> 100-pin plastic QFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) 	<ul style="list-style-type: none"> 100-pin plastic QFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) 100-pin ceramic WQFN (14 × 20 mm) (μPD78P078 only)

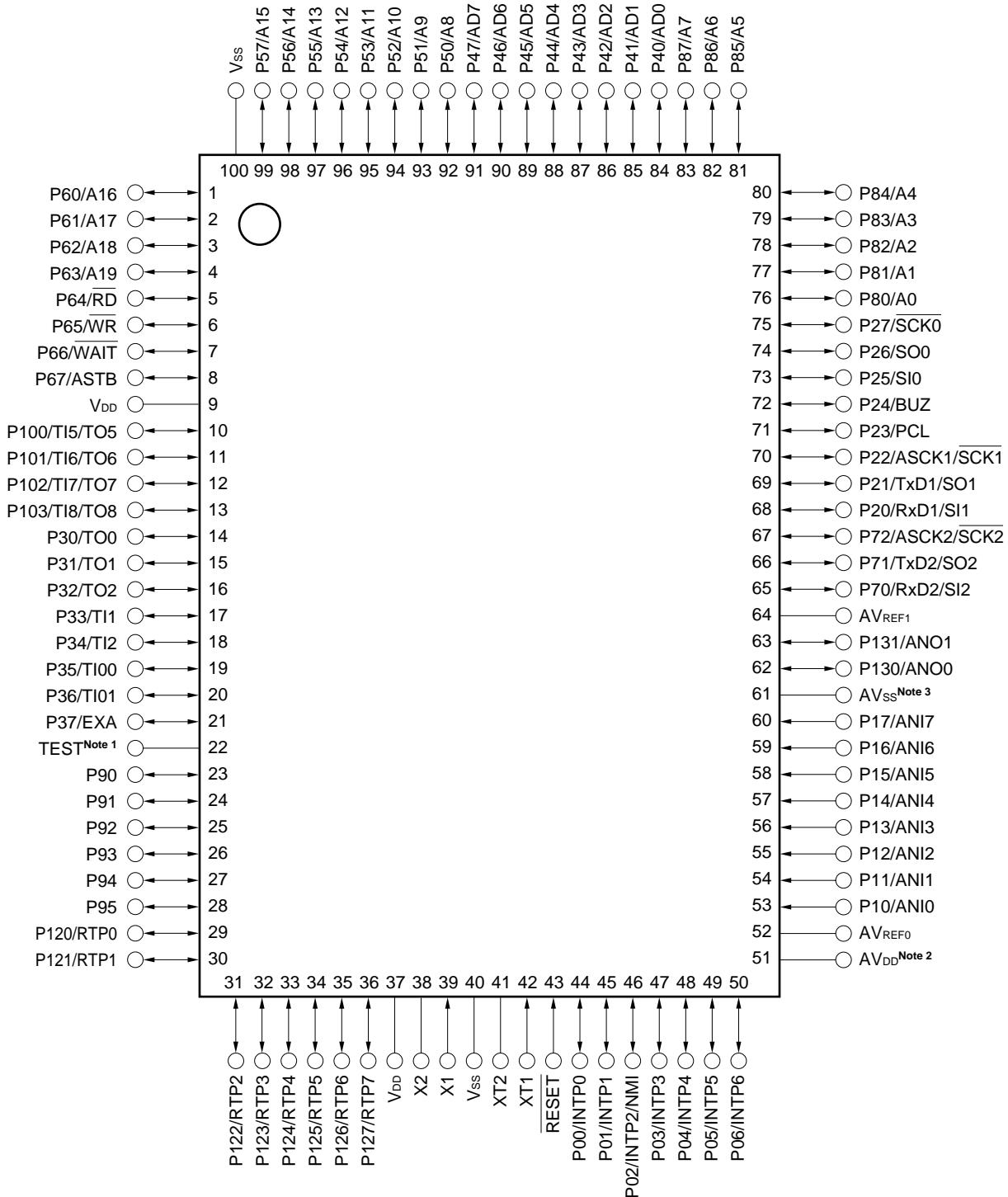

Note The pins with ancillary functions are included in the I/O pins.

4. PIN CONFIGURATION (Top View)

- 100-pin plastic QFP (fine pitch) (14 × 14 mm)

μPD784217GC-xxxx-7EA

μPD784218GC-xxxx-7EA

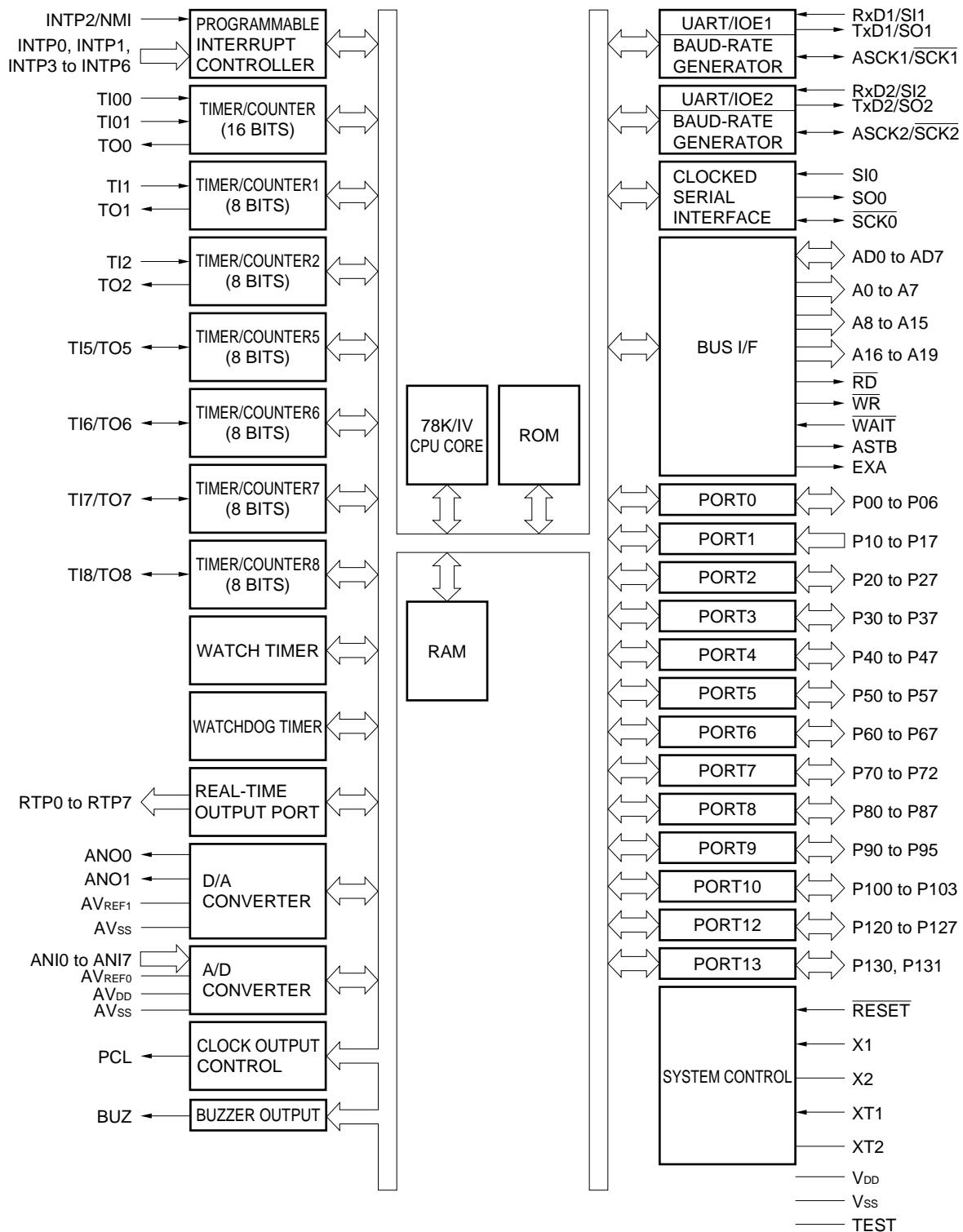

Notes 1. Directly connect the TEST pin to Vss.

2. Connect the AV_{DD} pin to V_{DD}.
3. Connect the AV_{SS} pin to V_{SS}.

- 100-pin plastic QFP (14 × 20 mm)

μPD784217GF-xxxx-3BA

μPD784218GF-xxxx-3BA


Notes 1. Directly connect the TEST pin to V_{ss}.

2. Connect the AV_{DD} pin to V_{dd}.

3. Connect the AV_{ss} pin to V_{ss}.

A0 to A19	: Address Bus	P100 to P103	: Port10
AD0 to AD7	: Address/Data Bus	P120 to P127	: Port12
ANIO to ANI7	: Analog Input	P130, P131	: Port13
ANO0, ANO1	: Analog Output	PCL	: Programmable Clock
ASCK1, ASCK2	: Asynchronous Serial Clock	\overline{RD}	: Read Strobe
ASTB	: Address Strobe	RESET	: Reset
AV _{DD}	: Analog Power Supply	RTP0 to RTP7	: Real-time Output Port
AVREF ₀ , AVREF ₁	: Analog Reference Voltage	RxD1, RxD2	: Receive Data
AVss	: Analog Ground	$\overline{SCK0}$ to $\overline{SCK2}$: Serial Clock
BUZ	: Buzzer Clock	SI0 to SI2	: Serial Input
EXA	: External Access Status Output	SO0 to SO2	: Serial Output
INTP0 to INTP6	: Interrupt from Peripherals	TEST	: Test
NMI	: Non-maskable Interrupt	TI00, TI01,	
P00 to P06	: Port0	TI1, TI2, TI5 to TI8	: Timer Input
P10 to P17	: Port1	TO0 to TO2, TO5 to TO8	: Timer Output
P20 to P27	: Port2	TxD1, TxD2	: Transmit Data
P30 to P37	: Port3	V _{DD}	: Power Supply
P40 to P47	: Port4	V _{ss}	: Ground
P50 to P57	: Port5	\overline{WAIT}	: Wait
P60 to P67	: Port6	\overline{WR}	: Write Strobe
P70 to P72	: Port7	X1, X2	: Crystal (Main System Clock)
P80 to P87	: Port8	XT1, XT2	: Crystal (Subsystem Clock)
P90 to P95	: Port9		

5. BLOCK DIAGRAM

Remark The internal ROM capacity differs depending on the model.

6. PIN FUNCTION

6.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0): • 7-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistors by software bit-wise.
P01		INTP1	
P02		INTP2/NMI	
P03		INTP3	
P04		INTP4	
P05		INTP5	
P06		INTP6	
P10 to P17	Input	ANIO to ANI7	Port 1 (P1): • 8-bit input port
P20	I/O	RxD1/SI1	Port 2 (P2): • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistors by software bit-wise.
P21		TxD1/SO1	
P22		ASCK1/SCK1	
P23		PCL	
P24		BUZ	
P25		SI0	
P26		SO0	
P27		SCK0	
P30	I/O	TO0	Port 3 (P3): • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistors by software bit-wise.
P31		TO1	
P32		TO2	
P33		TI1	
P34		TI2	
P35		TI00	
P36		TI01	
P37		EXA	
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can directly drive LEDs.
P50 to P57	I/O	A8 to A15	Port 5 (P5): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can directly drive LEDs.

6.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6): <ul style="list-style-type: none"> • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software.
P61		A17	
P62		A18	
P63		A19	
P64		RD	
P65		WR	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): <ul style="list-style-type: none"> • 3-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise.
P71		TxD2/SO2	
P72		ASCK2/SCK2	
P80 to P87	I/O	A0 to A7	Port 8 (P8): <ul style="list-style-type: none"> • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise. • Interrupt control flag (KRIF) is set to 1 when falling edge is detected at a pin of this port.
P90 to P95	I/O	—	Port 9 (P9): <ul style="list-style-type: none"> • N-ch open-drain medium-voltage I/O port • 6-bit I/O port • Can be set in input or output mode bit-wise. • Can directly drive LEDs.
P100	I/O	TI5/TO5	Port 10 (P10): <ul style="list-style-type: none"> • 4-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise.
P101		TI6/TO6	
P102		TI7/TO7	
P103		TI8/TO8	
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): <ul style="list-style-type: none"> • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): <ul style="list-style-type: none"> • 2-bit I/O port • Can be set in input or output mode bit-wise.

6.2 Non-port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer register
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer register 1
TI2		P34	External count clock input to 8-bit timer register 2
TI5		P100/T05	External count clock input to 8-bit timer register 5
TI6		P101/T06	External count clock input to 8-bit timer register 6
TI7		P102/T07	External count clock input to 8-bit timer register 7
TI8		P103/T08	External count clock input to 8-bit timer register 8
TO0	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8-bit timer output (shared by 8-bit PWM output)
TO2		P32	
TO5		P100/TI5	
TO6		P101/TI6	
TO7		P102/TI7	
TO8		P103/TI8	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25	Serial data input (3-wire serial I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial I/O2)
SO0	Output	P26	Serial data output (3-wire serial I/O0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)
SCK0	I/O	P27	Serial clock input/output (3-wire serial I/O0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3		P03	
INTP4		P04	
INTP5		P05	
INTP6		P06	

6.2 Non-port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port that outputs data in synchronization with trigger
AD0 to AD7	I/O	P40 to P47	Low-order address/data bus when external memory is connected
A0 to A7	Output	P80 to P87	Low-order address bus when external memory is connected
A8 to A15		P50 to P57	Middle-order address bus when external memory is connected
A16 to A19		P60 to P63	High-order address bus when external memory is connected
RD	Output	P64	Strobe signal output for read operation of external memory
WR		P65	Strobe signal output for write operation of external memory
WAIT	Input	P66	To insert wait state(s) when external memory is accessed
ASTB	Output	P67	Strobe output to externally latch address information output to ports 4 through 6 and port 8 to access external memory
EXA	Output	P37	Status signal output when external memory is accessed
RESET	Input	—	System reset input
X1	Input	—	Crystal connection for main system clock oscillation
X2	—		
XT1	Input	—	Crystal connection for subsystem clock oscillation
XT2	—		
ANIO0 to ANI7	Input	P10 to P17	Analog voltage input for A/D converter
ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
AV _{REF0}	—	—	To apply reference voltage for A/D converter
AV _{REF1}			To apply reference voltage for D/A converter
AV _{DD}			Positive power supply for A/D converter. Connected to V _{DD} .
AV _{SS}			GND for A/D converter and D/A converter. Connected to V _{SS} .
V _{DD}			Positive power supply
V _{SS}			GND
TEST			Directly connect this pin to V _{SS} (this pin is for IC test).

6.3 Pin I/O Circuits and Recommended Connections of Unused Pins

Table 6-1 shows symbols indicating the I/O circuit types of the respective pins and the recommended connection of unused pins.

For the circuit diagram of each type of I/O circuit, refer to Figure 6-1.

Table 6-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (1/2)

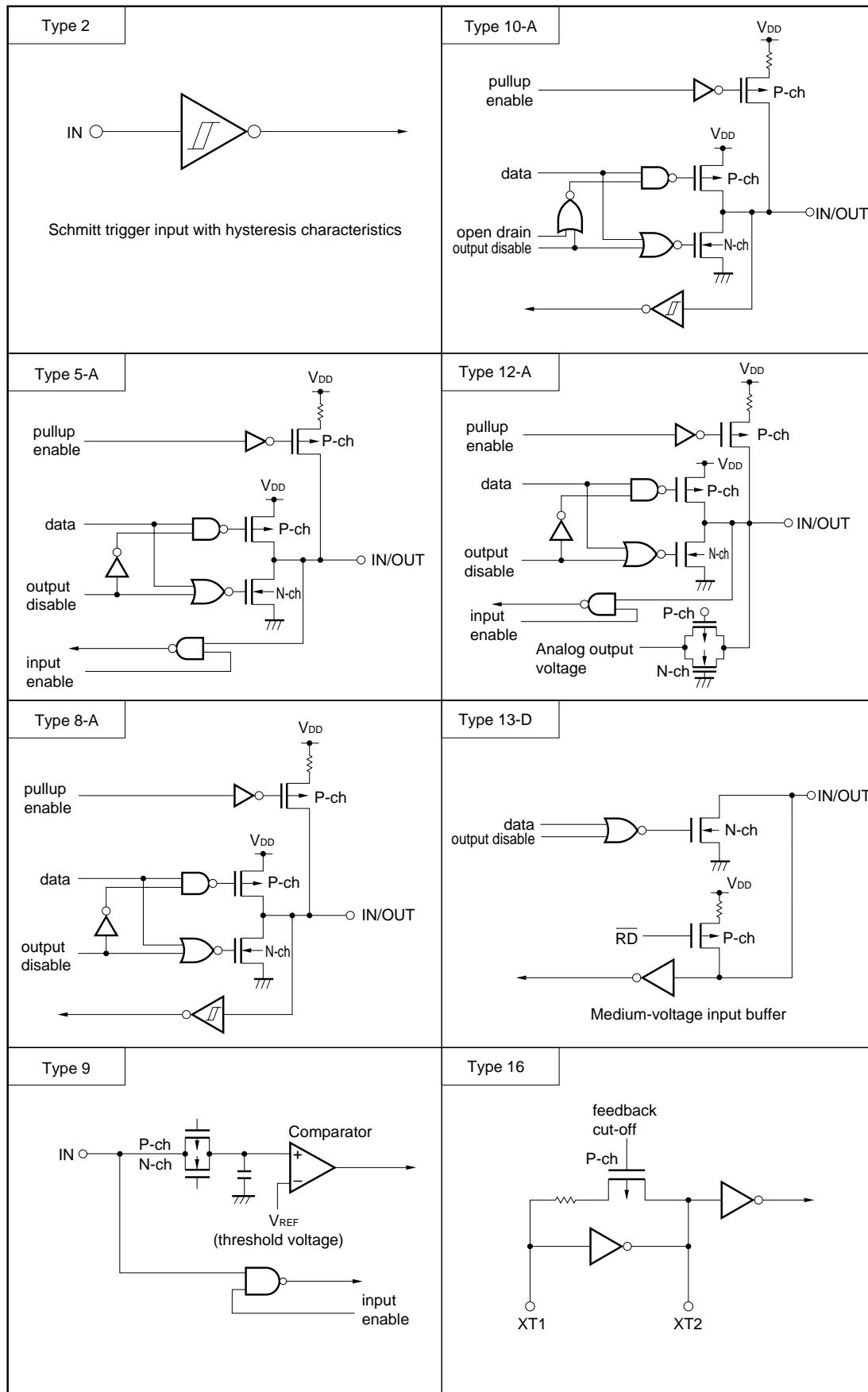

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	8-A	I/O	Input : Individually connected to V _{SS} via resistor Output: Open
P01/INTP1			
P02/INTP2/NMI			
P03/INTP3 to P06/INTP6			
P10/ANI0 to P17/ANI7	9	Input	Connected to V _{SS} or V _{DD}
P20/RxD1/SI1	10-A	I/O	Input : Individually connected to V _{SS} via resistor Output: Open
P21/TxD1/SO1			
P22/ASCK1/SCK1			
P23/PCL			
P24/BUZ			
P25/SI0			
P26/SO0			
P27/SCK0			
P30/TO0 to P32/TO2	8-A		
P33/TI1, P34/TI2			
P35/TI00, P36/TI01			
P37/EXA			
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-A		
P71/TxD2/SO2			
P72/ASCK2/SCK2			
P80/A0 to P87/A7			
P90 to P95	13-D		
P100/TI5/TO5	8-A		
P101/TI6/TO6			
P102/TI7/TO7			
P103/TI8/TO8			
P120/RTP0 to P127/RTP7			
P130/ANO0, P131/ANO1	12-A		

Table 6-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
RESET	2	Input	—
XT1	16		Connected to V _{SS}
XT2		—	Open
AV _{REF0}	—		Connected to V _{SS}
AV _{REF1}			Connected to V _{DD}
AV _{DD}			Connected to V _{SS}
AV _{SS}			Directly connected to V _{SS}
TEST			

Remark Because the circuit type numbers are standardized among the 78K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 6-1. Types of Pin I/O Circuits

7. CPU ARCHITECTURE

7.1 Memory Space

A memory space of 1 Mbyte can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be specified by the LOCATION instruction. The LOCATION instruction must be always executed after reset cancellation, and must not be used more than once.

(1) When LOCATION 0 instruction is executed

- **Internal memory**

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784217	0CD00H to 0FFFFH	00000H to 0CCFFH 10000H to 2FFFFH
μPD784218		00000H to 0CCFFH 10000H to 3FFFFH

Caution The following areas that overlap the internal data area of the internal ROM cannot be used when the LOCATION 0 instruction is executed.

Part Number	Unusable Area
μPD784217	0CD00H to 0FFFFH (13 056 bytes)
μPD784218	

- **External memory**

The external memory is accessed in external memory expansion mode.

(2) When LOCATION 0FH instruction is executed

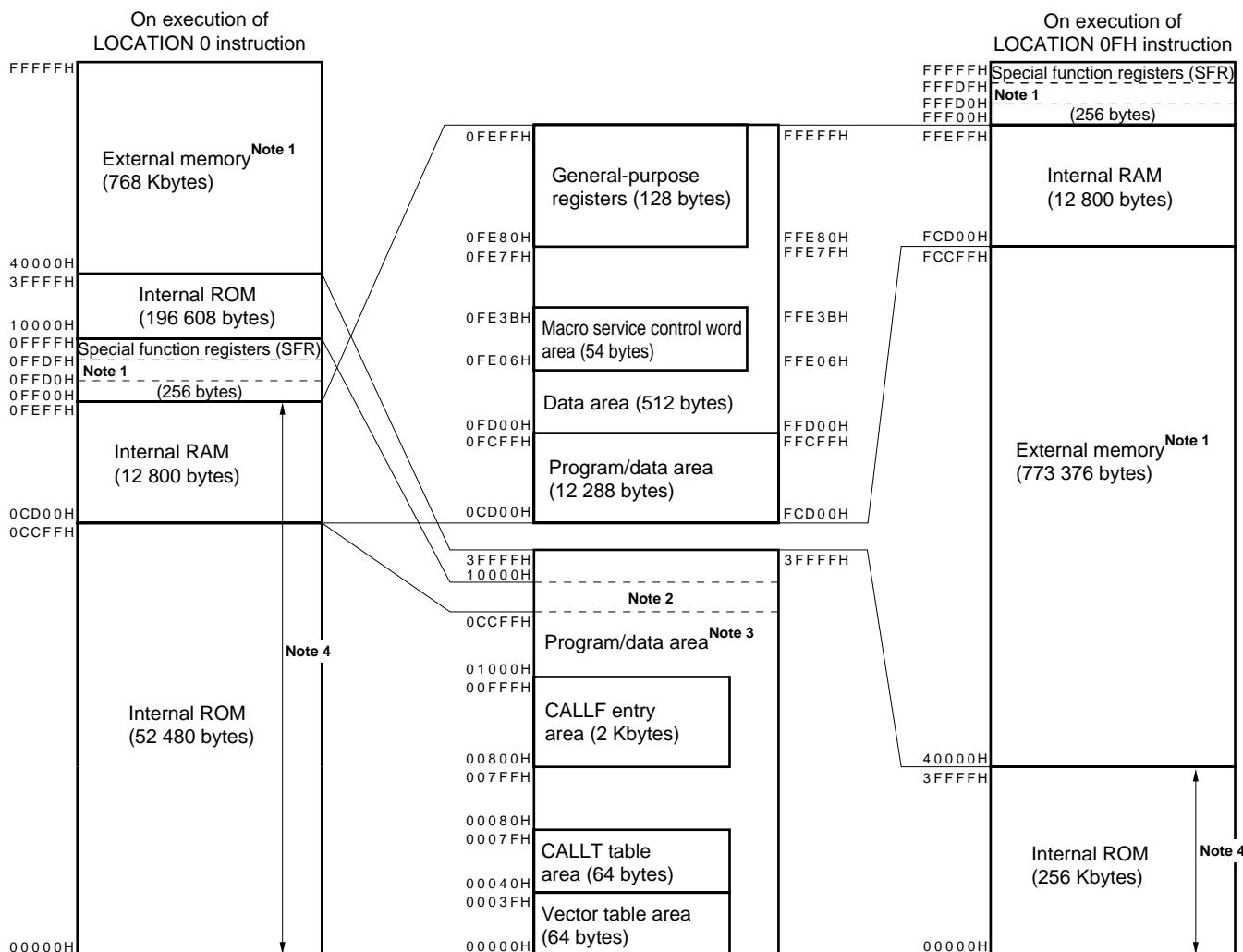
- **Internal memory**

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784217	FCD00H to FFFFFH	00000H to 2FFFFH
μPD784218		00000H to 3FFFFH

- **External memory**

The external memory is accessed in external memory expansion mode.


Figure 7-1. Memory Map of μPD784217

Notes

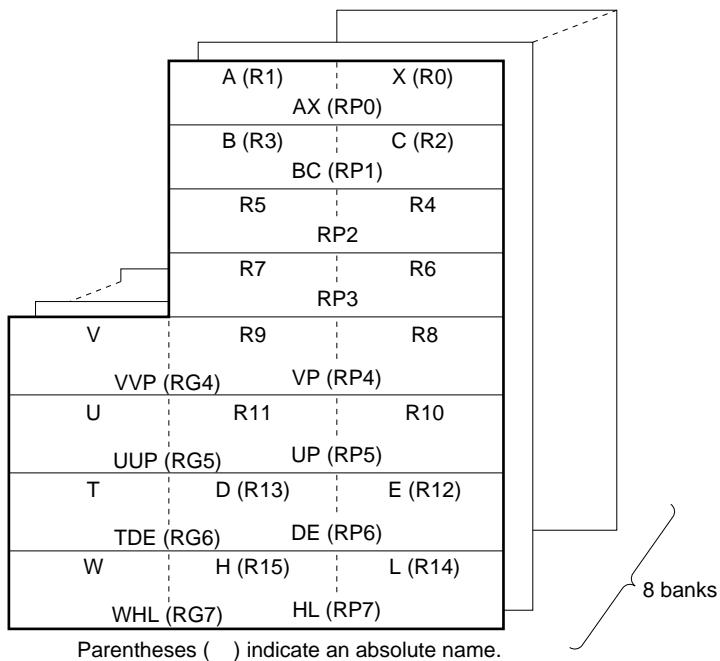
1. Accessed in external memory expansion mode.
2. This 13 056-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.
3. On execution of LOCATION 0 instruction: 183 552 bytes, on execution of LOCATION 0FH instruction: 196 608 bytes
4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area.

Figure 7-2. Memory Map of μPD784218

Notes

1. Accessed in external memory expansion mode.
2. This 13 056-byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.
3. On execution of LOCATION 0 instruction: 249 088 bytes, on execution of LOCATION 0FH instruction: 262 144 bytes
4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area.

7.2 CPU Registers

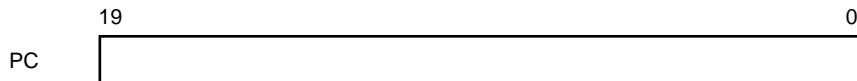

7.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are available. Two 8-bit registers can be also used in pairs as a 16-bit register. Of the 16-bit registers, four can be used in combination with an 8-bit register for address expansion as 24-bit address specification registers.

Eight banks of these register sets are available which can be selected by using software or the context switching function.

The general-purpose registers except V, U, T, and W registers for address expansion are mapped to the internal RAM.

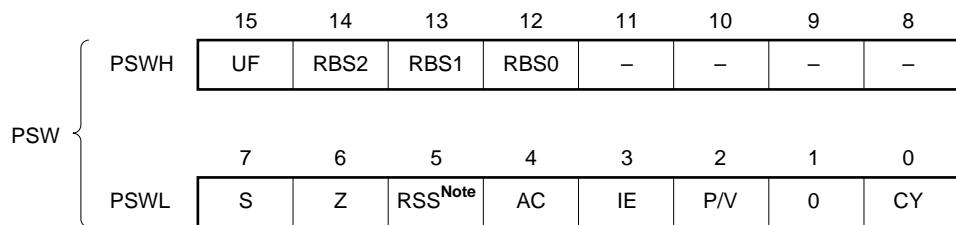
Figure 7-3. General-Purpose Register Format


Caution Registers R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only for recycling the program of the 78K/III Series.

7.2.2 Control registers

(1) Program counter (PC)

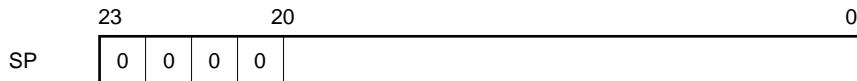
The program counter is a 20-bit register whose contents are automatically updated when the program is executed.


Figure 7-4. Program Counter (PC) Format

(2) Program status word (PSW)

This register holds the status of the CPU. Its contents are automatically updated when the program is executed.

Figure 7-5. Program Status Word (PSW) Format



Note This flag is provided to maintain compatibility with the 78K/III Series. Be sure to clear this flag to 0, except when the software for the 78K/III Series is used.

(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack. Be sure to write 0 to the higher 4 bits of this pointer.

Figure 7-6. Stack Pointer (SP) Format

7.2.3 Special function registers (SFRs)

The special function registers, such as the mode registers and control registers of the internal peripheral hardware, are registers to which special functions are allocated. These registers are mapped to a 256-byte space of addresses 0FF00H through 0FFFFH^{Note}.

Note On execution of the LOCATION 0 instruction. FFF00H through FFFFFH on execution of the LOCATION 0FH instruction.

Caution Do not access an address in this area to which no SFR is allocated. If such an address is accessed by mistake, the μPD784218 may be in the deadlock status. This deadlock status can be cleared only by inputting the $\overline{\text{RESET}}$ signal.

Table 7-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:

- Symbol Symbol indicating an SFR. This symbol is reserved for NEC's assembler (RA78K4). It can be used as an sfr variable by the #pragma sfr command with the C compiler (CC78K4).
- R/W Indicates whether the SFR is read-only, write-only, or read/write.
R/W : Read/write
R : Read-only
W : Write-only
- Bit units for manipulation .. Bit units in which the value of the SFR can be manipulated.
SFRs that can be manipulated in 16-bit units can be described as the operand sfp of an instruction. To specify the address of this SFR, describe an even address.
SFRs that can be manipulated in 1-bit units can be described as the operand of a bit manipulation instruction.
- After reset Indicates the status of the register when the $\overline{\text{RESET}}$ signal has been input.

Table 7-1. Special Function Register (SFR) List (1/4)

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset	
				1 bit	8 bits	16 bits		
0FF00H	Port 0	P0	R/W	○	○	—	00H ^{Note 2}	
0FF01H	Port 1	P1	R	○	○	—		
0FF02H	Port 2	P2	R/W	○	○	—		
0FF03H	Port 3	P3		○	○	—		
0FF04H	Port 4	P4		○	○	—		
0FF05H	Port 5	P5		○	○	—		
0FF06H	Port 6	P6		○	○	—		
0FF07H	Port 7	P7		○	○	—		
0FF08H	Port 8	P8		○	○	—		
0FF09H	Port 9	P9		○	○	—		
0FF0AH	Port 10	P10		○	○	—		
0FF0CH	Port 12	P12		○	○	—		
0FF0DH	Port 13	P13		○	○	—		
0FF10H	16-bit timer register	TM0	R	—	—	○	0000H	
0FF11H				—	—	○		
0FF12H	Capture/compare register 00 (16-bit timer/counter)	CR00	R/W	—	—	○		
0FF13H				—	—	○		
0FF14H	Capture/compare register 01 (16-bit timer/counter)	CR01		○	○	—	00H	
0FF15H				○	○	—		
0FF16H	Capture/compare control register 0	CRC0		○	○	—		
0FF18H	16-bit timer mode control register	TMC0		○	○	—		
0FF1AH	16-bit timer output control register	TOC0		○	○	—		
0FF1CH	Prescaler mode register 0	PRM0		○	○	—		
0FF20H	Port 0 mode register	PM0	FFH	○	○	—	FFH	
0FF22H	Port 2 mode register	PM2		○	○	—		
0FF23H	Port 3 mode register	PM3		○	○	—		
0FF24H	Port 4 mode register	PM4		○	○	—		
0FF25H	Port 5 mode register	PM5		○	○	—		
0FF26H	Port 6 mode register	PM6		○	○	—		
0FF27H	Port 7 mode register	PM7		○	○	—		
0FF28H	Port 8 mode register	PM8		○	○	—		
0FF29H	Port 9 mode register	PM9		○	○	—		
0FF2AH	Port 10 mode register	PM10		○	○	—		
0FF2CH	Port 12 mode register	PM12		○	○	—		
0FF2DH	Port 13 mode register	PM13		○	○	—		

Notes

1. When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH instruction is executed.
2. Because each port is initialized to input mode at reset, “00H” is not actually read. The output latch is initialized to “0”.

Table 7-1. Special Function Register (SFR) List (2/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset	
				1 bit	8 bits	16 bits		
0FF30H	Pull-up resistor option register 0	PU0	R/W	○	○	—	00H	
0FF32H	Pull-up resistor option register 2	PU2		○	○	—		
0FF33H	Pull-up resistor option register 3	PU3		○	○	—		
0FF37H	Pull-up resistor option register 7	PU7		○	○	—		
0FF38H	Pull-up resistor option register 8	PU8		○	○	—		
0FF3AH	Pull-up resistor option register 10	PU10		○	○	—		
0FF3CH	Pull-up resistor option register 12	PU12		○	○	—		
0FF40H	Clock output control register	CKS		○	○	—		
0FF42H	Port function control register	PF2		○	○	—		
0FF4EH	Pull-up resistor option register	PUO		○	○	—		
0FF50H	8-bit timer register 1	TM1	TM1W	R	—	○	0000H	
0FF51H	8-bit timer register 2	TM2			—	○		
0FF52H	Compare register 10 (8-bit timer/counter 1)	CR10	CR1W	R/W	—	○		
0FF53H	Compare register 20 (8-bit timer/counter 2)	CR20			—	○		
0FF54H	8-bit timer mode control register 1	TMC1	TMC1W		○	○		
0FF55H	8-bit timer mode control register 2	TMC2			○	○		
0FF56H	Prescaler mode register 1	PRM1	PRM1W	R	—	○		
0FF57H	Prescaler mode register 2	PRM2			—	○		
0FF60H	8-bit timer register 5	TM5	TM5W		—	○		
0FF61H	8-bit timer register 6	TM6			—	○		
0FF62H	8-bit timer register 7	TM7	TM7W	R	—	○		
0FF63H	8-bit timer register 8	TM8			—	○		
0FF64H	Compare register 50 (8-bit timer/counter 5)	CR50	CR5W	R/W	—	○		
0FF65H	Compare register 60 (8-bit timer/counter 6)	CR60			—	○		
0FF66H	Compare register 70 (8-bit timer/counter 7)	CR70	CR7W		—	○		
0FF67H	Compare register 80 (8-bit timer/counter 8)	CR80			—	○		
0FF68H	8-bit timer mode control register 5	TMC5	TMC5W	R	○	○		
0FF69H	8-bit timer mode control register 6	TMC6			○	○		
0FF6AH	8-bit timer mode control register 7	TMC7	TMC7W		○	○		
0FF6BH	8-bit timer mode control register 8	TMC8			○	○		
0FF6CH	Prescaler mode register 5	PRM5	PRM5W	R	—	○		
0FF6DH	Prescaler mode register 6	PRM6			—	○		
0FF6EH	Prescaler mode register 7	PRM7	PRM7W		—	○		
0FF6FH	Prescaler mode register 8	PRM8			—	○		
0FF70H	Asynchronous serial interface mode register 1	ASIM1	R	○	○	—	00H	
0FF71H	Asynchronous serial interface mode register 2	ASIM2		○	○	—		
0FF72H	Asynchronous serial interface status register 1	ASIS1		○	○	—		
0FF73H	Asynchronous serial interface status register 2	ASIS2		○	○	—		

Note When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH instruction is executed.

Table 7-1. Special Function Register (SFR) List (3/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset	
				1 bit	8 bits	16 bits		
0FF74H	Transmit shift register 1	TXS1	W	—	○	—	FFH	
	Receive buffer register 1	RXB1	R	—	○	—		
0FF75H	Transmit shift register 2	TXS2	W	—	○	—	00H	
	Receive buffer register 2	RXB2	R	—	○	—		
0FF76H	Baud rate generator control register 1	BRGC1	R/W	○	○	—	00H	
0FF77H	Baud rate generator control register 2	BRGC2		○	○	—		
0FF7AH	Oscillation mode select register	CC		○	○	—		
0FF80H	A/D converter mode register	ADM		○	○	—		
0FF81H	A/D converter input select register	ADIS		○	○	—		
0FF83H	A/D conversion result register	ADCR	R	—	○	—	Undefined	
0FF84H	D/A conversion value setting register 0	DACS0	R/W	○	○	—	00H	
0FF85H	D/A conversion value setting register 1	DACS1		○	○	—		
0FF86H	D/A converter mode register 0	DAM0		○	○	—		
0FF87H	D/A converter mode register 1	DAM1		○	○	—		
0FF88H	ROM correction control register	CORC		○	○	—		
0FF89H	ROM correction address pointer H	CORAH		—	○	—		
0FF8AH	ROM correction address pointer L	CORAL		—	—	○	0000H	
0FF8BH				○	○	—	00H	
0FF8CH	External bus type select register	EBTS		○	○	—		
0FF8DH	External access status enable register	EXAE		○	○	—		
0FF90H	Serial operation mode register 0	CSIM0		○	○	—		
0FF91H	Serial operation mode register 1	CSIM1		○	○	—		
0FF92H	Serial operation mode register 2	CSIM2		○	○	—		
0FF94H	Serial I/O shift register 0	SIO0	R/W	—	○	—	80H	
0FF95H	Serial I/O shift register 1	SIO1		—	○	—		
0FF96H	Serial I/O shift register 2	SIO2		—	○	—		
0FF98H	Real-time output buffer register L	RTBL		—	○	—		
0FF99H	Real-time output buffer register H	RTBH		—	○	—		
0FF9AH	Real-time output port mode register	RTPM		○	○	—		
0FF9BH	Real-time output port control register	RTPC		○	○	—		
0FF9CH	Watch timer mode control register	WTM		○	○	—		
0FFA0H	External interrupt rising edge enable register	EGP0		○	○	—		
0FFA2H	External interrupt falling edge enable register	EGN0		○	○	—		
0FFA8H	In-service priority register	ISPR	R	○	○	—	FFFFH	
0FFA9H	Interrupt select control register	SNMI	R/W	○	○	—		
0FFAAH	Interrupt mode control register	IMC		○	○	—		
0FFA8H	Interrupt mask flag register 0L	MK0L		○	○	○		
0FFADH	Interrupt mask flag register 0H	MK0H		○	○	○		
0FFAEH	Interrupt mask flag register 1L	MK1L	MK1	○	○	○		
0FFAFH	Interrupt mask flag register 1H	MK1H		○	○	○		

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Table 7-1. Special Function Register (SFR) List (4/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 bit	8 bits	16 bits	
0FFC0H	Standby control register	STBC	R/W	—	○	—	30H
0FFC2H	Watchdog timer mode register	WDM		—	○	—	00H
0FFC4H	Memory expansion mode register	MM		○	○	—	20H
0FFC7H	Programmable wait control register 1	PWC1		○	○	—	AAH
0FFCEH	Clock status register	PCS	R	○	○	—	32H
0FFCFH	Oscillation stabilization time specification register	OSTS	R/W	○	○	—	00H
0FFD0H- 0FFDFH	External SFR area	—		○	○	—	—
0FFE0H	Interrupt control register (INTWDTM)	WDTIC	R/W	○	○	—	43H
0FFE1H	Interrupt control register (INTP0)	PIC0		○	○	—	
0FFE2H	Interrupt control register (INTP1)	PIC1		○	○	—	
0FFE3H	Interrupt control register (INTP2)	PIC2		○	○	—	
0FFE4H	Interrupt control register (INTP3)	PIC3		○	○	—	
0FFE5H	Interrupt control register (INTP4)	PIC4		○	○	—	
0FFE6H	Interrupt control register (INTP5)	PIC5		○	○	—	
0FFE7H	Interrupt control register (INTP6)	PIC6		○	○	—	
0FFE8H	Interrupt control register (INTCSI0)	CSIIC0		○	○	—	
0FFE9H	Interrupt control register (INTSER1)	SERIC1		○	○	—	
0FFEAH	Interrupt control register (INTSR1/INTCSI1)	SRIC1		○	○	—	
0FFEBH	Interrupt control register (INTST1)	STIC1		○	○	—	
0FFECH	Interrupt control register (INTSER2)	SERIC2		○	○	—	
0FFEDH	Interrupt control register (INTSR2/INTCSI2)	SRIC2		○	○	—	
0FFEEH	Interrupt control register (INTST2)	STIC2		○	○	—	
0FFE FH	Interrupt control register (INTTM3)	TMIC3		○	○	—	
0FFF0H	Interrupt control register (INTTM00)	TMIC00		○	○	—	
0FFF1H	Interrupt control register (INTTM01)	TMIC01		○	○	—	
0FFF2H	Interrupt control register (INTTM1)	TMIC1		○	○	—	
0FFF3H	Interrupt control register (INTTM2)	TMIC2		○	○	—	
0FFF4H	Interrupt control register (INTAD)	ADIC		○	○	—	
0FFF5H	Interrupt control register (INTTM5)	TMIC5		○	○	—	
0FFF6H	Interrupt control register (INTTM6)	TMIC6		○	○	—	
0FFF7H	Interrupt control register (INTTM7)	TMIC7		○	○	—	
0FFF8H	Interrupt control register (INTTM8)	TMIC8		○	○	—	
0FFF9H	Interrupt control register (INTWT)	WTIC		○	○	—	
0FFFAH	Interrupt control register (INTKR)	KRIC		○	○	—	

Note When the LOCATION 0 instruction is executed. Add “F0000H” to this value when the LOCATION 0FH instruction is executed.

8. PERIPHERAL HARDWARE FUNCTIONS

8.1 Ports

The ports shown in Figure 8-1 are provided to make various control operations possible. Table 8-1 shows the function of each port. Ports 0, 2 through 8, 10, 12 can be connected to internal pull-up resistors by software when inputting.

Figure 8-1. Port Configuration

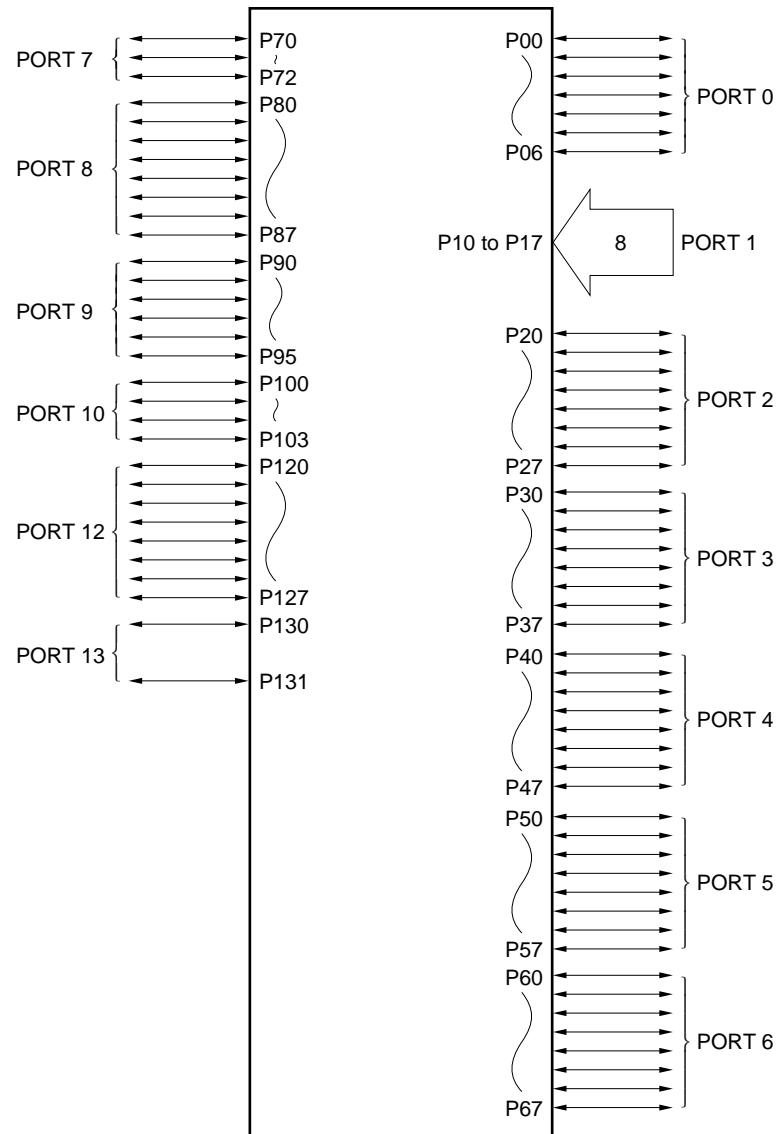


Table 8-1. Port Functions

Port Name	Pin Name	Function	Specification of Pull-up Resistor Connection by Software
Port 0	P00 to P06	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 1	P10 to P17	• Input port	—
Port 2	P20 to P27	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 3	P30 to P37	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 4	P40 to P47	• Can be set in input or output mode bit-wise • Can directly drive LEDs	Can be specified in 1-port units
Port 5	P50 to P57	• Can be set in input or output mode bit-wise • Can directly drive LEDs	Can be specified in 1-port units
Port 6	P60 to P67	• Can be set in input or output mode bit-wise	Can be specified in 1-port units
Port 7	P70 to P72	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 8	P80 to P87	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 9	P90 to P95	• N-ch open-drain I/O port • Can be set in input or output mode bit-wise • Can directly drive LEDs	—
Port 10	P100 to P103	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 12	P120 to P127	• Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 13	P130, P131	• Can be set in input or output mode bit-wise	—

8.2 Clock Generation Circuit

An on-chip clock generation circuit necessary for operation is provided. This clock generation circuit has a divider circuit. If high-speed operation is not necessary, the internal operating frequency can be lowered by the divider circuit to reduce the current consumption.

Figure 8-2. Block Diagram of Clock Generation Circuit

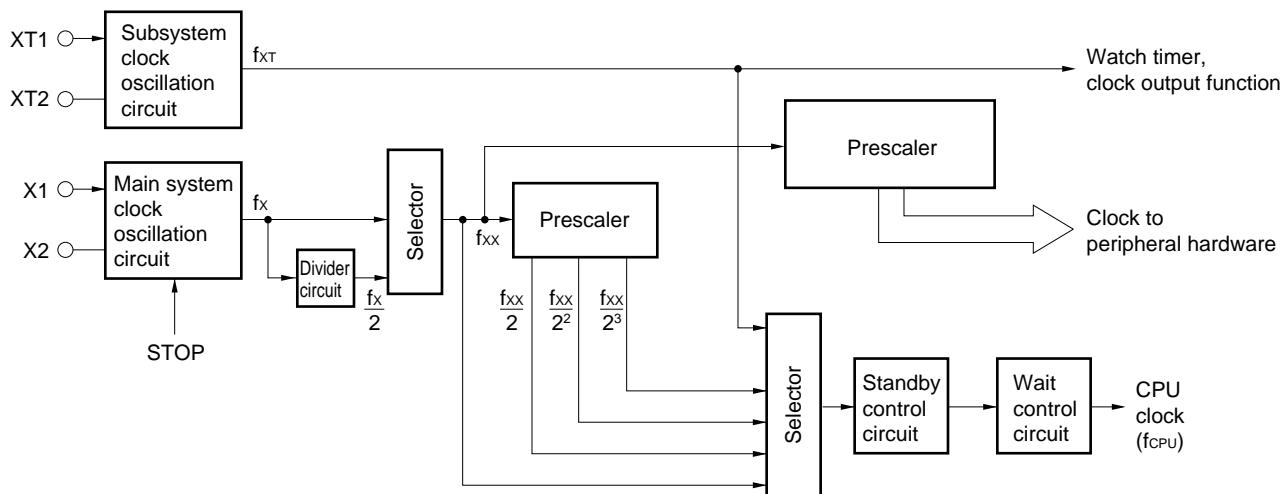


Figure 8-3. Example of Using Main System Clock Oscillation Circuit

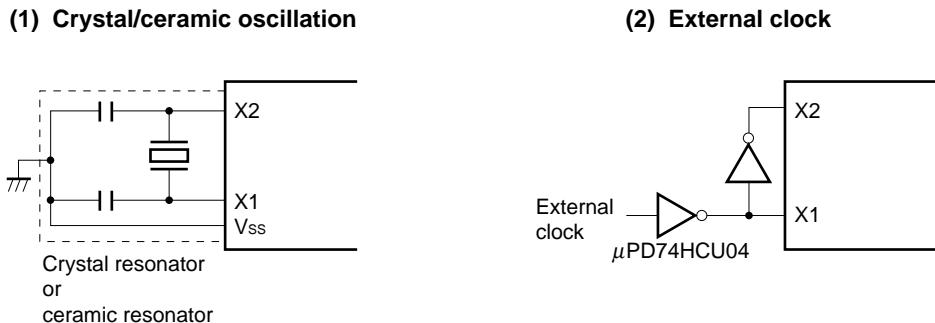
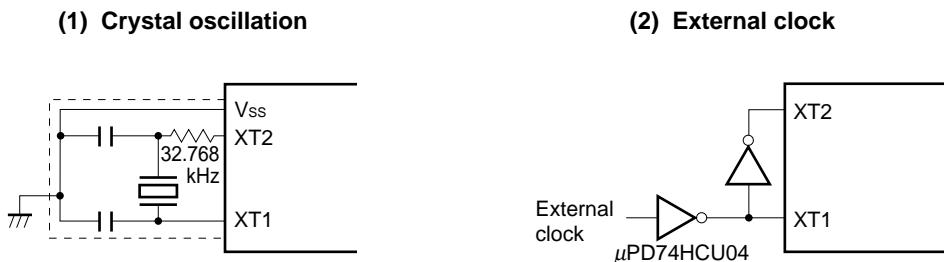
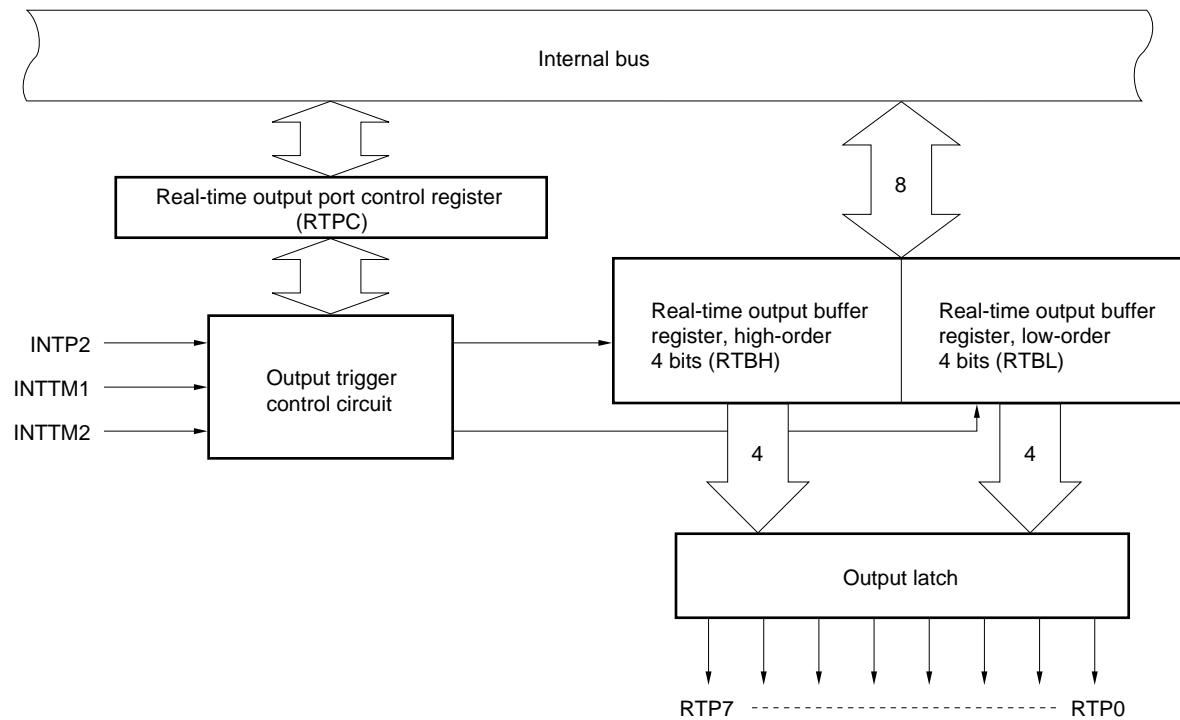



Figure 8-4. Example of Using Subsystem Clock Oscillation Circuit

Caution When using the main system clock and subsystem clock oscillation circuits, wire the dotted portions in Figures 8-3 and 8-4 as follows to avoid adverse influence from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the potential at the ground point of the capacitor in the oscillation circuit the same as Vss. Do not ground to a ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.


Note that the subsystem clock oscillation circuit has a low amplification factor to reduce the current consumption.

8.3 Real-Time Output Port

The real-time output function is to transfer data set in advance to the real-time output buffer register to the output latch by hardware as soon as the timer interrupt or external interrupt has occurred in order to output the data to an external device. The pins that output the data to the external device constitute a port called a real-time output port.

Because the real-time output port can output signals without jitter, it is ideal for controlling a stepping motor, etc.

Figure 8-5. Block Diagram of Real-Time Output Port

8.4 Timer/Counter

One unit of 16-bit timers/counters and six units of 8-bit timers/counters are provided.

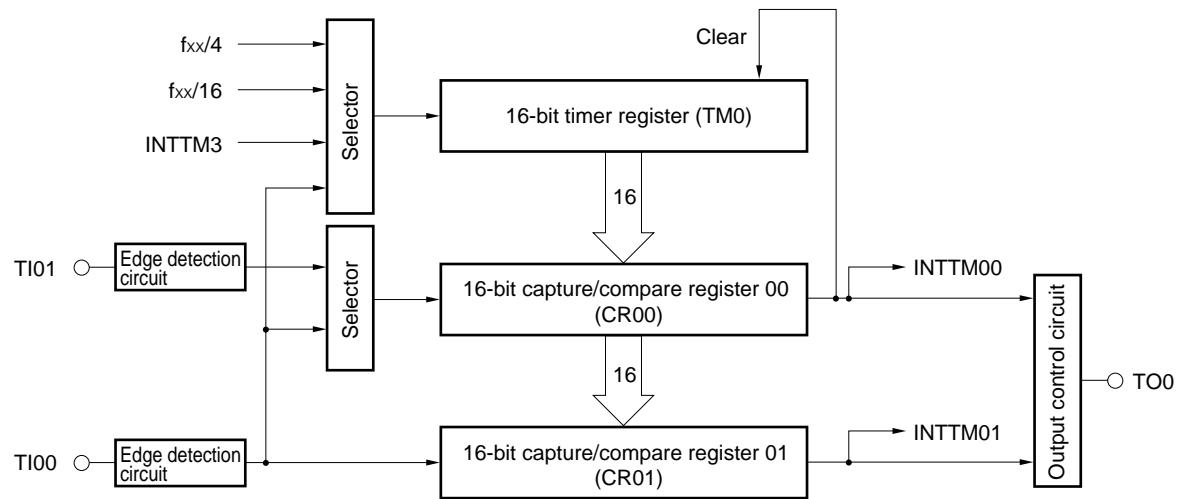

Because a total of eight interrupt requests are supported, these timers/counters can be used as eight units of timers/counters.

Table 8-2. Operations of Timers/Counters

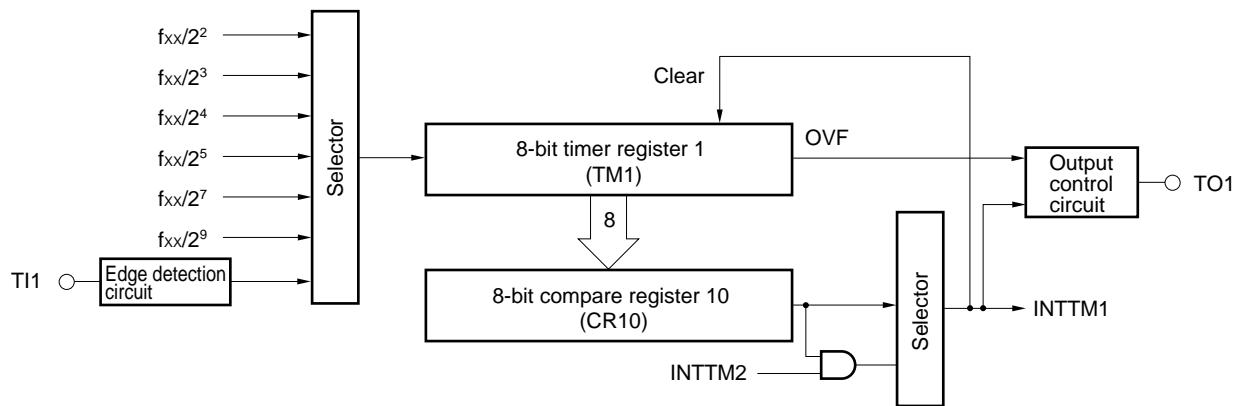
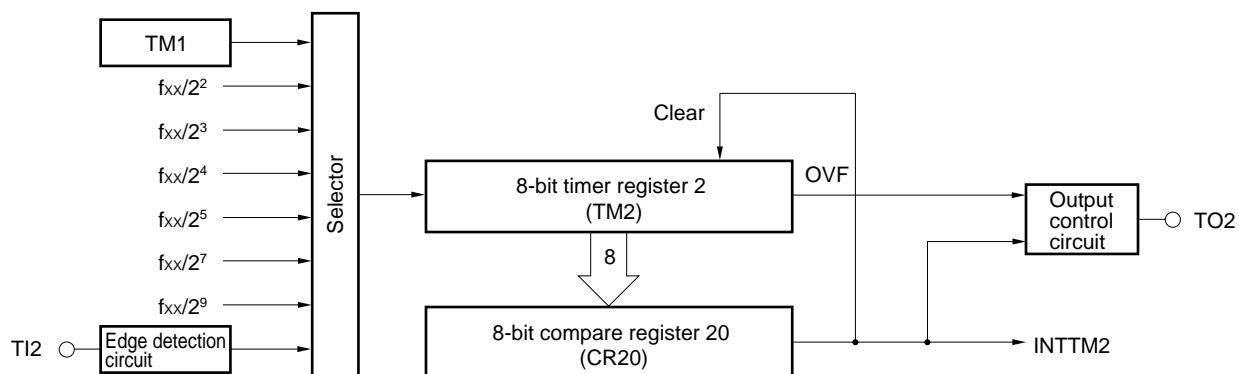
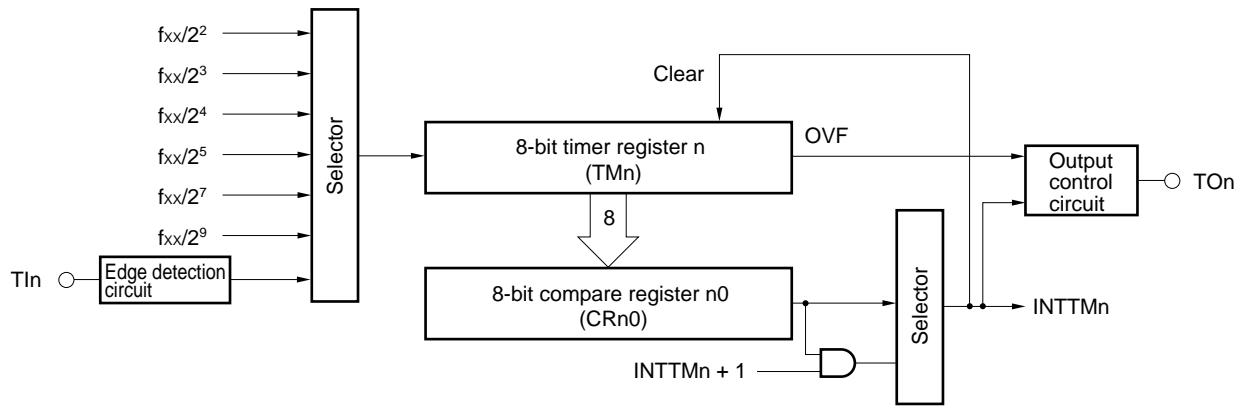

Item	Name	16-Bit Timer/ Counter	8-Bit Timer/ Counter 1	8-Bit Timer/ Counter 2	8-Bit Timer/ Counter 5	8-Bit Timer/ Counter 6	8-Bit Timer/ Counter 7	8-Bit Timer/ Counter 8
Count width	8 bits	—	○	○	○	○	○	○
	16 bits	○	○	○	○	○	○	○
Operation mode	Interval timer	1ch	1ch	1ch	1ch	1ch	1ch	1ch
	External event counter	○	○	○	○	○	○	○
Function	Timer output	1ch	1ch	1ch	1ch	1ch	1ch	1ch
	PPG output	○	—	—	—	—	—	—
	PWM output	○	○	○	○	○	○	○
	Square wave output	○	○	○	○	○	○	○
	One-shot pulse output	○	—	—	—	—	—	—
	Pulse width measurement	2 inputs	—	—	—	—	—	—
	Number of interrupt requests	2	1	1	1	1	1	1

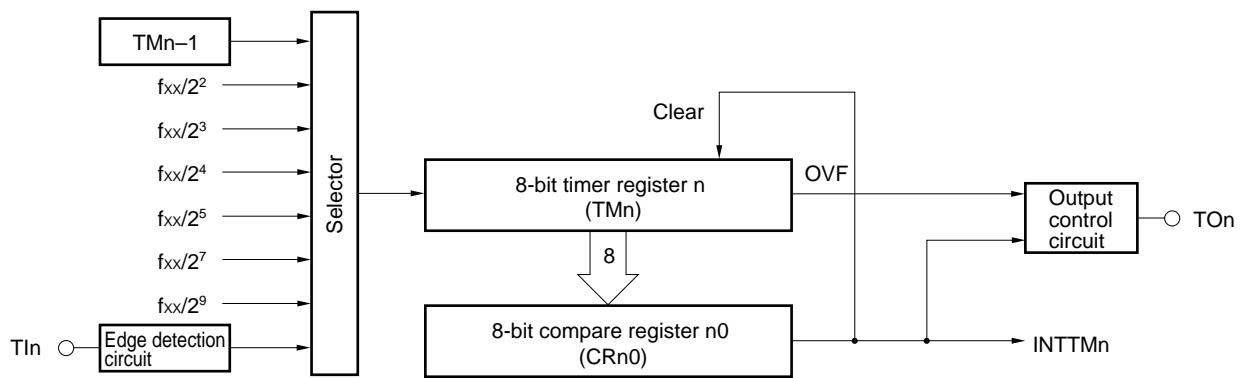
Figure 8-6. Block Diagram of Timers/Counters (1/2)


16-bit timer/counter

8-bit timer/counter 1



8-bit timer/counter 2



Remark OVF: overflow flag

Figure 8-6. Block Diagram of Timers/Counters (2/2)

8-bit timer/counter 5, 7

Remark n = 5, 7

8-bit timer/counter 6, 8

Remark n = 6, 8

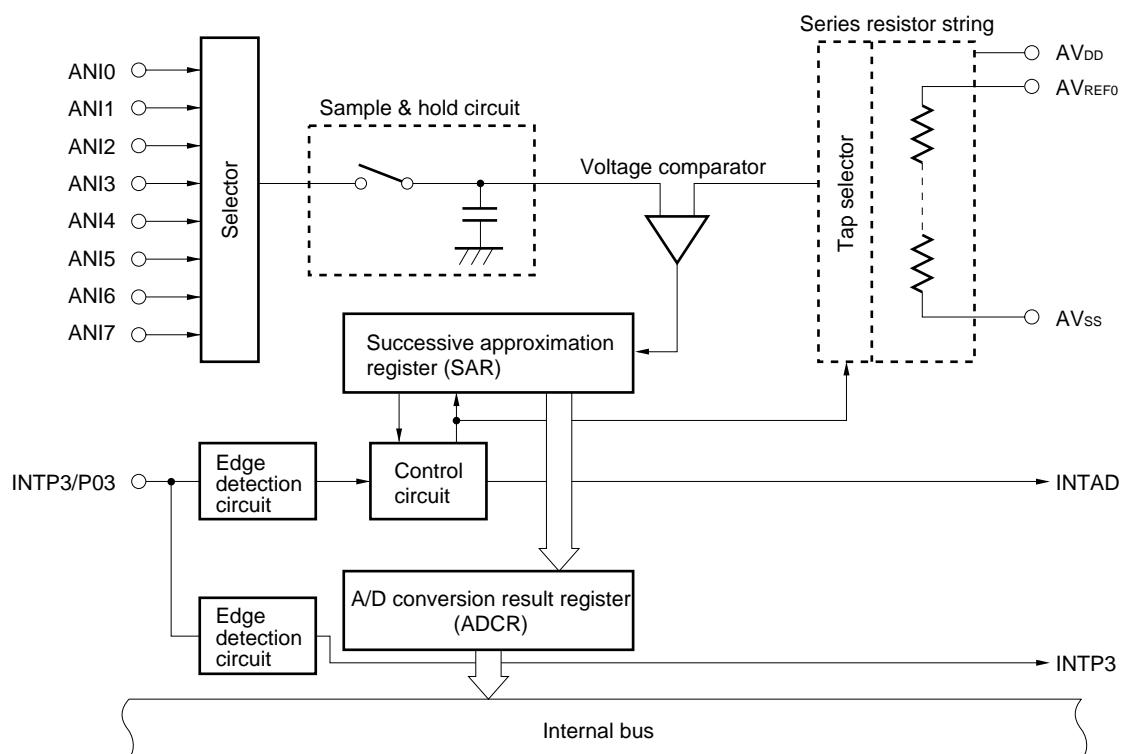
8.5 A/D Converter

An A/D converter converts an analog input variable into a digital signal. This microcontroller is provided with an A/D converter with a resolution of 8 bits and 8 channels (ANI0 through ANI7).

This A/D converter is of successive approximation type and the result of conversion is stored to an 8-bit A/D conversion result register (ADCR).

The A/D converter can be started in the following two ways:

- Hardware start


Conversion is started by trigger input (P03).

- Software start

Conversion is started by setting the A/D converter mode register.

One analog input channel is selected from ANI0 through ANI7 for A/D conversion. When A/D conversion is started by means of hardware start, conversion is stopped after it has been completed. When conversion is started by means of software start, A/D conversion is repeatedly executed, and each time conversion has been completed, an interrupt request (INTAD) is generated.

Figure 8-7. Block Diagram of A/D Converter

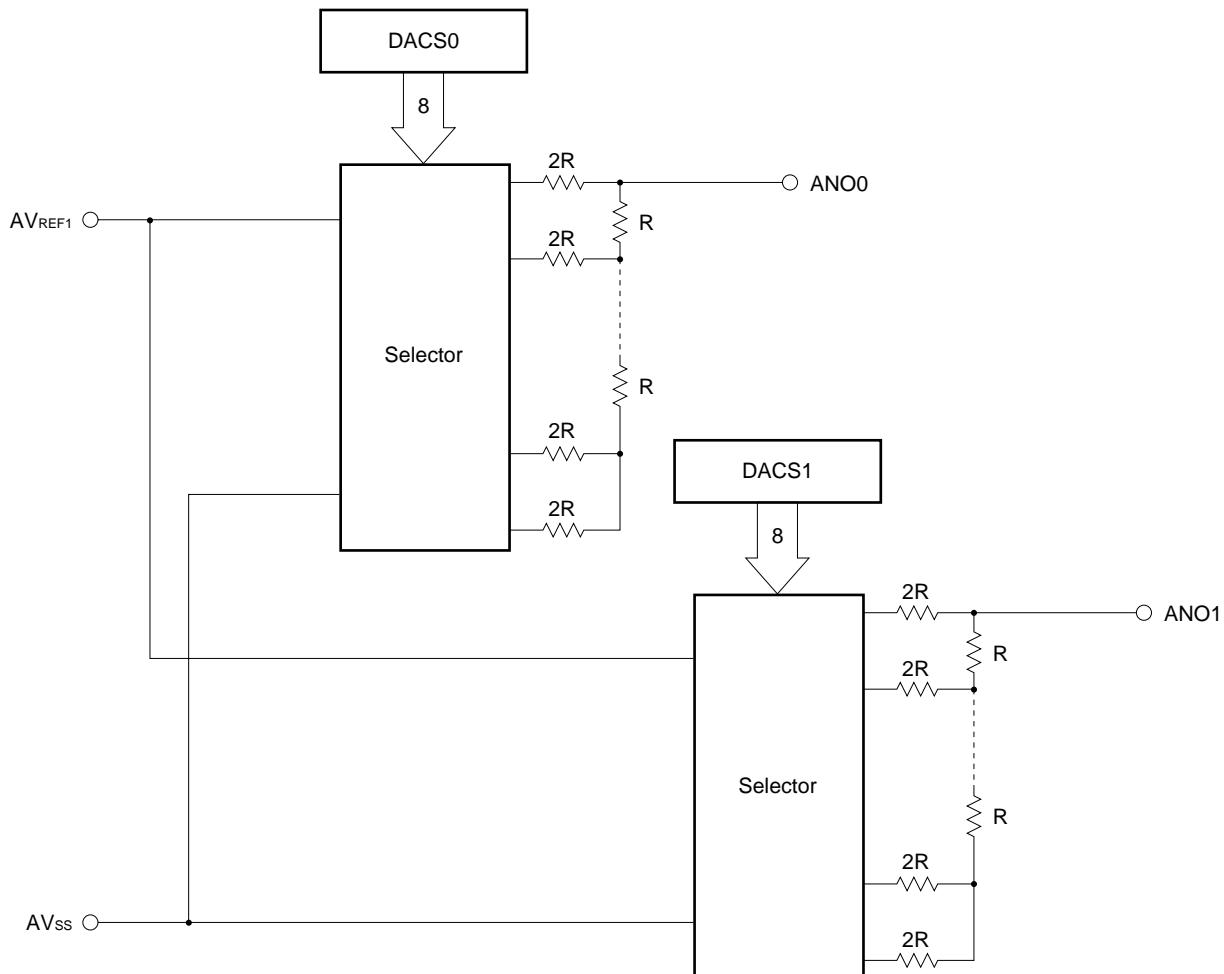
8.6 D/A Converter

A D/A converter converts an input digital signal into an analog voltage. This microcontroller is provided with a voltage output type D/A converter with a resolution of 8 bits and two channels.

The conversion method is of R-2R resistor ladder type.

D/A conversion is started by setting DACE0 of the D/A converter mode register 0 (DAM0) and DACE1 of the D/A converter mode register 1 (DAM1).

The D/A converter operates in the following two modes:

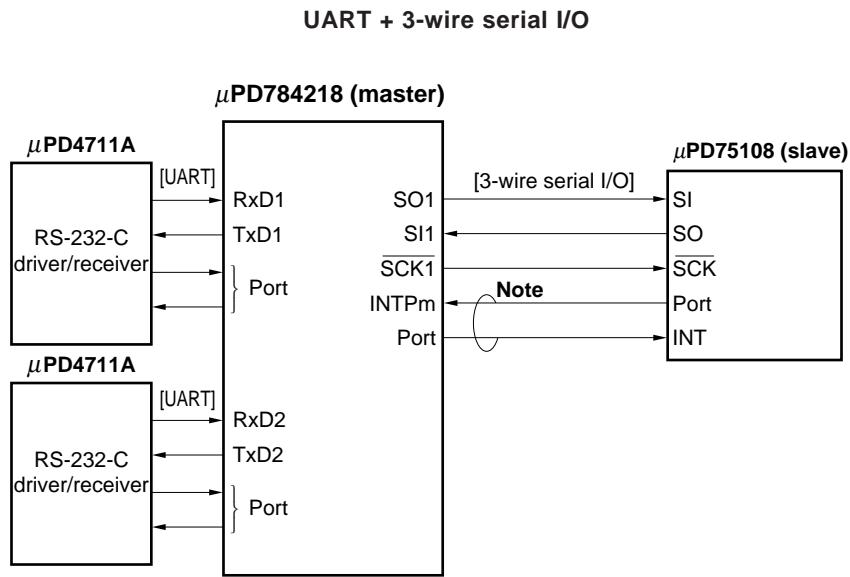

- Normal mode

The converter outputs an analog voltage immediately after it has completed D/A conversion.

- Real-time output mode

The converter outputs an analog voltage in synchronization with an output trigger after it has completed D/A conversion.

Figure 8-8. Block Diagram of D/A Converter


8.7 Serial Interface

Three independent serial interface channels are provided.

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) × 2
- Clocked serial interface (CSI) × 1
- 3-wire serial I/O (IOE)

Therefore, communication with an external system and local communication within the system can be simultaneously executed (refer to **Figure 8-9**).

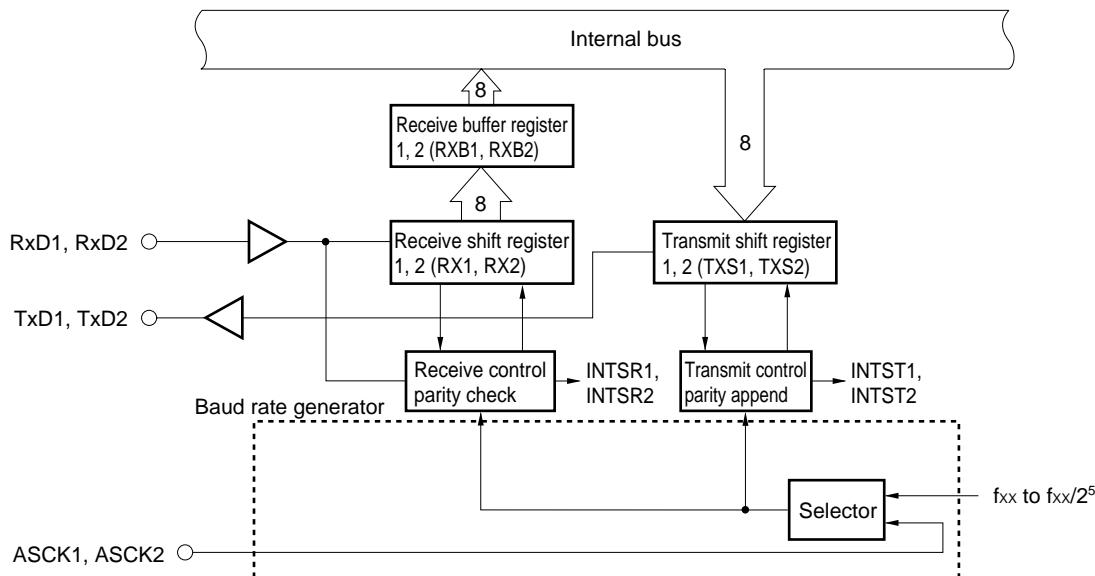
Figure 8-9. Example of Serial Interface

Note Handshake line

8.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two channels of serial interfaces that can select an asynchronous serial interface mode and 3-wire serial I/O mode are provided.

(1) Asynchronous serial interface mode

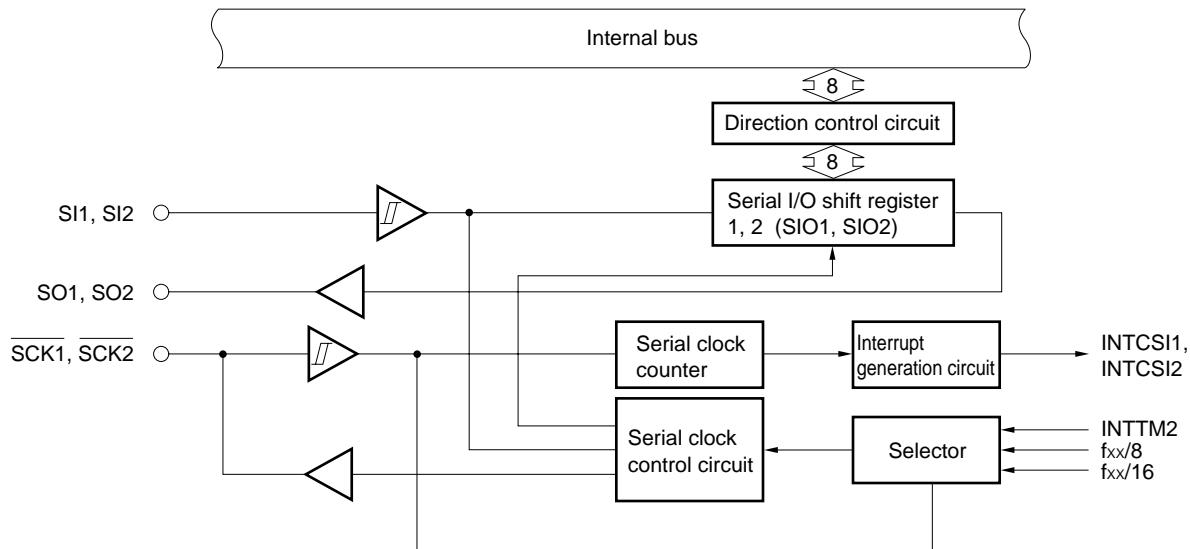

In this mode, data of 1 byte following the start bit is transmitted or received.

Because an on-chip baud rate generator is provided, a wide range of baud rates can be set.

Moreover, the clock input to the ASCK pin can be divided to define a baud rate.

When the baud rate generator is used, a baud rate conforming to the MIDI standard (31.25 kbps) can be also obtained.

Figure 8-10. Block Diagram in Asynchronous Serial Interface Mode



(2) 3-wire serial I/O mode

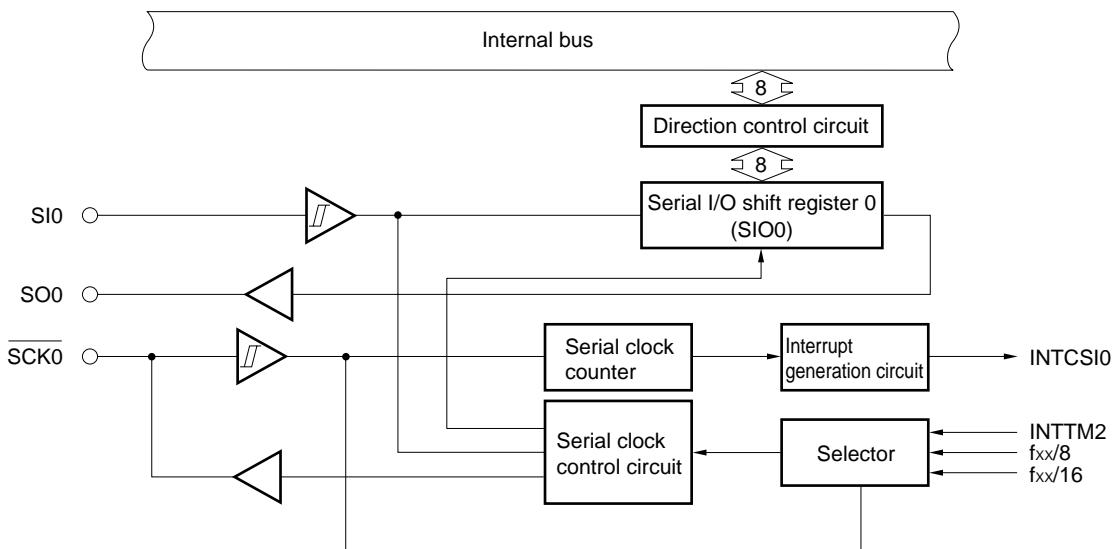
In this mode, the master device starts transfer by making the serial clock active and communicates 1-byte data in synchronization with this clock.

This mode is used to communicate with a device having the conventional clocked serial interface. Basically, communication is established by using three lines: serial clocks ($\overline{SCK1}$ and $\overline{SCK2}$), serial data inputs (SI1 and SI2), and serial data outputs (SO1 and SO2). To connect two or more devices, a handshake line is necessary.

Figure 8-11. Block Diagram in 3-wire Serial I/O Mode

8.7.2 Clocked serial interface (CSI)

In this mode, the master device starts transfer by making the serial clock active and communicates 1-byte data in synchronization with this clock.

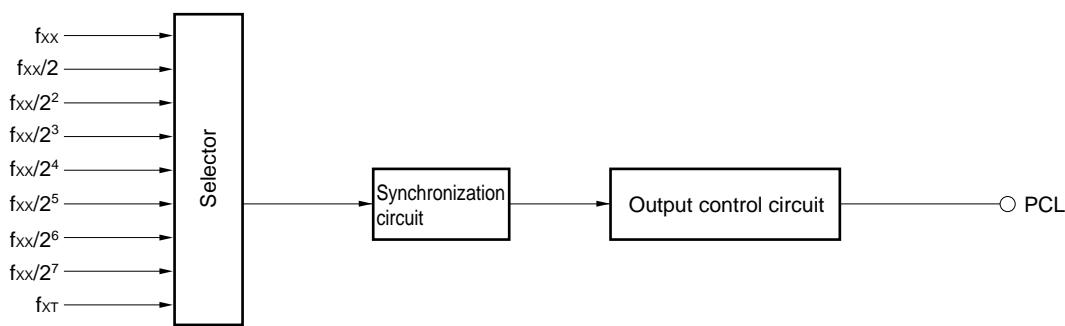

- 3-wire serial I/O mode

This mode is to communicate with devices having the conventional clocked serial interface.

Basically, communication is established in this mode with three lines: one serial clock (SCK_0) and two serial data (SIO and SO_0) lines.

Generally, a handshake line is necessary to check the reception status.

Figure 8-12. Block Diagram in 3-wire Serial I/O Mode

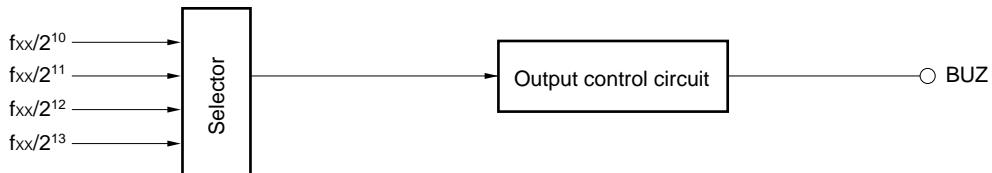


8.8 Clock Output Function

Clocks of the following frequencies can be output as clock output.

- 97.7 kHz/195 kHz/391 kHz/781 kHz/1.56 MHz/3.13 MHz/6.25 MHz/12.5 MHz
(main system clock: 12.5 MHz)
- 32.768 kHz (subsystem clock: 32.768 kHz)

Figure 8-13. Block Diagram of Clock Output Function



8.9 Buzzer Output Function

Clocks of the following frequencies can be output as buzzer output.

- 1.5 kHz/3.1 kHz/6.1 kHz/12.2 kHz (main system clock: 12.5 MHz)

Figure 8-14. Block Diagram of Buzzer Output Function

8.10 Edge Detection Function

The interrupt input pins (INTP0, INTP1, NMI/INTP2, INTP3 through INTP6) are used not only to input interrupt requests but also to input trigger signals to the internal hardware units. Because these pins operate at an edge of the input signal, they have a function to detect an edge. Moreover, a noise reduction circuit is also provided to prevent erroneous detection due to noise.

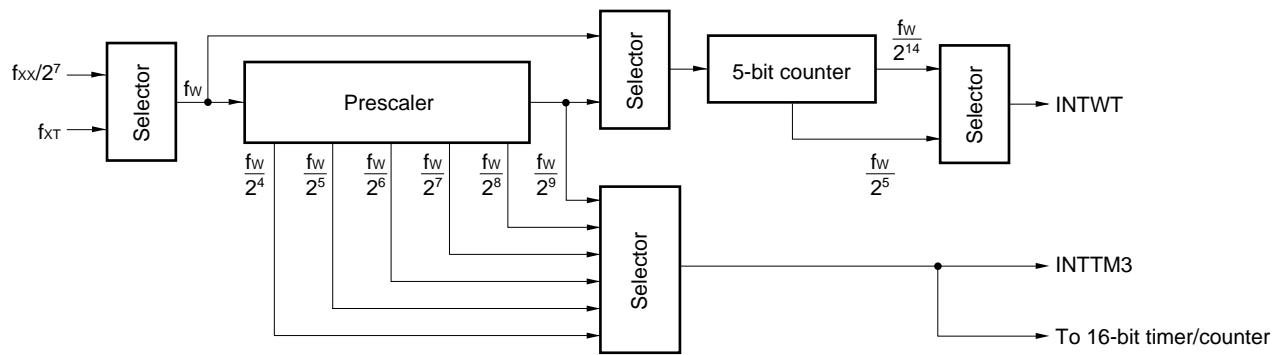
Pin Name	Detectable Edge	Noise Reduction
NMI	Either or both of rising and falling edges	By analog delay
INTP0 through INTP6		

8.11 Watch Timer

The watch timer has the following functions:

- Watch timer
- Interval timer

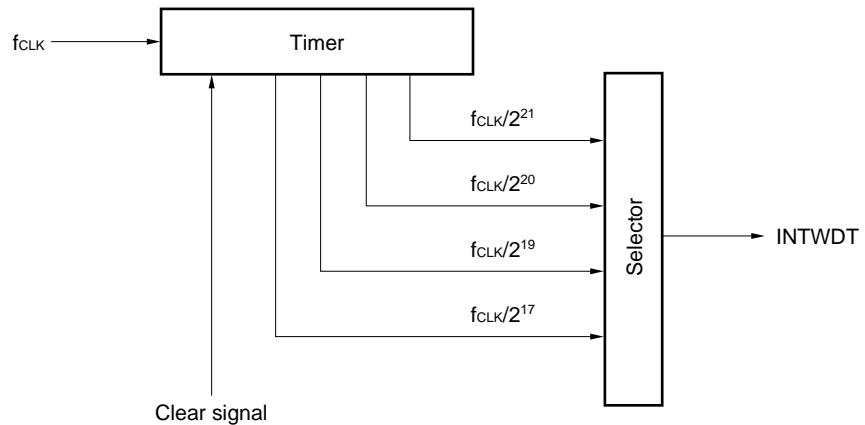
The watch timer and interval timer functions can be used at the same time.


(1) Watch timer

The watch timer sets the WTIF flag of the interrupt control register (WTIC) at time intervals of 0.5 seconds by using the 32.768-kHz subsystem clock.

(2) Interval timer

The interval timer generates an interrupt request (INTTM3) at predetermined time intervals.


Figure 8-15. Block Diagram of Watch Timer

8.12 Watchdog Timer

A watchdog timer is provided to detect a hang up of the CPU. This watchdog timer generates a non-maskable or maskable interrupt unless it is cleared by software within a specified interval time. Once enabled to operate, the watchdog timer cannot be stopped by software. Whether the interrupt by the watchdog timer or the interrupt input from the NMI pin takes precedence can be specified.

Figure 8-16. Block Diagram of Watchdog Timer

Remark f_{CLK} : Internal system clock (f_{xx} to $f_{xx}/8$)

9. INTERRUPT FUNCTION

As the servicing in response to an interrupt request, the three types shown in Table 9-1 can be selected by program.

Table 9-1. Servicing of Interrupt Request

Servicing Mode	Entity of Servicing	Servicing	Contents of PC and PSW
Vectored interrupt	Software	Branches and executes servicing routine (servicing is arbitrary)	Saves to and restores from stack
Context switching		Automatically switches register bank, branches and executes servicing routine (servicing is arbitrary)	Saves to or restores from fixed area in register bank
Macro service	Firmware	Executes data transfer between memory and I/O (servicing is fixed)	Retained

9.1 Interrupt Sources

Table 9-2 shows the interrupt sources available. As shown, interrupts are generated by 29 types of sources, execution of the BRK instruction, BRKCS instruction, or an operand error.

The priority of interrupt servicing can be set to four levels, so that nesting can be controlled during interrupt servicing and that which of the two or more interrupts that simultaneously occur should be serviced first. When the macro service function is used, however, nesting always proceeds.

The default priority is the priority (fixed) of the service that is performed if two or more interrupt requests, having the same priority, simultaneously generate (refer to **Table 9-2**).

Table 9-2. Interrupt Sources

Type	Default Priority	Source		Internal/ External	Macro Service	
		Name	Trigger			
Software	—	BRK instruction	Instruction execution	—	—	
		BRKCS instruction	Instruction execution			
		Operand error	If result of exclusive OR between operands byte and byte is not FFH when MOV STBC, #byte instruction, MOV WDM, #byte instruction, or LOCATION instruction is executed			
Non-maskable	—	NMI	Pin input edge detection	External	—	
		INTWDT	Overflow of watchdog timer			
Maskable	0 (highest)	INTWDTM	Overflow of watchdog timer	Internal	○	
	1	INTP0	Pin input edge detection	External		
	2	INTP1				
	3	INTP2				
	4	INTP3				
	5	INTP4				
	6	INTP5				
	7	INTP6				
	8	INTCSI0	End of 3-wire transfer by CSI0	Internal		
	9	INTSER1	Occurrence of UART reception error in ASI1			
	10	INTSR1	End of UART reception by ASI1			
		INTCSI1	End of 3-wire transfer by CSI1			
	11	INTST1	End of UART transmission by ASI1			
	12	INTSER2	Occurrence of UART reception error in ASI2			
	13	INTSR2	End of UART reception by ASI2			
		INTCSI2	End of 3-wire transfer by CSI2			
	14	INTST2	End of UART transmission by ASI2			
	15	INTTM3	Reference time interval signal from watch timer			
	16	INTTM00	Signal indicating coincidence between 16-bit timer register and capture/compare register (CR00)			
	17	INTTM01	Signal indicating coincidence between 16-bit timer register and capture/compare register (CR01)			
	18	INTTM1	Occurrence of coincidence signal of 8-bit timer/counter 1			
	19	INTTM2	Occurrence of coincidence signal of 8-bit timer/counter 2			
	20	INTAD	End of conversion by A/D converter			
	21	INTTM5	Occurrence of coincidence signal of 8-bit timer/counter 5			
	22	INTTM6	Occurrence of coincidence signal of 8-bit timer/counter 6			
	23	INTTM7	Occurrence of coincidence signal of 8-bit timer/counter 7			
	24	INTTM8	Occurrence of coincidence signal of 8-bit timer/counter 8			
	25	INTWT	Overflow of watch timer	External		
	26 (lowest)	INTKR	Detection of falling edge of port 8			

Remark ASI : Asynchronous Serial Interface

CSI : Clocked Serial Interface

9.2 Vectored Interrupt

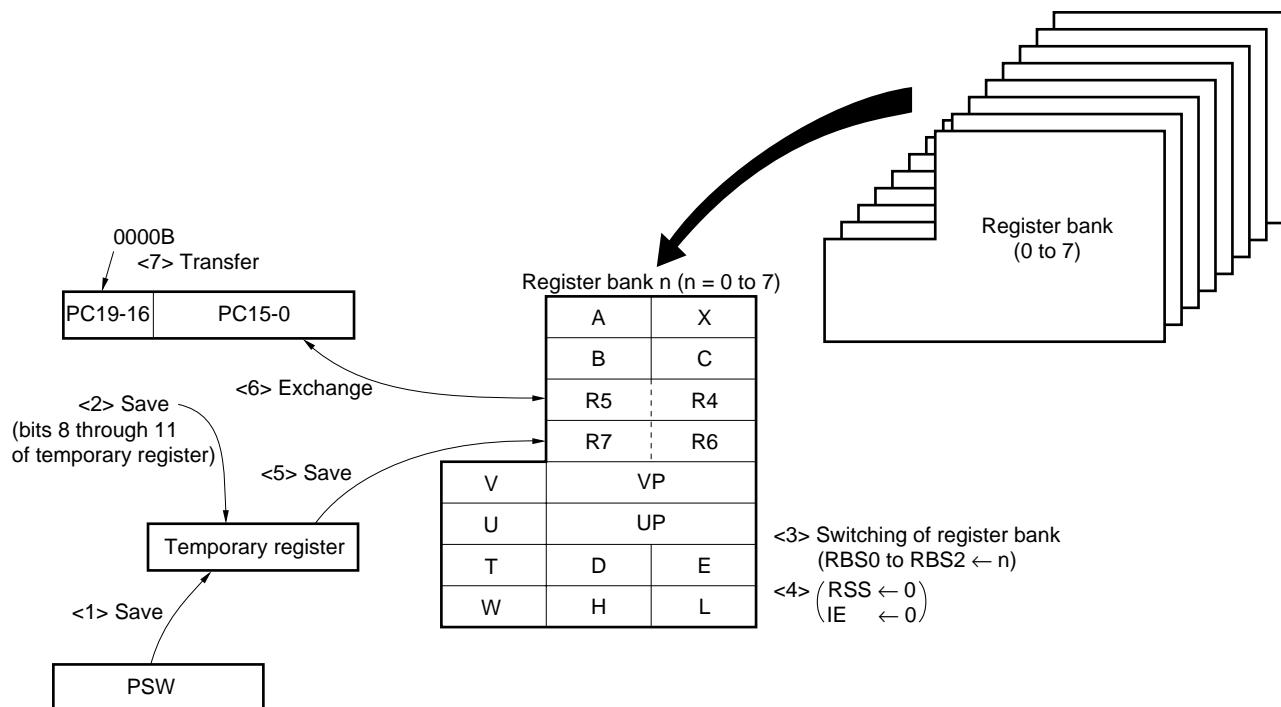
Execution branches to a servicing routine by using the memory contents of a vector table address corresponding to the interrupt source as the address of the branch destination.

So that the CPU performs interrupt servicing, the following operations are performed:

- On branching: Saves the status of the CPU (contents of PC and PSW) to stack
- On returning : Restores the status of the CPU (contents of PC and PSW) from stack

To return to the main routine from an interrupt service routine, the RETI instruction is used. The branch destination address is in a range of 0 to FFFFH.

Table 9-3. Vector Table Address

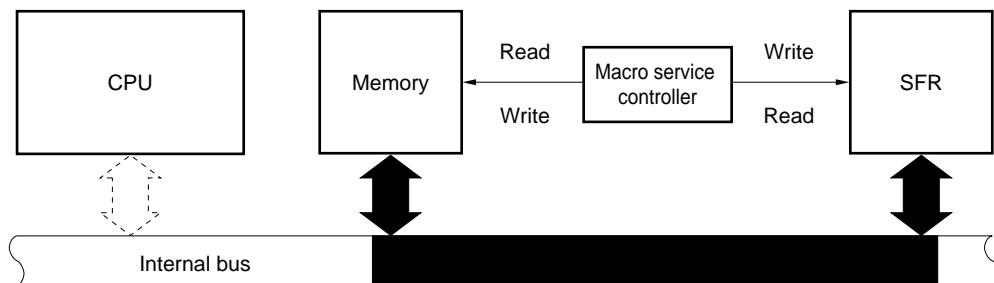

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address
BRK instruction	003EH	INTSER2	001EH
Operand error	003CH	INSR2	0020H
NMI	0002H	INTCSI2	
INTWDT (non-maskable)	0004H	INTST2	0022H
INTWDTM (maskable)	0006H	INTTM3	0024H
INTP0	0008H	INTTM00	0026H
INTP1	000AH	INTTM01	0028H
INTP2	000CH	INTTM1	002AH
INTP3	000EH	INTTM2	002CH
INTP4	0010H	INTAD	002EH
INTP5	0012H	INTTM5	0030H
INTP6	0014H	INTTM6	0032H
INTCSI0	0016H	INTTM7	0034H
INTSER1	0018H	INTTM8	0036H
INSTR1	001AH	INTWT	0038H
INTCSI1		INTKR	003AH
INTST1	001CH		

9.3 Context Switching

When an interrupt request is generated or when the BRKCS instruction is executed, a predetermined register bank is selected by hardware. Context switching is a function that branches execution to a vector address stored in advance in the register bank, and to stack the current contents of the program counter (PC) and program status word (PSW) to the register bank.

The branch destination address is in a range of 0 to FFFFH.

Figure 9-1. Context Switching Operation When Interrupt Request Is Generated



9.4 Macro Service

This function is to transfer data between memory and a special function register (SFR) without intervention by the CPU. A macro service controller accesses the memory and SFR in the same transfer cycle and directly transfers data without loading it.

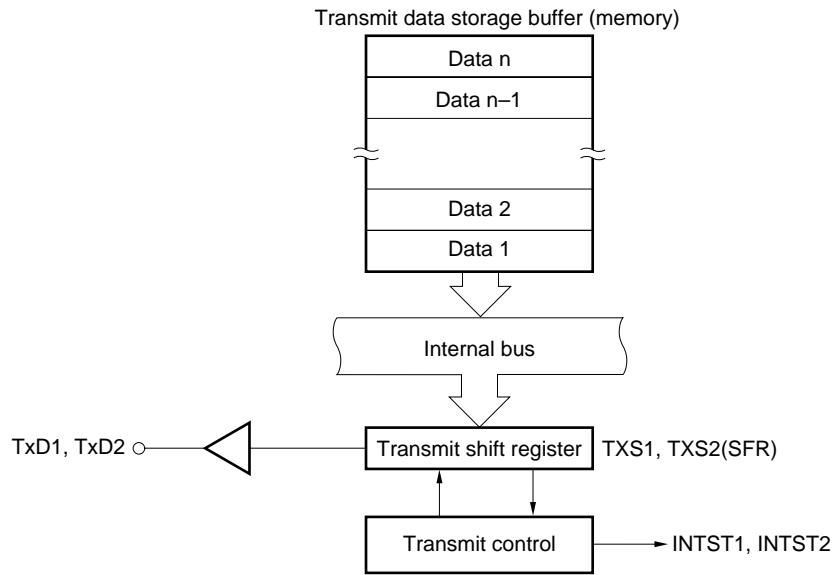
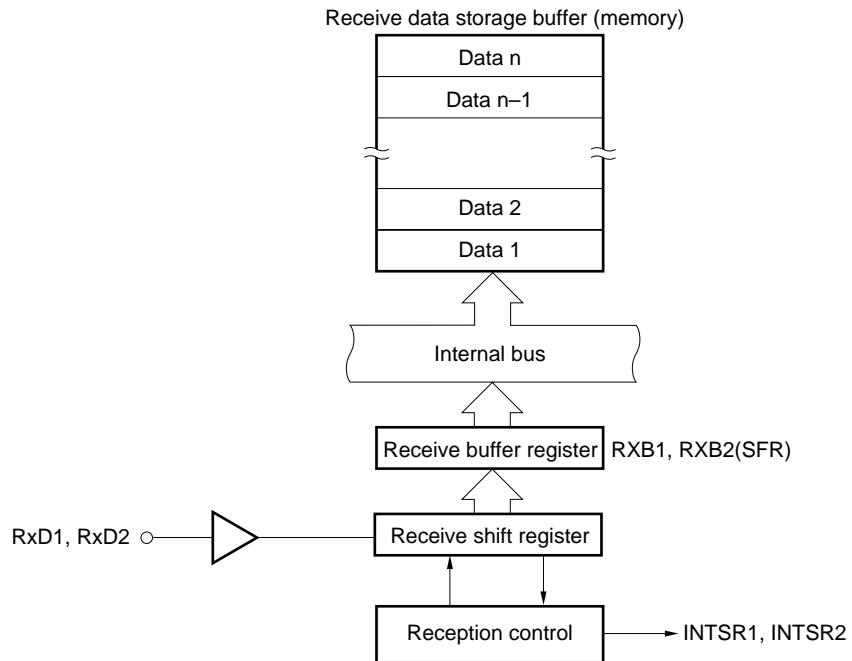

Because this function does not save or restore the status of the CPU, or load data, data can be transferred at high speeds.

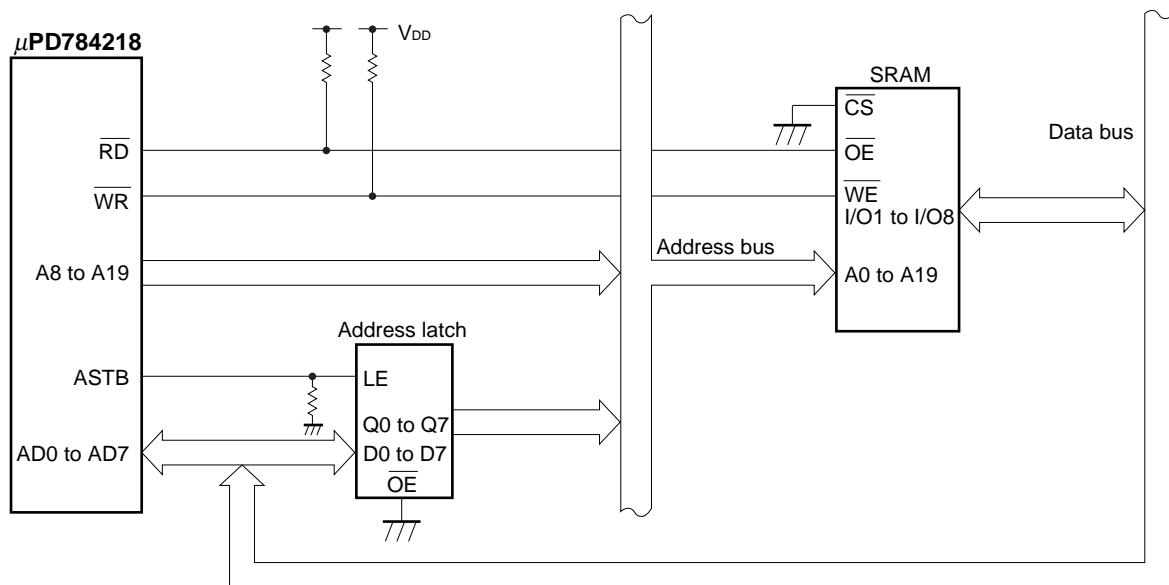
Figure 9-2. Macro Service


9.5 Application Example of Macro Service

(1) Transmission of serial interface

Each time macro service requests INTST1 and INTST2 are generated, the next transmit data is transferred from memory to TXS1 and TXS2. When data n (last byte) has been transferred to TXS1 and TXS2 (when the transmit data storage buffer has become empty), vectored interrupt requests INTST1 and INTST2 are generated.

(2) Reception of serial interface


Each time macro service requests INTSR1 and INTSR2 are generated, the receive data is transferred from RXB1 and RXB2 to memory. When data n (last byte) has been transferred to memory (when the receive data storage buffer has become full), vectored interrupt requests INTSR1 and INTSR2 are generated.

10. LOCAL BUS INTERFACE

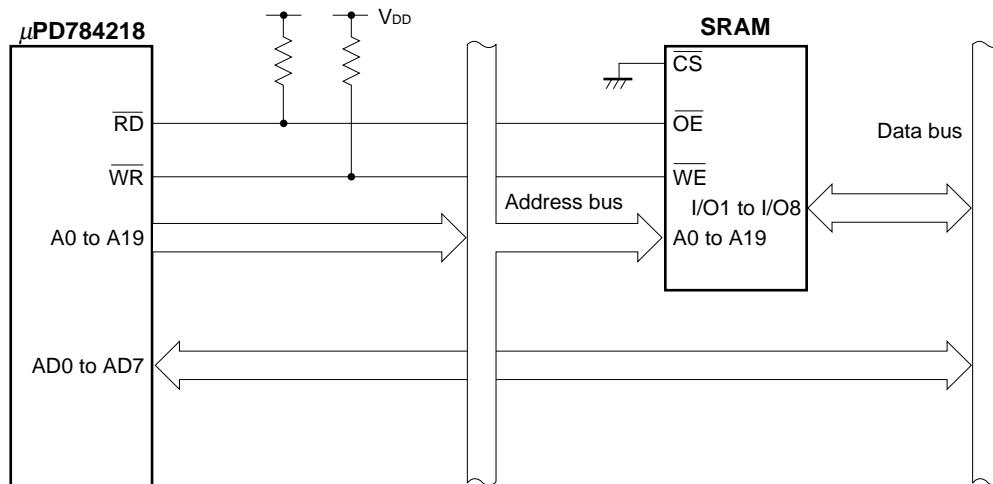

The local bus interface can connect an external memory or I/O (memory mapped I/O) and support a memory space of 1 Mbyte (refer to **Figure 10-1**).

Figure 10-1. Example of Local Bus Interface

(1) Multiplexed bus mode

(2) Separate bus mode

10.1 Memory Expansion

External program memory and data memory can be connected in two stages: 256 Kbytes and 1 Mbyte.

To connect the external memory, ports 4 through 6 and port 8 are used.

The external memory can be connected in the following two modes:

- Multiplexed bus mode: The external memory is connected by using a time-division address/data bus. The number of ports used when the external memory is connected can be reduced in this mode.
- Separate bus mode : The external memory is connected by using an address bus and data bus independent of each other. Because an external latch circuit is not necessary, this mode is useful for reducing the number of components and mounting area on the printed wiring board.

10.2 Programmable Wait

Wait state(s) can be inserted to the memory space (00000H through FFFFFH) while the \overline{RD} and \overline{WR} signals are active.

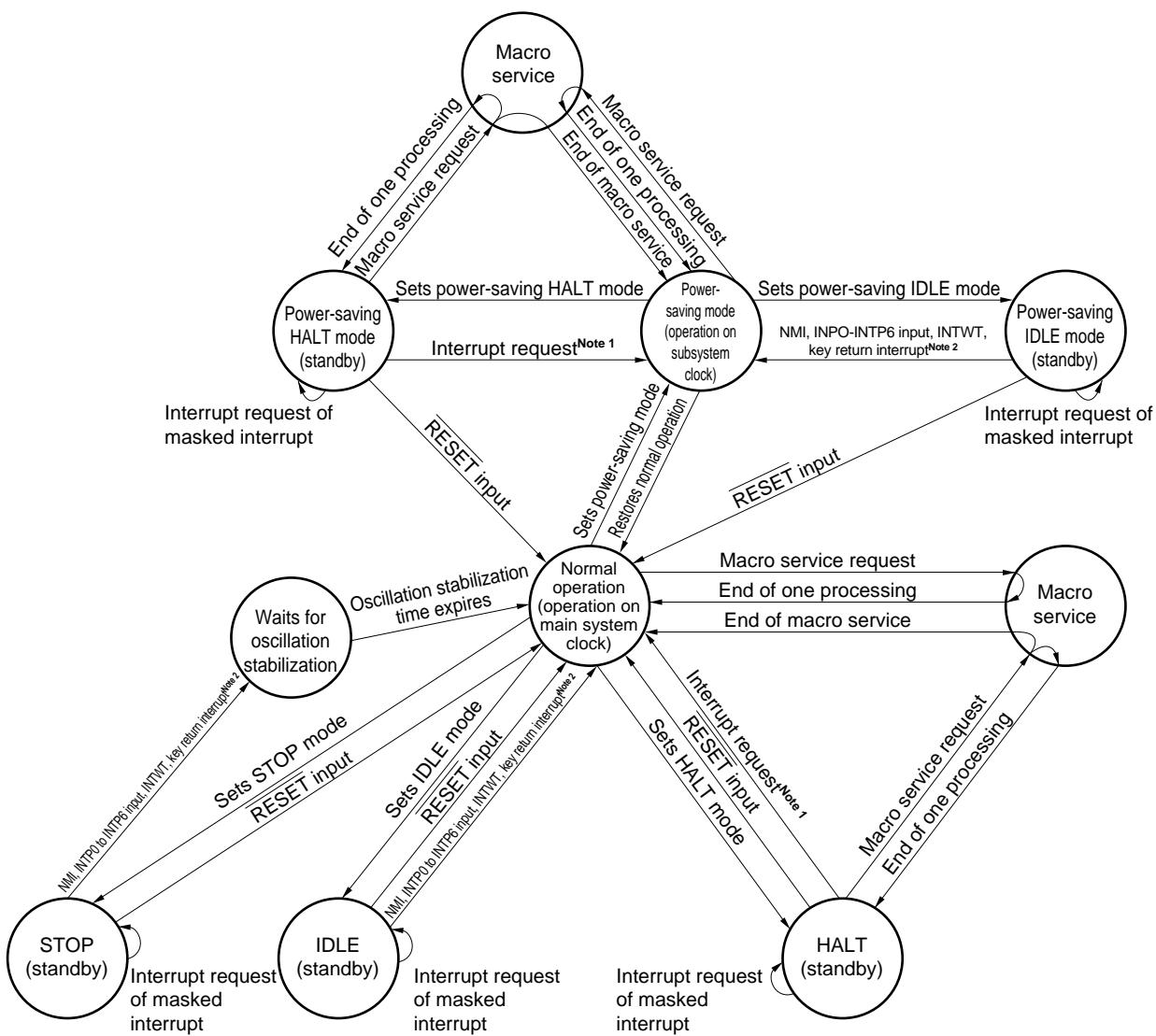
In addition, there is an address wait function that extends the active period of the ASTB signal to gain the address decode time.

10.3 External Access Status Function

The P37/EXA pin outputs an active-low external access status signal. This signal informs the other devices connected with the external bus of the external access status, disables data output to the external bus by the other devices, and enables reception.

The external access status signal is output while the external memory is accessed.

11. STANDBY FUNCTION

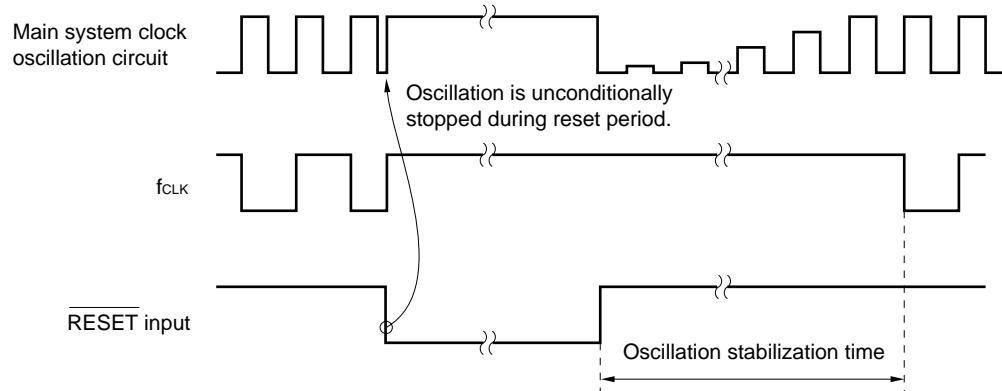

This function is to reduce the power dissipation of the chip, and can be used in the following modes:

- HALT mode : Stops supply of the operating clock to the CPU. This mode is used in combination with the normal operation mode for intermittent operation to reduce the average power dissipation.
- IDLE mode : Stops the entire system with the oscillation circuit continuing operation. The power dissipation in this mode is close to that in the STOP mode. However, the time required to restore the normal program operation from this mode is almost the same as that from the HALT mode.
- STOP mode : Stops the main system clock and thereby to stop all the internal operations of the chip. Consequently, the power dissipation is minimized with only leakage current flowing.
- Power-saving mode : The main system clock is stopped with the subsystem clock used as the system clock. The CPU can operate on the subsystem clock to reduce the current consumption.
- Power-saving HALT mode : This is a standby function in the power-saving mode and stops the operation clock of the CPU, to reduce the power dissipation of the entire system.
- Power-saving IDLE mode : This is a standby function in the power-saving mode and stops the entire system except the oscillation circuit, to reduce the power dissipation of the entire system.

These modes are programmable.

In addition, the macro service can be started in the HALT mode or power-saving HALT mode. The HALT mode is restored again after execution of the macro service processing.

Figure 11-1. Transition of Standby Status



12. RESET FUNCTION

When a low-level signal is input to the RESET pin, the system is reset, and each hardware unit is initialized (reset). During the reset period, oscillation of the main system clock is unconditionally stopped. Consequently, the current consumption of the entire system can be reduced.

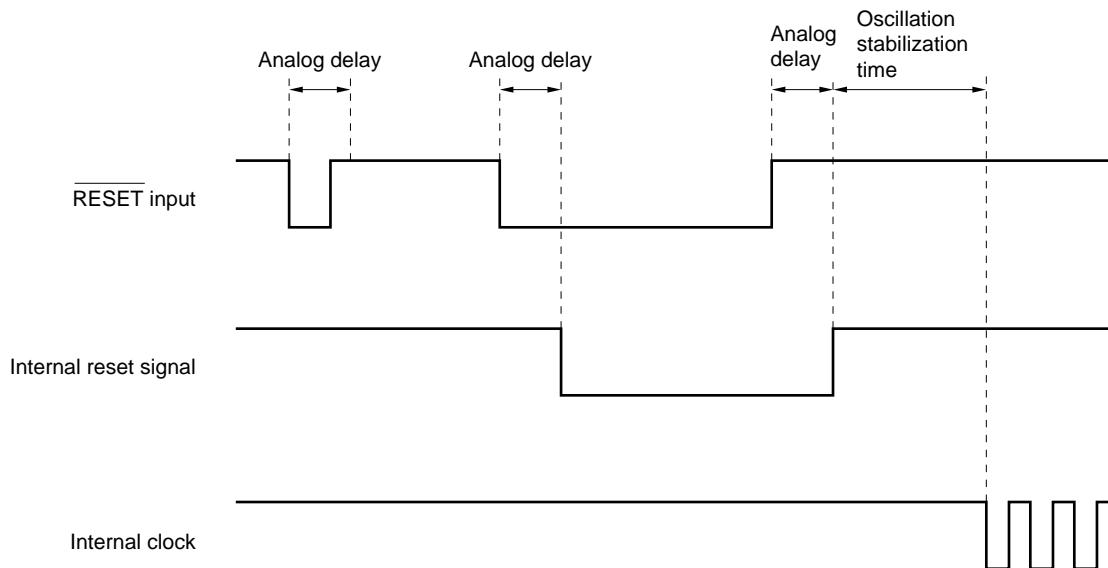
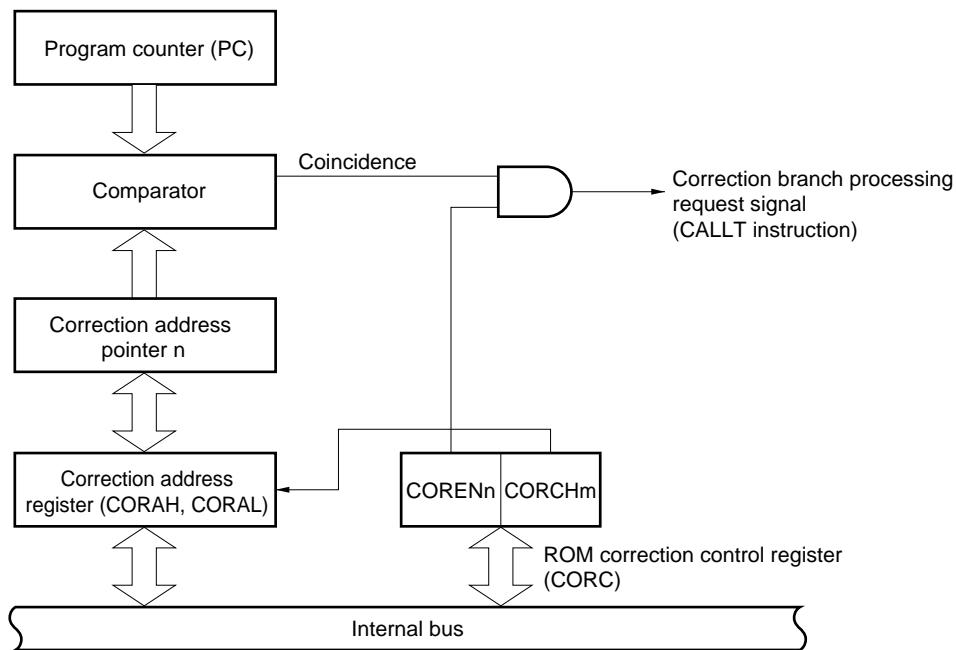

When the RESET signal goes high, the reset status is cleared, oscillation stabilization time (41.9 ms at 12.5 MHz) elapses, the contents of the reset vector table are set to the program counter (PC), execution branches to an address set to the PC, and program execution is started from that branch address. Therefore, the program can be reset and started from any address.

Figure 12-1. Oscillation of Main System Clock during Reset Period

The RESET input pin has an analog delay noise reduction circuit to prevent malfunctioning due to noise.

Figure 12-2. Accepting Reset Signal


13. ROM CORRECTION

ROM correction is a function to replace part of the program in the internal ROM with a program in the internal RAM for execution.

By using this function, the instruction bug found in the internal ROM can be avoided, or the program flow can be changed.

ROM correction can be used in up to four places in the internal ROM (program).

Figure 13-1. Block Diagram of ROM Correction

Remark n = 0 to 3, m = 0, 1

14. INSTRUCTION SET

(1) 8-bit instructions (The instructions in parentheses are combinations realized by describing A as r)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBK, CHKL, CHKLA

Table 14-1. Instruction List by 8-Bit Addressing

Second Operand First Operand	#byte	A	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [%saddrq]	r3 PSWL PSWH	[WHL+] [WHL-]	n	None ^{Note 2}
A	(MOV) ADD ^{Note 1} (XCH) (ADD) ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH (ADD) ^{Note 1}	(MOV) ^{Note 6} (XCH) ^{Note 6} (ADD) ^{Note 1,6}	MOV (XCH) (ADD) ^{Note 1}	(MOV) ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV	(MOV) (XCH) (ADD) ^{Note 1}		
r	MOV ADD ^{Note 1} (XCH) (ADD) ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH				ROR ^{Note 3}	MULU DIVUW INC DEC
saddr	MOV ADD ^{Note 1} (ADD) ^{Note 1}	(MOV) ^{Note 6} (ADD) ^{Note 1}	MOV ADD ^{Note 1}	MOV XCH ADD ^{Note 1}							INC DEC DBNZ
sfr	MOV ADD ^{Note 1}	MOV (ADD) ^{Note 1}	MOV ADD ^{Note 1}								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADD ^{Note 1}	MOV								
mem [saddrp] [%saddrq]			MOV ADD ^{Note 1}								
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE-]		(MOV) (ADD) ^{Note 1} MOVM ^{Note 4}							MOVBK ^{Note 5}		

Notes

1. The operands of ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as that of ADD.
2. Either the second operand is not used, or the second operand is not an operand address.
3. The operands of ROL, RORC, ROLC, SHR, and SHL are the same as that of ROR.
4. The operands of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as that of MOVM.
5. The operands of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBK are the same as that of MOVBK.
6. The code length of some instructions having saddr2 as saddr in this combination is short.

(2) 16-bit instructions (The instructions in parentheses are combinations realized by describing AX as rp)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 14-2. Instruction List by 16-Bit Addressing

Second Operand First Operand	#word	AX	rp rp'	saddrp saddrp'	sfrp	!addr16 !!addr24	mem [saddrp] [%saddrp]	[WHL+]	byte	n	None ^{Note 2}
AX	(MOVW) ADDW ^{Note 1} (ADD) ^{Note 1}	(MOVW) (XCHW) (ADDW) ^{Note 1}	(MOVW) (XCHW) (ADDW) ^{Note 1}	(MOVW) ^{Note 3} (XCHW) ^{Note 3} (ADDW) ^{Note 1,3}	MOVW XCHW (ADDW) ^{Note 1}	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
rp	MOVW ADDW ^{Note 1} (ADDW) ^{Note 1}	(MOVW) (XCHW) (ADDW) ^{Note 1}	MOVW XCHW ADDW ^{Note 1}	MOVW XCHW ADDW ^{Note 1}	MOVW XCHW ADDW ^{Note 1}	MOVW				SHRW SHLW	MULW ^{Note 4} INCW DECW
saddrp	MOVW ADDW ^{Note 1} (ADDW) ^{Note 1}	(MOVW) ^{Note 3} (ADDW) ^{Note 1}	MOVW ADDW ^{Note 1}	MOVW XCHW ADDW ^{Note 1}							INCW DECW
sfrp	MOVW ADDW ^{Note 1} (ADDW) ^{Note 1}	MOVW ADDW ^{Note 1}	MOVW ADDW ^{Note 1}								PUSH POP
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [%saddrp]		MOVW									
PSW											PUSH POP
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. The operands of SUBW and CMPW are the same as that of ADDW.

2. Either the second operand is not used, or the second operand is not an operand address.
3. The code length of some instructions having saddrp2 as saddrp in this combination is short.
4. The operands of MULUW and DIVUX are the same as that of MULW.

(3) 24-bit instructions (The instructions in parentheses are combinations realized by describing WHL as rg)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 14-3. Instruction List by 24-Bit Addressing

Second Operand First Operand	#imm24	WHL	rg rg'	saddr	!!addr24	mem1	[%saddr]	SP	None
WHL	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) ADDG SUBG	(MOVG)	MOVG	MOVG	MOVG	
rg	MOVG ADDG SUBG	(MOVG) (ADDG) (SUBG)	MOVG ADDG SUBG	MOVG	MOVG				INCG DECG PUSH POP
saddr		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddr]		MOVG							
SP	MOVG	MOVG							INCG DECG

Note Either the second operand is not used, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 14-4. Instruction List by Bit Manipulation Instruction Addressing

Second Operand First Operand	CY	saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	/saddr.bit /sfr.bit /A.bit /X.bit /PSWL.bit /PSWH.bit /mem2.bit /!addr16.bit /!!addr24.bit	None ^{Note}
CY		MOV1 AND1 OR1 XOR1	AND1 OR1	NOT1 SET1 CLR1
saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	MOV1			NOT1 SET1 CLR1 BF BT BTCLR BFSET

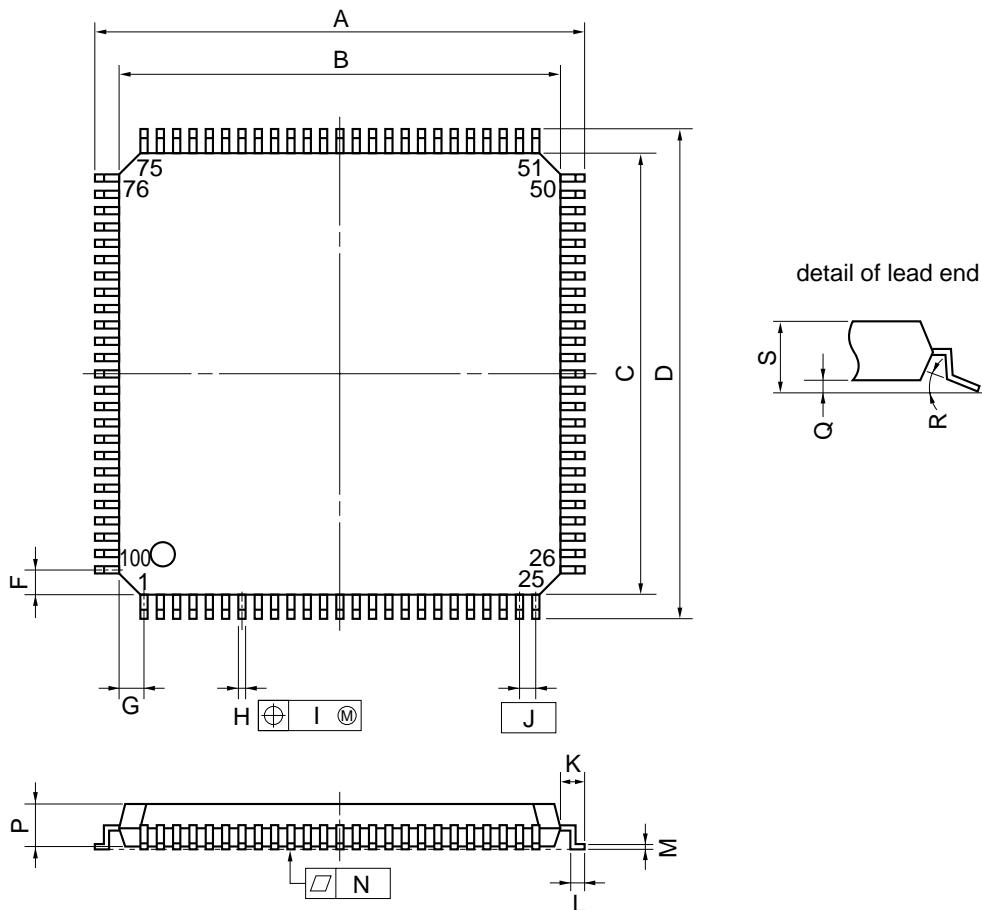
Note Either the second operand is not used, or the second operand is not an operand address.

(5) Call and return/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 14-5. Instruction List by Call and Return/Branch Instruction Addressing

Operand of Instruction Address	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instruction	BC BR	CALL BR	CALLF CALLF	CALLF BRKCS	BRK RET RETI RETB							
Compound instruction	BF BT BTCLR BFSET DBNZ											

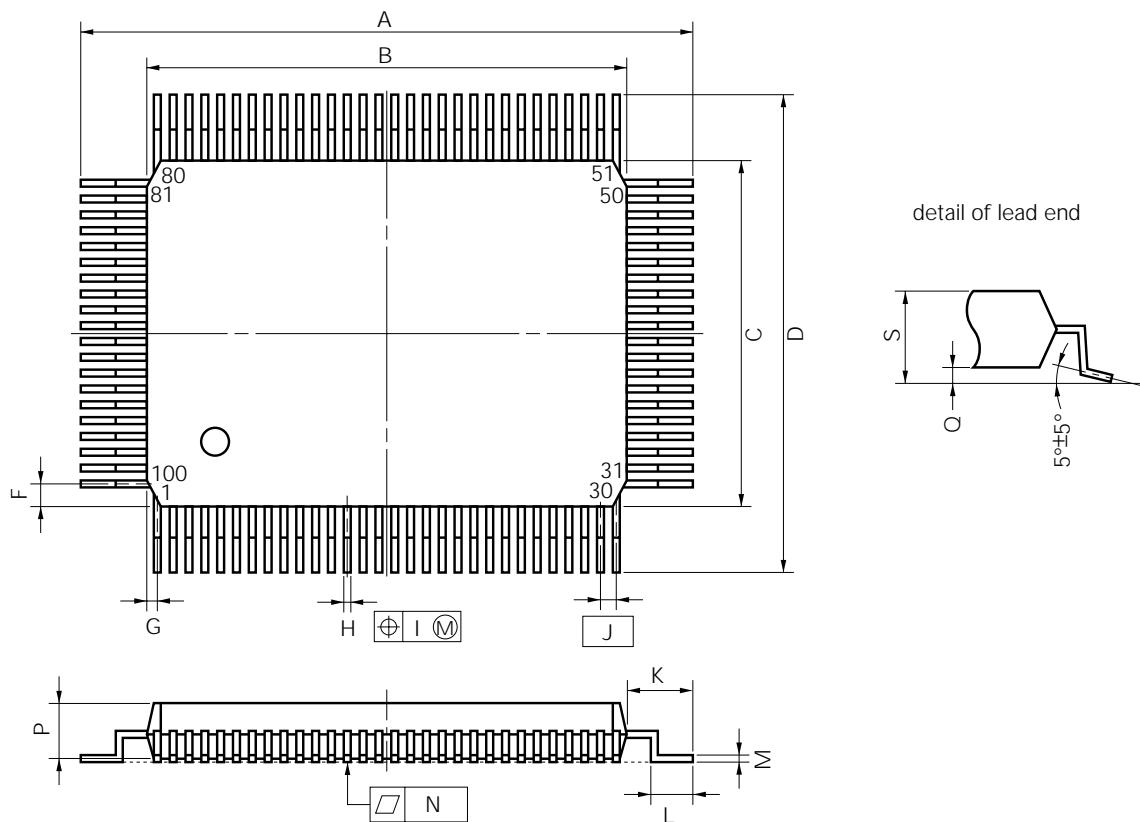

Note The operands of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as that of BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

15. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (FINE PITCH) (□14)


NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	16.0±0.2	0.630±0.008
B	14.0±0.2	0.551 ^{+0.009} _{-0.008}
C	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
H	0.22 ^{+0.05} _{-0.04}	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	0.039 ^{+0.009} _{-0.008}
L	0.5±0.2	0.020 ^{+0.008} _{-0.009}
M	0.17 ^{+0.03} _{-0.07}	0.007 ^{+0.001} _{-0.003}
N	0.10	0.004
P	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.

P100GC-50-7EA-2

100 PIN PLASTIC QFP (14 × 20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P100GF-65-3BA1-2

ITEM	MILLIMETERS	INCHES
A	23.6±0.4	0.929±0.016
B	20.0±0.2	0.795 ^{+0.009} _{-0.008}
C	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
H	0.30±0.10	0.012 ^{+0.004} _{-0.005}
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	0.071 ^{+0.008} _{-0.009}
L	0.8±0.2	0.031 ^{+0.009} _{-0.008}
M	0.15 ^{+0.10} _{-0.05}	0.006 ^{+0.004} _{-0.003}
N	0.10	0.004
P	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for supporting development of a system using the μPD784218.

Language processor software

RA78K4 ^{Note 1}	Assembler package common to 78K/IV Series
CC78K4 ^{Note 1}	C compiler package common to 78K/IV Series
CC78K4-L ^{Note 1}	C compiler library source file common to 78K/IV Series

Flash memory writing tool

Flashpro II	Dedicated flash writer. Flashpro II is a product of Naitou Densei Machidaseisakusho Co., Ltd.
FA-100GC FA-100GF	Adapter for flash memory writing. Adapter for flash memory writing is a product of Naitou Densei Machidaseisakusho Co., Ltd.

Debugging tool

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-784000-R-BK	Break board common to 78K/IV Series
IE-784218-R-EM1 IE-784000-R-EM	Emulation board for evaluation of μPD784218 Subseries
IE-70000-98-IF-B	Interface adapter when PC-9800 Series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable when notebook type PC-9800 Series is used as host machine
IE-70000-PC-IF-B	Interface adapter when IBM PC/AT™ is used as host machine
IE-78000-R-SV3	Interface adapter and cable when EWS is used as host machine
EP-78064GC-R	Emulation probe for 100-pin plastic QFP (fine pitch) (GC-7EA type) common to μPD784218 Subseries
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type) common to μPD784218 Subseries
TGC-100SDW	Adapter mounted on board of target system created for 100-pin plastic QFP (fine pitch) (GC-7EA type). TGC-100SDW is a product of Tokyo Eletech Corporation (03-5295-1661). Contact an NEC dealer to purchase this product.
EV-9200GF-100	Socket mounted on board of target system created for 100-pin plastic QFP (GF-3BA type)
SM78K4 ^{Note 2}	System simulator common to 78K/IV Series
ID78K4 ^{Note 2}	Integrated debugger for IE-784000-R
DF784218 ^{Note 3}	Device file for μPD784218 Subseries

Real-time OS

RX78K/IV ^{Note 3}	Real-time OS for 78K/IV Series
MX78K4 ^{Note 4}	OS for 78K/IV Series

Remark RA78K4, CC78K4, SM78K4, and ID78K4 are used in combination with DF784218.

Notes.

- 1. • PC-9800 Series (MS-DOS™) base
 - IBM PC/AT and compatible machine (PC DOS™, Windows™, MS-DOS, IBM DOS™) base
 - HP9000 Series 700™ (HP-UX™) base
 - SPARCstation™ (SunOS™) base
 - NEWS™ (NEWS-OS™) base
- 2. • PC-9800 Series (MS-DOS+Windows) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 Series 700 (HP-UX) base
 - SPARCstation (SunOS) base
- 3. • PC-9800 Series (MS-DOS) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 Series 700 (HP-UX) base
 - SPARCstation (SunOS) base
- 4. • PC-9800 Series (MS-DOS) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base

APPENDIX B. RELATED DOCUMENTS

Documents related to device

Document Name	Document No.	
	Japanese	English
μPD784217, 784218 Preliminary Product Information	U12303J	This document
μPD78F4218 Preliminary Product Information	U12439J	Planned
μPD784218, 784218Y Subseries User's Manual Hardware	Planned	Planned
μPD784218 Subseries Special Function Register Table	Planned	—
78K/IV Series User's Manual Instructions	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	—
78K/IV Series Instruction Set	U10595J	—
78K/IV Series Application Note Software Basics	U10095J	U10095E

Documents related to development tool (User's Manual)

Document Name	Document No.	
	Japanese	English
RA78K4 Assembler Package	Operation	U11334J
	Language	U11162J
RA78K Series Structured Assembler Preprocessor		EEU-817
CC78K4 Series	Operation	EEU-960
	Language	EEU-961
CC78K Series Library Source File		U12322J
IE-784000-R		EEU-5004
IE-784218-R-EM1		U12155J
EP-78064		EEU-934
SM78K4 System Simulator Windows Base	Reference	U10093J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J
ID78K4 Integrated Debugger Windows Base	Reference	U10440J
		U10440E

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

Documents related to embedded software (User's Manual)

Document Name	Document No.	
	Japanese	English
78K/IV Series Real-Time OS	Basics	U10603J
	Installation	U10604J
	Debugger	U10364J
78K/IV Series OS MX78K4	Basics	U11779J

Other documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	—
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcomputer Product Series Guide	U11416J	—

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

IEBus is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.