

CMOS-8LCX 3-VOLT, 0.50-MICRON CMOS GATE ARRAYS CROSSCHECK TEST SUPPORT

October 1993

Description

NEC's 3-volt CMOS-8LCX family consists of ultra-high performance, sub-micron gate arrays, targeted for applications requiring extensive integration and high speeds. The device processing includes a true 3-volt, 0.5-micron (drawn) silicon-gate CMOS technology and three-layer metalization. This technology features channelless (sea-of-gates) architecture with an internal gate delay of 131 ps (F/O = 1; L = 0 mm).

The μ PD658xx series of 3-volt CrossCheck[®]-supported devices consists of 10 masters, offered in densities of 10K gates to 486K gates. Usable gates range from 32K gates to 389K gates. These gate arrays are ideal for use in engineering workstations, high-end PCs, mainframes and LAN products, where extensive integration and high speed are primary design goals. CMOS-8LCX gate arrays are also well-suited for all battery-operated applications where high performance and low power consumption are critical; and feasible only with a truly optimized 3-volt CMOS process.

Features

- □ Supports CrossCheck on-chip testability circuitry
- □ Internal gate delays of 131 ps (F/O = 1; L = 0 mm)
- □ Channelless, 0.50 µm CMOS architecture
- □ Power (typ.) = 1.24 (3.3V) = 0.80 (3.0V)
- Process technology designed for 3V operation
- □ I/Os interface directly to 5V logic
- □ 48mA GTL I/O buffers are in development
- Phase Locked Loop (PLL) for chip-to-chip clock synchronization in development
- □ Automated generation of clock network for skew minimization
- □ High pad to gate ratio optimizes silicon usage
- Fully configurable high-speed RAM compiler
- □ Advanced package options include TAB/QFP, TQFP, PQFP, PGA and TAB
- □ Libraries characterized at 3V±10% and 3.3V±0.3V
- □ Variable output drive: 3, 6, 9, 12, 18, 24 or 48 mA
- Slew-rate controlled output buffers
- Supports scan test methodology
- Single/Dual-Port RAM and ROM memory blocks

Figure 1. Various CMOS-8LCX Packages

Table 1 Gate Array Sizes

Device µPD658xx	Metal Layers	Available Gates	Usable Gates	Total Pads
23	3	39,856	31,884	284
25	3	50,880	40,704	316
26	3	60,320	48,256	340
28	3	80,400	64,320	388
30	3	103,360	82,688	436
31	3	153,264	122,611	524
32	3	200,128	160,102	596
33	3	255,360	204,288	688
35	3	347,200	277,760	772
38	3	486,048	388,838	908

Actual gate utilitization may vary depending on circuit implementation. Utilization is 70% for three-layer metal.

Depending on package and circuit specification, some pads are used for $V_{_{\rm DD}}$ and GND and are not available as signal pads.

CMOS-8LCX products are fully supported by NEC's advanced ASIC design technology. NEC's OpenCAD[®] integration system lets the designer choose the most powerful design tools and services available.

CMOS-8LCX gate arrays support automatic test generation through CrossCheck Technology's testability structures. This results in high fault coverage ATPT of synchronous and asynchronous designs with no netlist modifications and without designer involvement.

® OpenCAD is a registered trademark of NEC Electronics Inc.
 ® CrossCheck is a registered trademark of CrossCheck Technology, Inc.

Circuit Architecture

CMOS-8LCX products are built with NEC's 0.50-micron (drawn) channelless gate array architecture. As shown in figure 2, CMOS gate array chips are divided into I/O and internal cell areas. The I/O cell area contains input and output buffers that isolate the internal cells from high-energy external signals. The internal cell area is an array of basic cells, each composed of two p-channel MOS transistors and two n-channel MOS transistors, as well as four additional n-channel MOS transistors for compact RAM design. A cell configured as a two-input NAND gate is shown in figure 3. These p-channel and n-channel transistors are sized to offer a superb ratio of speed to silicon area.

Output Slew-Rate Selection

Fast rise and fall times of CMOS output buffers can cause system noise and signal overshoot. When an unterminated line is being driven by a buffer, the maximum line length is determined by the rise and fall time of the output buffers and the round-trip signal delay of the line.

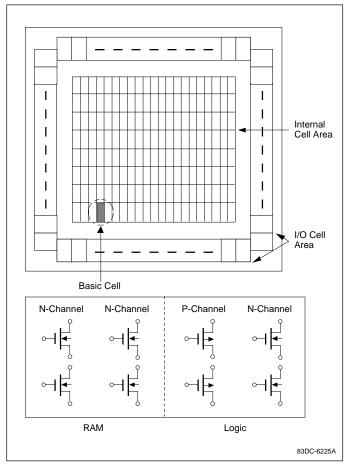
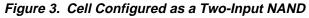



Figure 2. Chip Layout and Internal Cell Configuration

As a general rule, the round-trip delay of the line should not exceed the rise or fall time of the driving signal. Transmission lines that are longer than those determined by this rule can degrade system performance due to reflections and ringing. One benefit of slew-rate output buffers is that longer interconnections on a PC board and routing flexibility are possible.

ASIC designers, therefore, can slow down the output edge-rate by using a slew-rate output buffer and thus accommodate longer transmission lines on PC boards.

Slew-rate buffers also inject less noise into the internal power and ground busses of the device, than their nonslew-rate counterparts. As a consequence, slew-rate buffers require fewer power/ground pairs for simultaneous switching outputs.

Publications

This data sheet contains preliminary specifications, package information, and operational data for the CMOS-8LCX gate array families. Additional design information will be available in NEC's CMOS-8LCX Block Library and CMOS-8LCX Design Manual. Contact your local NEC Design Center or the NEC Literature Center for further ASIC design information; see the back of this data sheet for locations and phone numbers.

Absolute Maximum Ratings

-0.5 to +4.6 V V _{DD} + 0.5 V
V _{DD} + 0.5 V
V _{DD} + 3.0 V
>1 A (typ)
–40 to +85°C
65 to +150°C

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance

 $V_{DD} = V_{I} = 0 V; f = 1 MHz$

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF

Note: (1) Values include package pin capacitance.

Power Consumption at $V_{DD} = 3.3V \pm 0.3V$

Description	Limits	Unit
Internal cell	1.24	µW/MHz
Input block (FI01)	10.0	µW/MHz
Output block	0.181	mW/MHz

Recommended Operating Conditions at $V_{DD} = 3.3V \pm 0.3V$

Parameter	Symbol	Min	Max	Unit
Power supply voltage	V _{DD}	2.7	3.6	V
Ambient temperature	T _A	-40	+85	°C
Low-level input voltage, 3V	V _{IL}	0	0.3 V _{DD}	V
High-level input voltage, 3V	V _{IH}	0.7 V _{DD}	V _{DD}	V
Low-level input voltage, 5V	V _{IL}	0	0.8	V
High-level input voltage, 5V	V _{IH}	2.2	V _{PP}	V
Input rise or fall time	t _R , t _F	0	200	ns
Input rise or fall time, Schmitt	t _R , t _F	0	10	ms
Positive Schmitt-trigger voltage	V _P	TBD	TBD	V
Negative Schmitt-trigger voltage	V _N	TBD	TBD	V
Hysteresis voltage	V _H	TBD	TBD	V

AC Characteristics at $V_{DD} = 3.3V \pm 0.3V$; $T_j = -40^{\circ}C$ to +125°C

Parameter	Symbol	Min	Тур	Мах	Unit	Conditions
Toggle frequency	f _{TOG}	175			MHz	D-F/F; F/O = 2
Delay time, 2-input NAND gate						
Standard gate (F302)	t _{PD}	_	131		ps	F/O = 1; L = 0 mm
		_	243		ps	F/O = 2; L = 1 mm
Low power gate (L302)	t _{PD}	_	149		ps	F/O = 1; L = 0 mm
			371		ps	F/O = 2; L = 1 mm
Delay time, buffer						
Input (FI01)	t _{PD}		1.1		ns	F/O = 1; L = 0 mm @ V _{DD} = 3.3 V
Output (FO06)	t _{PD}		2.0		ns	C _L = 15 pF @ V _{DD} = 3.3V
Output rise time (FO06)	t _R		1.1		ns	C _L = 15 pF @ V _{DD} = 3.3V
Output fall time (FO06)	t _F		1.1		ns	C _L = 15 pF @ V _{DD} = 3.3V

DC Characteristics at V_{DD} = $3.3V \pm 0.3V$ V_{DD} = $3.3V \pm 0.3V$ or $3V \pm 10\%$; T_j = -40° C to $+125^{\circ}$ C

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Quiescent current (Note 1)	Ι _L		TBD	TBD	μA	$V_1 = V_{DD}$ or GND
Input leakage current						
Regular	l _i		10 ⁻⁵	10	μA	$V_1 = V_{DD}$ or GND
50 kΩ pull-up	l,	TBD	TBD	TBD	μA	V _I = GND
5 kΩ pull-up	l _l	TBD	TBD	TBD	mA	V _I = GND
50 kΩ pull-down	l,	TBD	TBD	TBD	μA	$V_{I} = V_{DD}$
Off-state output leakage current	I _{oz}			TBD	μA	$V_0 = V_{DD}$ or GND
Input clamp voltage	V _{IC}	TBD			V	I _I = 18 mA
Output short circuit current (Note 2)	I _{OS}	TBD			mA	$V_0 = 0 V$
Low-level output current, 3V buffers						
3 mA	I _{OL}	3			mA	V _{OL} = 0.4 V
6 mA	I _{OL}	6			mA	V _{OL} = 0.4 V
9 mA	I _{OL}	9			mA	V _{OL} = 0.4 V
12 mA	I _{OL}	12			mA	V _{OL} = 0.4 V
18 mA	I _{OL}	18			mA	V _{OL} = 0.4 V
24 mA	I _{OL}	24			mA	V _{OL} = 0.4 V
48 mA	I _{OL}	48			mA	V _{OL} = 0.4 V
Low-level output current, 5V buffers						
3 mA	I _{OL}	3			mA	V _{OL} = 0.4 V
6 mA	I _{OL}	6			mA	V _{OL} = 0.4 V
9 mA	I _{OL}	9			mA	V _{OL} = 0.4 V
12 mA	I _{OL}	12			mA	V _{OL} = 0.4 V
18 mA	I _{OL}	18			mA	V _{OL} = 0.4 V
High-level output current, 3V buffers						-
3 mA	I _{OH}	-3			mA	V _{OH} = 2.4 V
6 mA	I _{OH}	-6			mA	V _{OH} = 2.4 V
9 mA	I _{OH}	-9			mA	V _{OH} = 2.4 V
12 mA	I _{OH}	-12			mA	V _{OH} = 2.4 V
18 mA	I _{OH}	-18			mA	V _{OH} = 2.4 V
24 mA	I _{OH}	-24			mA	V _{OH} = 2.4 V
48 mA	I _{OH}	-48			mA	V _{OH} = 2.4 V
High-level output current, 5V buffers						
3 mA	I _{OH}	-3			mA	V _{OH} = 2.4 V
6 mA	I _{OH}	-3			mA	V _{OH} = 2.4 V
9 mA	I _{OH}	-3			mA	V _{OH} = 2.4 V
12 mA	I _{OH}	-6			mA	V _{OH} = 2.4 V
18 mA	I _{OH}	-6			mA	V _{OH} = 2.4 V
Low-level output voltage, 3V and 5V	V _{OL}			0.1	V	$I_{OL} = 0 \text{ mA}$
High-level output voltage, 3V and 5V	V _{OH}	V _{DD} - 0.1			V	I _{OH} = -0.2 mA

The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center Notes: (1) for assistance in calculation.

(2) Rating is for only one output operating in this mode for less than 1 second.

Absolute Maximum Ratings

$\label{eq:supply voltage, V_{DD}} \begin{array}{c} -0.5 \ \text{to } +4.6 \ \text{V} \\ \hline 3 \text{V interface I/O voltage, V}_{I,} \text{V}_{O} & -0.5 \ \text{V to } \text{V}_{DD} + 0.5 \ \text{V} \\ \hline 5 \text{V interface I/O voltage, V}_{I,} \text{V}_{O} & -0.5 \ \text{V to } \text{V}_{DD} + 3.0 \ \text{V} \\ \hline \text{Latch-up current, I}_{LATCH} & >1 \ \text{A (typ)} \\ \hline \text{Operating temperature, T}_{OPT} & -40 \ \text{to } +85^{\circ}\text{C} \\ \hline \text{Storage temperature, T}_{STG} & -65 \ \text{to } +150^{\circ}\text{C} \\ \end{array}$		
5V interface I/O voltage, V_{I}, V_{O} -0.5 V to V_{DD} + 3.0 VLatch-up current, I_{LATCH} >1 A (typ)Operating temperature, T_{OPT} -40 to +85°C	Power supply voltage, V_{DD}	–0.5 to +4.6 V
Latch-up current, I>1 A (typ)Operating temperature, T-40 to +85°C	3V interface I/O voltage, V_{I, v_O}	–0.5 V to V _{DD} + 0.5 V
Operating temperature, T _{OPT} -40 to +85°C	5V interface I/O voltage, V_{I, V_O}	-0.5 V to V _{DD} + 3.0 V
	Latch-up current, I _{LATCH}	>1 A (typ)
Storage temperature, T _{STG} -65 to +150°C	Operating temperature, T _{OPT}	–40 to +85°C
	Storage temperature, T _{STG}	-65 to +150°C

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance $V_{DD} = V_I = 0 V$; f=1 MHz

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF

Power Consumption at $V_{DD} = 3.0V \pm 10\%$

Description	Limits	Unit
Internal cell	0.80	µW/MHz/cell
Input block (FI01)	8.0	µW/MHz
Output block	0.164	mW/MHz

Recommended Operating Conditions at V_{DD} = 3.0V ± 10%

Parameter	Symbol	Min	Max	Unit
Power supply voltage	V _{DD}	2.7	3.6	V
Ambient temperature	T _A	-40	+85	°C
Low-level input voltage, 3V	V _{IL}	0	0.3 V _{DD}	V
High-level input voltage, 3V	V _{IH}	0.7 V _{DD}	V _{DD}	V
Low-level input voltage, 5V	V _{IL}	0	0.8	V
High-level input voltage, 5V	V _{IH}	2.2	V _{DD}	V
Input rise or fall time	t _R , t _F	0	200	ns
Input rise or fall time, Schmitt	t _R , t _F	0	10	ms
Positive Schmitt-trigger voltage	V _P	TBD	TBD	V
Negative Schmitt-trigger voltage	V _N	TBD	TBD	V
Hysteresis voltage	V _H	TBD	TBD	V

AC Characteristics at V_{DD} = 3.0V ± 10%; T_j = -40°C to +125°C

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Toggle frequency	f _{TOG}	175			MHz	D-F/F; F/O = 2
Delay time, 2-input NAND gate						
Standard gate (F302)	t _{PD}	_	147		ps	F/O = 1; L = 0 mm
			272		ps	F/O = 2; L = 1 mm
Low power gate (L302)	t _{PD}		167		ps	F/O = 1; L = 0 mm
			416		ps	F/O = 2; L = 1 mm
Delay time, buffer						
Input (FI01)	t _{PD}		309		ps	F/O = 1; L = 0 mm @ V _{DD} = 3.0 V
Output (FO06)	t _{PD}		1.62		ns	C _L = 15 pF @ V _{DD} = 3.0V
Output rise time (FO06)	t _R		TBD		ns	C _L = 15 pF @ V _{DD} = 3.0V
Output fall time (FO06)	t _F		TBD		ns	C _L = 15 pF @ V _{DD} = 3.0V

DC Characteristics at V_{DD} = 3.0V ± 10% V_{DD} = 3.3V ± 0.3V or 3V ± 10%; T_j = -40°C to +125°C

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Quiescent current (Note 1)	Ι _L		TBD	TBD	μA	$V_I = V_{DD}$ or GND
Input leakage current						
Regular	l _l		10 ⁻⁵	10	μA	$V_1 = V_{DD}$ or GND
50 kΩ pull-up	l,	TBD	TBD	TBD	μA	V _I = GND
5 kΩ pull-up	l,	TBD	TBD	TBD	mA	V _I = GND
50 kΩ pull-down	l,	TBD	TBD	TBD	μA	$V_{I} = V_{DD}$
Off-state output leakage current	I _{oz}			TBD	μA	V _O = V _{DD} or GND
Input clamp voltage	V _{IC}	TBD			V	l _l = 18 mA
Output short circuit current (Note 2)	I _{OS}	TBD			mA	$V_0 = 0 V$
Low-level output current, 3V buffers						
3 mA	I _{OL}	3			mA	V _{OL} = 0.4 V
6 mA	I _{OL}	6			mA	V _{OL} = 0.4 V
9 mA	I _{OL}	9			mA	V _{OL} = 0.4 V
12 mA	I _{OL}	12			mA	V _{OL} = 0.4 V
18 mA	I _{OL}	18			mA	V _{OL} = 0.4 V
24 mA	I _{OL}	24			mA	V _{OL} = 0.4 V
48 mA	I _{OL}	48			mA	V _{OL} = 0.4 V
Low-level output current, 5V buffers						
3 mA	I _{OL}	3			mA	V _{OL} = 0.4 V
6 mA	I _{OL}	6			mA	V _{OL} = 0.4 V
9 mA	I _{OL}	9			mA	V _{OL} = 0.4 V
12 mA	I _{OL}	12			mA	V _{OL} = 0.4 V
18 mA	I _{OL}	18			mA	V _{OL} = 0.4 V
High-level output current, 3V buffers						
3 mA	I _{OH}	-3			mA	V _{OH} = 2.4 V
6 mA	I _{он}	-6			mA	V _{OH} = 2.4 V
9 mA	I _{OH}	-9			mA	V _{OH} = 2.4 V
12 mA	I _{OH}	-12			mA	V _{OH} = 2.4 V
18 mA	I _{OH}	-18			mA	V _{OH} = 2.4 V
24 mA	I _{OH}	-24			mA	V _{OH} = 2.4 V
48 mA	I _{OH}	-48			mA	V _{OH} = 2.4 V
High-level output current, 5V buffers						
3 mA	I _{OH}	-2			mA	V _{OH} = 2.2 V
6 mA	I _{OH}	-2			mA	V _{OH} = 2.2 V
9 mA	I _{OH}	-2			mA	V _{OH} = 2.2 V
12 mA	I _{OH}	-4			mA	V _{OH} = 2.2 V
18 mA	I _{он}	-4			mA	V _{OH} = 2.2 V
Low-level output voltage, 3V and 5V	V _{OL}			0.1	V	$I_{OL} = 0 \text{ mA}$
High-level output voltage, 3V	V _{OH}	V _{DD} - 0.1			V	I _{OH} =0 mA
High-level output voltage, 5V	V _{он}	V _{DD} - 0.2			V	I _{OH} = 0 mA

 The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center for assistance.
 Rating is for only one output operating in this mode for less than 1 second. Notes: (1)

Table 2 CMOS-8 Package Options

Maximum		je Dimens					Mas	ter Slic	e µPD6	5xxx			
I/O Pins	Body Size	Pitch	Height	-823	-825	-826	-828	-830	-831	-832	-833	-835	-838
Plastic Quad Flat	pack (PQFP)												
120-pin	28 mm 🗆	0.8 mm	3.7 mm	А	А	А	А	А	А	А	А	А	А
136-pin	28 mm 🗆	0.65 mm	3.7 mm	А	А	А	А	А	А	А	А	А	А
160-pin	28 mm 🗆	0.65 mm	3.7 mm	D	D	А	А	А	А	А	А	А	А
160-pin (H/	'S) 28 mm □	0.65 mm	3.2 mm	-	D	D	D	D	D	D	D	D	-
184-pin	32 mm 🗆	0.65 mm	3.2 mm	D	D	D	D	D	D	D	D	D	D
Plastic Quad Flat	pack (PQFP-FP)												
100-pin	14 mm 🗆	0.5 mm	1.45 mm	А	А	А	-	-	-	-	-	-	-
120-pin	20 mm □	0.5 mm	2.7 mm	А	А	А	А	А	А	А	А	-	-
144-pin	20 mm □	0.5 mm	2.7 mm	А	А	А	А	А	А	А	А	-	-
160-pin	24 mm 🗆	0.5 mm	2.7 mm	D	А	А	А	А	А	А	А	А	-
160-pin (H/	'S) 24 mm □	0.5 mm	2.7 mm	-	Р	Р	Ρ	Р	Р	Р	Р	Р	-
176-pin	24 mm 🗆	0.5 mm	2.7 mm	D	D	А	А	А	А	А	А	А	-
176-pin (H/	'S) 24 mm □	0.5 mm	2.7 mm	-	-	D	D	D	D	D	D	D	-
208-pin	28 mm 🗆	0.5 mm	3.2 mm	D	D	D	D	А	А	А	А	А	А
208-pin (H/	'S) 28 mm □	0.5 mm	3.2 mm	-	-	-	-	D	D	D	D	D	D
240-pin	32 mm 🗆	0.5 mm	3.2 mm	D	D	D	D	D	А	А	А	А	А
256-pin	28 mm 🗆	0.4 mm	3.2 mm	D	D	D	D	D	А	А	А	А	А
272-pin	36 mm □	0.5 mm	3.2 mm	D	D	D	D	D	А	А	А	А	А
304-pin	40 mm □	0.5 mm	3.7 mm	D	D	D	D	D	D	А	А	А	А
Thin Quad Flatpa	ck (TQFP) PRE	LIMINARY											
80-pin	12 mm 🗆	0.5 mm	1.05 mm	Р	-	-	-	-	-	-	-	-	-
100-pin	14 mm 🗆	0.5 mm	1.0 mm	Р	Р	Р	-	-	-	-	-	-	-
120-pin	14 mm 🗆	0.4 mm	1.0 mm	Р	Р	Р	Ρ	Р	Р	Р	Р	-	-
144-pin	20 mm 🗆	0.5 mm	1.4 mm	Р	Р	Р	Р	Р	Р	Ρ	Р	-	-
160-pin	24 mm 🗆	0.5 mm	1.4 mm	Р	Р	Р	Р	Р	Р	Ρ	Р	Р	-
176-pin	24 mm 🗆	0.5 mm	1.4 mm	Р	Р	Р	Ρ	Р	Р	Р	Р	Р	-
208-pin	28 mm 🗆	0.5 mm	1.4 mm	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Ceramic Pin Grid	Array (CPGA)												
72-pin	27.94 mm 🗆	100 mils	4.57 mm	А	А	А	А	А	А	А	А	А	А
132-pin	35.56 mm □	100 mils	4.57 mm	А	А	А	А	А	А	А	А	А	А
176-pin	38.10 mm 🗆	100 mils	4.57 mm	D	D	D	А	А	А	А	А	А	А
208-pin	43.18 mm 🗆	100 mils	5.08 mm	D	D	D	D	А	А	А	А	А	А
280-pin	48.26 mm 🗆	100 mils	4.57 mm	D	D	D	D	D	D	А	А	А	А
364-pin	43.18 mm 🗆	50 mils	3.0 mm	_	_	_	D	D	D	D	D	А	А
Ceramic Pin Grid	Array (CPGA) B	utt-Lead											
288-pin	27.94 mm 🗆	50 mils	5.58 mm	D	D	D	D	D	D	D	D	D	D
528-pin	48.26 mm 🗆	50 mils	10.6 mm	_	_	_	_	_	D	D	D	D	D

Notation: A = Available; P = Planned; D = In Development; "-" = Unavailable; H/S = Heat Spreader.

Note: NEC reserves the right to alter the package plan based on the results of qualification. For current package availability, please contact your local NEC Design Center.

NEC's ASIC Design System

NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semicustom devices. Designers can choose from today's most popular third-party software tools, shown in the table on the adjacent page. NEC's OpenCAD Design System is a front-end to back-end ASIC design package that merges several advanced CAE/CAD tools into a single structure. Designers can now choose a single CAE platform, or mix and match tools from a variety of third-party vendors. The design flow combines tools for floorplanning, logic synthesis, automatic test generation, accelerated fault-grading, full timing simulation, and advanced place-and-route algorithms. This flexible design environment thereby ensures accurate, on schedule designs.

There are two basic methods for design entry, the first is by HDL specification, figure 4; the second is via schematic capture, figure 5. Note that after the initial EDIF netlist is generated, there is little difference in the basic design flow for either method. Figure 6 shows the location of the CrossCheck tools in the high-level design flow.

A top-down modeling methodology is possible using the HDL specification approach. Designers can concentrate

their design effort at a higher level of abstraction, specifying, modeling, and simulating their designs at a systems level. This leaves the details of the gate-level implementation to the synthesis tools. After verification confirms the design's functionality, designers are then free to explore various functional and architectural trade-offs, and can optimize chip performance while minimizing chip area. An engineer can evaluate several architectures and select the best solution before committing the design to silicon.

The more traditional method of design entry, schematic capture, figure 5, is available with a wide variety of thirdparty tools. The supported tools, described in Table 3, provide the designer with a productive way to manage the hierarchical elements of a CMOS-8 design, utilizing the macro symbol library provided by NEC. For those designers who are experienced and already well-versed with graphical design entry, this provides an efficient migration path for ASIC development.

One of the key benefits of NEC's ASIC design flow is that post place-and-route simulation can be accomplished at the customer's site, since NEC offers designers a choice of simulators within the "golden simulator" category. Golden simulator status means that upon receiving post placeand-route simulation results from a customer, NEC can then proceed directly to photomask production, bypassing any additional post-simulation steps. This can save a lot of time.

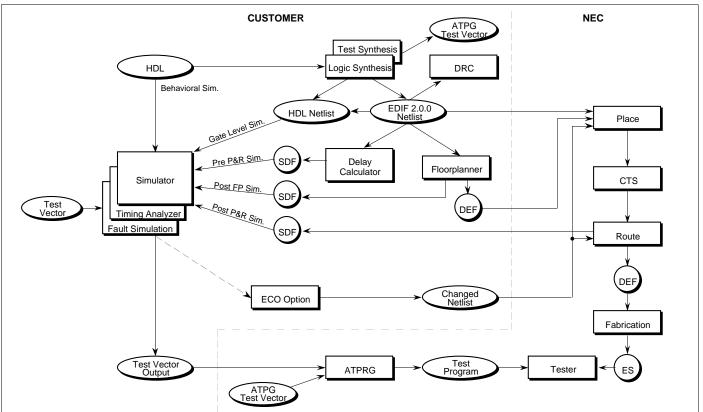


Figure 4. HDL Specification Design Flow

NEC

The floorplanner tool provides realistic estimates of wire length by grouping hierarchical blocks into specific physical locations on the chip. This minimizes critical path interconnect delays for more accurate simulation. The floorplanner also provides graphical I/O assignment capabilities and generates a delay file for post-floorplanner simulation.

The ECO (Engineering Change Order) option in figures 4 and 5 allows the designer to make minor corrections in the design without requiring an entirely new placement and routing of the device. This tool improves turnaround time by ensuring that relatively small changes, such as connectivity changes, will not greatly impact the current design timing.

NEC also incorporates proprietary tools to facilitate the design process. A single delay calculator is used for all CAE platforms to ensure consistent timing and simulation results. A comprehensive design rule check (DRC) program reports design rule violations as well as chip utilization statistics for the design netlist. The generated report contains such information as net-count calculation, total pin-count and cell-count use, and usage rate calculations. Unused input pins, violations in pin naming conventions and fan-out limits, are examples of the design rule violations reported by this program.

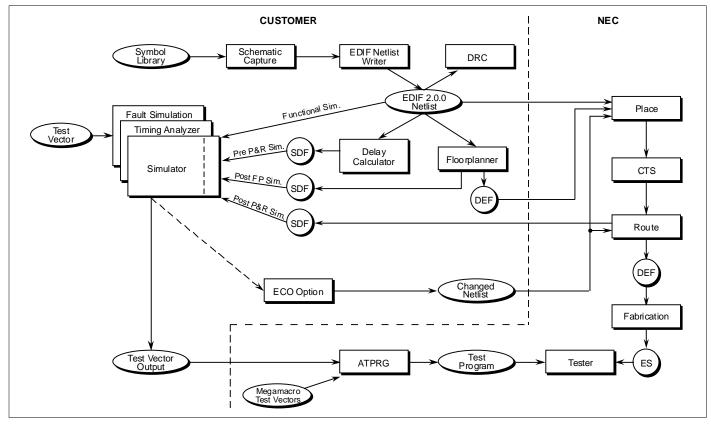

Sample design kits are available at no charge to qualified users. A software license agreement is required. For more information, contact your nearest NEC ASIC Design Center, listed on the back of this data sheet.

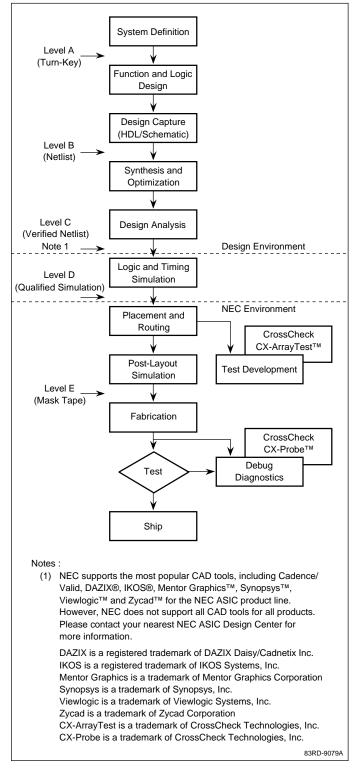
Table 5 Third-1 arty Supported Tools								
Tools CAD Company	Schematic Entry	Synthesis	Simulation	Static Timing Analysis	Floorplanner	Place and Route	Fault Simulation	ATPG
Synopsys								
Cadence	Ι		*					
Mentor				+			+	
Viewlogic	I							
Valid (Cadence)	-			+				
IKOS								
Zycad/NECplus			*					
Intelligen								
NEC			*					

Table 3 Third-Party Supported Tools

Key:

- indicates "Golden Simulator" status.
- indicates planned support-check with local Design Center for exact availability.
- + indicates function is available via software library, and software support is through third-party vendor.

Figure 5. Schematic-Based Design Flow


CrossCheck Test Design Flow

The CMOS-8LCX (CrossCheck) ASICs makes use of a unique test structure, called On-Chip Test Engine[™], that allows testability to be incorporated into a CMOS-8LCX design, using a process that is totally transparent to the designer. This unique approach transfers the burden of test development from the designer to NEC, where the testability is incorporated automatically during the manufacturing phase of the device. A summary of the benefits to CrossCheck Test are described below.

CrossCheck Test Benefits

- Push-button automatic test pattern generation (ATPG)
- No functional or initialization vectors required
- Negligible performance impact
- Netlist modifications not required
- High fault coverage tests including stuck at, bridging and manufacturing faults
- Tests all design styles, including: Synchronous single clock
 Synchronous multiple gated clock
 Asynchronous
- □ Enhanced prototype diagnostic capability

Designing with CrossCheck

In using CrossCheck, the designer's only test consideration is in the selection of a CMOS-8LCX base array. In the design phase, the designer is free to use any preferred CAE tools and methodology supported by NEC.

This design freedom extends to the nature of the design, synchronous or asynchronous, as shown in figure 4, where the CMOS-8LCX gate array design flow with the CrossCheck solution is illustrated. During simulation the designer uses NEC's CrossCheck library. The only input to test development is the netlist that is sent to NEC for manufacturing CMOS-8LCX devices.

When the design is placed and routed, NEC automatically connects the On-Chip Test Engine to the circuit design. The test structure affords massive observability and controllability of the design even though the CMOS-8LCX looks exactly like a conventional ASIC. The connections of the test structures have a negligible performance impact on the design and require no modification to the user's netlist.

NEC uses the CX-ArrayTest[™] software to automatically generate high fault coverage test patterns. The test development process requires only the design netlist and placement information. There is no need for designer-supplied

functional or initialization vectors, a significant benefit. CX-ArrayTest software performs design analysis, ATPG, and fault grading. The CX-Probe[™], a software program developed by CrossCheck Technology, uses the on-chip test structures to automate prototype debug and diagnostics. With these tools, CMOS-8LCX gate arrays with the embedded test solution resolve three of the key parameters for testing the quality of ASICs: high fault coverage, rapid failure analysis and time-to-market.

Embedded Test Structures

In the CMOS-8LCX, the test structure is embedded directly in the base array, as shown in figure 5. The On-Chip Test Engine consists of a grid of sense transistors, which provide massive observability and which are transparent to the designer. An address matrix of probe and sense lines select and control the node under test. A test controller then manages the address matrix and activates the sense transistors. The small transistor used has a negligible impact on the overall performance of the gate array. There is one observation point for each four transistors or gate.

[™] CX-Probe and CX-ArrayTest are trademarks of CrossCheck Technology, Inc.

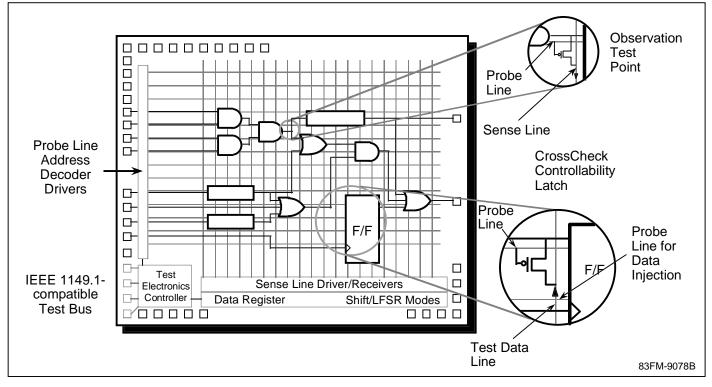


Figure 5. CMOS-8LCX CrossCheck On-Chip Test Engine

The key to this on-chip test system is the patented CrossCheck Controllability Latch (CCL), shown in figure 5, which allows fully automated test pattern generation without modification to the user's netlist. The CCL uses two embedded probe lines and a sense line to control the latch data injection. Thus, the CCLs are not connected as a synchronous chain. For this reason CX-ArrayTest software can perform ATPG on asynchronous circuitry. The CCL implementation has negligible impact on performance.

Test Controller

The on-chip test electronics controller, shown in figure 5, performs four major functions:

- □ Interface to the CrossCheck Test Access Port
- □ Test vector generation
- □ Signature generation
- On-Chip Test Engine self-test

Access to the On-Chip Test Engine is through CrossCheck's Test Access Port. This test bus, compatible with IEEE 1149.1, interfaces with automatic test equipment (ATE). The ATE sends instructions and data to the on-chip controller and in return receives test results from it. The On-Chip Test Engine produces test vectors on the chip acting on instructions and/or data received from the CX-ArrayTest software. This compatibility significantly reduces the ATE test vector memory requirements for high fault coverage testing. To further reduce the amount of ATE vector memory used, the state of the test points on the device are read and compressed into a signature in the data register.

Fault Models

Because macrocells generally contain multiple test points, defects within cells are detected. Traditional methods test only the inputs and outputs of the macrocells, detecting only the symptoms of a fault rather than the fault itself, and often not detecting the fault at all. The CMOS-8LCX CrossCheck test solution models nine different defect types:

□ Stuck-at-faults:

Input stuck-at "1"	Output stuck-at "1"
Input stuck-at "0"	Output stuck-at "0"

Comprehensive manufacturing defects:

Shorted FET Shorted intra-macro interconnect Open FET Open intra-macro interconnect Shorted inter-macro networks

Table 4 Typical Fault Coverage with CX-ArrayTest

Design Style	Stuck at Faults	Bridging Faults
Synchronous	> 98%	>99%
Multiple gated clocks	> 95%	>99%
Asynchronous	90% – 95%	>98%

The fault coverage that can be achieved is dependent upon the design style used. Synchronous designs have a single clock for the complete design. Gated clock designs are generally synchronous but have several clocks and flip-flop clocks that are gated by combinatorial logic.

Asynchronous is all other design styles. Asynchronous is a design style often used in interface circuits, and is generally not testable with approaches such as SCAN. The CMOS-8LCX's ability to test asynchronous design is a significant advantage of this test solution. Examples of typical fault coverage using CMOS-8LCX are shown in Table 4.

NEC uses CrossCheck's CX-Fault[™] tool to analyze the transistor-level descriptions of the macrocells to produce a model library. The library contains the test generation fault models that are used by the ATPG.

Automatic Test Pattern Generation

ATPG requires only the user netlist, placement file, and the results of the test strategy developed from the netlist analysis. CX-ArrayTest generates values for the test strategy waveform template and avoids the hazard circuit states. A full timing simulation is performed to determine circuit stability after each vector is generated and applied. Simulating the On-Chip Test Engine allows creation of the signature of the internal circuit node states. Faults are marked as detected only when the circuit is stable and a signature is generated. The ATPG also correctly handles any unavoidable hazard circuit states. The CX-ArrayTest software monitors and reports fault coverage, test time and vector length as it generates new vectors.

The ATPG process continues until one of the user-defined limits is reached, specifically fault coverage, number of test vectors, test time, or elapsed ATPG processing time. At the end of test generation, a set of vectors, including tests of the On-Chip Test Engine, are packaged for translation onto automatic test equipment.

Using the CrossCheck test solution allows automation of the process of failure analysis, reducing diagnostics from days or weeks to just hours.

™ CX-Fault is a trademark of CrossCheck Technology, Inc.

Block Library List

The CMOS-8L family offers a variety of blocks, including gates, flip-flop circuits, and shift registers. The functions of these blocks are designed to be compatible with those of the CMOS-8, CMOS-7 and CMOS-6 families. In addition, memory blocks such as RAM and ROM will be provided, and low-power gates are available. The low-power blocks are designed for gate count reduction; the number of cells are fewer than that of the standard block, contributing to lower power consumption and higher efficiency. Another feature is the I/Os can directly interface to 5V logic.

Block List

Bloc	k List		
Block Name	Description	l _{oL} (mA)	Cells
	Interface Blocks		
3V CM	OS Input Buffers		
FI01 FID1 FIU1 FIW1	3V CMOS input 3V CMOS input, 50 kΩ pull-down 3V CMOS in, 50 kΩ pull-up 3V CMOS in, 5 kΩ pull-up		1 (3) 1 (3) 1 (3) 1 (3)
FIS1 FDS1 FUS1 FWS1	3V CMOS Schmitt input 3V CMOS Schmitt input, 50 k Ω pull-down 3V CMOS Schmitt input, 50 k Ω pull-up 3V CMOS Schmitt input, 5 k Ω pull-up		1 (8) 1 (8) 1 (8) 1 (8)
FIB1 FDB1	$3V$ CMOS input, high fanout for clock driver $3V$ CMOS input, high fanout for clock driver, $50 \text{ k}\Omega$ pull-down	-	1 (24) 1 (24)
FUB1 FWB1	3V CMOS input, high fanout for clock driver, 50 kΩ pull-up 3V CMOS input, high fanout for clock driver, 5 kΩ pull-up	-	1 (24) 1 (24)
3V CM	OS Input Buffers without Protection Diode up	o to V _{DD}	
FIA1 FDA1 FUA1 FWA1	3V CMOS input 3V CMOS input, 50 kΩ pull-down 3V CMOS input, 50 kΩ pull-up 3V CMOS input, 5 kΩ pull-up	-	1 (3) 1 (3) 1 (3) 1 (3)
FIE1 FDE1 FUE1 FWE1	3V CMOS Schmitt input 3V CMOS Schmitt input, 50 k Ω pull-down 3V CMOS Schmitt input, 50 k Ω pull-up 3V CMOS Schmitt input, 5 k Ω pull-up	- - -	1 (8) 1 (8) 1 (8) 1 (8)
FIH1 FDH1	3V CMOS input, high fanout for clock driver 3V CMOS input, high fanout for clock driver, 50 kΩ pull-down	-	1 (24) 1 (24)
FUH1	3V CMOS input, high fanout for clock driver,	-	1 (24)
FWH1	50 k Ω pull-up 3V CMOS input, high fanout for clock driver, 5 k Ω pull-up	-	1 (24)
5V CM	OS Input Buffers		
FIV1 FDV1 FIF1 FDF1	5V CMOS input 5V CMOS input, 50 kΩ pull-down 5V CMOS Schmitt input 5V CMOS Schmitt input, 50 kΩ pull-down		1 (3) 1 (3) 1 (8) 1 (8)
FIG1 FDG1	5V CMOS input, high fanout for clock driver 5V CMOS input, high fanout for clock driver, 50 k Ω pull-down	-	1 (24) 1 (24)

CMOS-8LCX

Block Name	Description	l _{oL} (mA)	Cells
	Interface Blocks (Cont.)		
3V CM	OS Output Buffers		
F00A	3V CMOS output	1.0	1 (4)
F00B	3V CMOS output	2.0	1 (4)
F009	3V CMOS output	3.0	1 (4)
F004	3V CMOS output	6.0	1 (4)
F001	3V CMOS output	9.0	1 (4)
F002	3V CMOS output	12.0	1 (4)
F003	3V CMOS output	18.0	1 (8)
F006	3V CMOS output	24.0	1 (8)
FO0C	3V CMOS output	48.0	2 (8)
3V CM	OS Slew-Rate Output Buffers		
FE02	3V CMOS output, low noise	12.0	1 (3)
FE03	3V CMOS output, low noise	18.0	1 (3)
FE06	3V CMOS output, low noise	24.0	1 (3)
FE0C	3V CMOS output, low noise	48.0	2 (3)
5V CM	OS Output Buffers		
FV0A	5V CMOS output	1.0	1 (4)
FV0B	5V CMOS output	2.0	1 (4)
FV09	5V CMOS output	3.0	1 (4)
FV04	5V CMOS output	6.0	1 (4)
FV01	5V CMOS output	9.0	1 (8)
FV02	5V CMOS output	12.0	2 (8)
FV03	5V CMOS output	18.0	2 (8)
FV06	5V CMOS output	24.0	3 (8)
5V CM	OS Slew-Rate Output Buffers		
FW02	5V CMOS output, Iow noise	12.0	2 (3)
FW02	5V CMOS output, Iow noise	18.0	2 (3)
FW06	5V CMOS output, Iow noise	24.0	3 (3)
	OS Three-State Output Buffers		
B00T	3V CMOS output	3.0	1 (6)
B0DT	3V CMOS output, 50 kΩ pull-down	3.0	1 (6)
B0UT	3V CMOS output, 50 kΩ pull-up	3.0	1 (6)
B0WT	3V CMOS output, 5 kΩ pull-up	3.0	1 (6)
B00E	3V CMOS output	6.0	1 (6)
B0DE	3V CMOS output, 50 kΩ pull-down	6.0	1 (6)
B0UE	3V CMOS output, 50 kΩ pull-up	6.0	1 (6)
B0WE	3V CMOS output, 5 kΩ pull-up	6.0	1 (6)
B008	3V CMOS output	9.0	1 (6)
B0D8	3V CMOS output, 50 kΩ pull-down	9.0	1 (6)
B0U8	3V CMOS output, 50 kΩ pull-up	9.0	1 (6)
B0W8	3V CMOS output, 5 kΩ pull-up	9.0	1 (6)
B007	3V CMOS output	12.0	1 (6)
B0D7	3V CMOS output, 50 kΩ pull-down	12.0	1 (6)
B0U7	3V CMOS output, 50 kΩ pull-up	12.0	1 (6)
B0W7	3V CMOS output, 5 kΩ pull-up	12.0	1 (6)
B009	3V CMOS output	18.0	1 (9)
B0D9	3V CMOS output, 50 kΩ pull-down	18.0	1 (9)
B0U9	3V CMOS output, 50 kΩ pull-up	18.0	1 (9)
B0W9	3V CMOS output, 5 kΩ pull-up	18.0	1 (9)
B00H	3V CMOS output	24.0	1 (9)
B0DH	3V CMOS output, 50 kΩ pull-down	24.0	1 (9)
B0UH	3V CMOS output, 50 kΩ pull-up	24.0	1 (9)
B0WH	3V CMOS output, 5 kΩ pull-up	24.0	1 (9)

CMOS-8LCX

Block	Description		Cells
Name	Description	(mĂ)	Cells
	Interface Blocks (Cont.)		
3V CM	OS Three-State Output Buffers (Cont.)		
B00J	3V CMOS output	48.0	2 (9)
B0DJ	3V CMOS output, 50 k Ω pull-down	48.0	2 (9)
B0UJ	3V CMOS output, 50 k Ω pull-up	48.0	2 (9)
B0WJ	3V CMOS output, 5 k Ω pull-up	48	2 (9)
3V CM	OS Slew-Rate Three-State Output Buffers		
BE07	3V CMOS output	12.0	1 (5)
BED7	3V CMOS output, 50 k Ω pull-down	12.0	1 (5)
BEU7	3V CMOS output, 50 k Ω pull-up	12.0	1 (5)
BEW7	3V CMOS output, 5 k Ω pull-up	12.0	1 (5)
BE09	3V CMOS output	18.0	1 (5)
BED9	3V CMOS output, 50 kΩ pull-down	18.0	1 (5)
BEU9	3V CMOS output, 50 kΩ pull-up	18.0	1 (5)
BEW9	3V CMOS output, 5 kΩ pull-up	18.0	1 (5)
BE0H		24.0	1 (5)
BEDH		24.0	1 (5)
BEUH		24.0	1 (5)
BEWH		24.0	1 (5)
BE0J	3V CMOS output	48.0	2 (5)
BEDJ	3V CMOS output, 50 k Ω pull-down	48.0	2 (5)
BEUJ	3V CMOS output, 50 k Ω pull-up	48.0	2 (5)
BEWJ	3V CMOS output, 5 k Ω pull-down	48.0	2 (5)
5V CM	OS Three-State Output Buffers		
BV0Q	5V CMOS output 5V CMOS output, 50 k Ω pull-down	1.0	1 (16)
BVDQ		1.0	1 (16)
BV0M	5V CMOS output	2.0	1 (16)
BVDM	5V CMOS output, 50 kΩ pull-down	2.0	1 (16)
BV0T	5V CMOS output 5V CMOS output, 50 k Ω pull-down	3.0	1 (16)
BVDT		3.0	1 (16)
BVOE	5V CMOS output 5V CMOS output, 50 k Ω pull-down	6.0	1 (16)
BVDE		6.0	1 (16)
BV08	5V CMOS output 5V CMOS output, 50 k Ω pull-down	9.0	1 (19)
BVD8		9.0	1 (19)
BV07	5V CMOS output 5V CMOS output, 50 k Ω pull-down	12.0	2 (19)
BVD7		12.0	2 (19)
BV09	5V CMOS output	18.0	2 (19)
BVD9	5V CMOS output, 50 k Ω pull-down	18.0	2 (19)
BV0H	5V CMOS output	24.0	3 (19)
BVDH	5V CMOS output, 50 k Ω pull-down	24.0	3 (19)
5V CM	OS Slew-Rate Three-State Output Buffers		
BY07	5V CMOS output	12.0	2 (15)
BYD7	5V CMOS output, 50 k Ω pull-down	12.0	2 (15)
BY09	5V CMOS output	18.0	2 (15)
BYD9	5V CMOS output, 50 k Ω pull-down	18.0	2 (15)
BY0H	5V CMOS ouputt 5V CMOS output, 50 k Ω pull-down	24.0	3 (15)
BYDH		24.0	3 (15)
3V CM	OS Open Drain Output Buffers		
EXTH	3V N-ch open drain 3V N-ch open drain, 50 kΩ pull-up 3V N-ch open drain, 5 kΩ pull-up	3.0	1 (4)
EXUH		3.0	1 (4)
EXWH		3.0	1 (4)
EXTJ	3V N-ch open drain	6.0	1 (4)
EXUJ	3V N-ch open drain, 50 kΩ pull-up	6.0	1 (4)
EXWJ	3V N-ch open drain, 5 kΩ pull-up	6.0	1 (4)

Block Name	Description	l _{oL} (mA)	Cells
	Interface Blocks (C	cont.)	
3V CM	OS Open Drain Output Buffers (Co	ont.)	
EXT1	3V N-ch open drain	9.0	1 (4)
EXT3	3V N-ch open drain, 50 kΩ pull-up	9.0	1 (4)
EXW3	3V N-ch open drain, 5 kΩ pull-up	9.0	1 (4)
EXT9	3V N-ch open drain	12.0	1 (4)
EXTB	3V N-ch open drain, 50 kΩ pull-up	12.0	1 (4)
EXWB	3V N-ch open drain, 5 kΩ pull-up	12.0	1 (4)
EXT5	$3V$ N-ch open drain $3V$ N-ch open drain, 50 k Ω pull-up	18.0	1 (8)
EXT7		18.0	1 (8)
EXW7		18.0	1 (8)
EXTD	$3V$ N-ch open drain, 50 k Ω pull-up	24.0	1 (8)
EXTF		24.0	1 (8)
EXWF		24.0	1 (8)
EXTL	1 / 1 1	48.0	2 (2)
EXUL		48.0	2 (8)
EXWL		48.0	2 (8)
EXTQ	$3V$ P-ch open drain $3V$ P-ch open drain, $50~\text{k}\Omega$ pull-dow	*3.0	1 (4)
EXDQ		m *3.0	1 (4)
EXTR	$3V$ P-ch open drain $3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	*6.0	1 (4)
EXDR		n *6.0	1 (4)
EXT2	$3V$ P-ch open drain $3V$ P-ch open drain, 50 k Ω pull-dow	*9.0	1 (4)
EXT4		n *9.0	1 (4)
EXTA	3V P-ch open drain	*12.0	1 (4)
EXTC	$3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	n *12.0	1 (4)
EXT6	3V P-ch open drain	*18.0	1 (4)
EXT8	$3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	n *18.0	1 (4)
EXTE	3V P-ch open drain		1 (8)
EXTG	$3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow		1 (8)
EXTS	3V P-ch open drain	*48.0	2 (8)
EXDS	$3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	n *48.0	2 (8)
3V CM	OS Slew-Rate Open Drain Output E	Buffers	
EET9	3V N-ch open drain	12.0	1 (2)
EETB	$3V$ N-ch open drain, 50 k Ω pull-up	12.0	1 (2)
EEWB	$3V$ N-ch open drain, 50 k Ω pull-up	12.0	1 (2)
EET5	$3V$ N-ch open drain $3V$ N-ch open drain, $50~k\Omega$ pull-up $3V$ N-ch open drain, $5~k\Omega$ pull-up	18.0	1 (2)
EET7		18.0	1 (2)
EEW7		18.0	1 (2)
EETD	$3V$ N-ch open drain $3V$ N-ch open drain, $50~k\Omega$ pull-up $3V$ N-ch open drain, $5~k\Omega$ pull-up	24.0	1 (2)
EETF		24.0	1 (2)
EEWF		24.0	1 (2)
EETL	$3V$ N-ch open drain $3V$ N-ch open drain, $50~k\Omega$ pull-up $3V$ N-ch open drain, $5~k\Omega$ pull-up	48.0	2 (2)
EEUL		48.0	2 (2)
EEWL		48.0	2 (2)
EETA	$3V$ P-ch open drain $3V$ P-ch open drain, $50~\text{k}\Omega$ pull-dow	*12.0	1 (2)
EETC		n *12.0	1 (2)
EET6	$3V$ P-ch open drain $3V$ P-ch open drain, 50 k Ω pull-dow	*18.0	1 (2)
EET8		n *18.0	1 (2)
EETE	$3V$ P-ch open drain $3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	*24.0	1 (2)
EETG		n *24.0	1 (2)
EETS	$3V$ P-ch open drain $3V$ P-ch open drain, $50 \text{ k}\Omega$ pull-dow	*48.0	2 (2)
EEDS		n *48.0	2 (2)

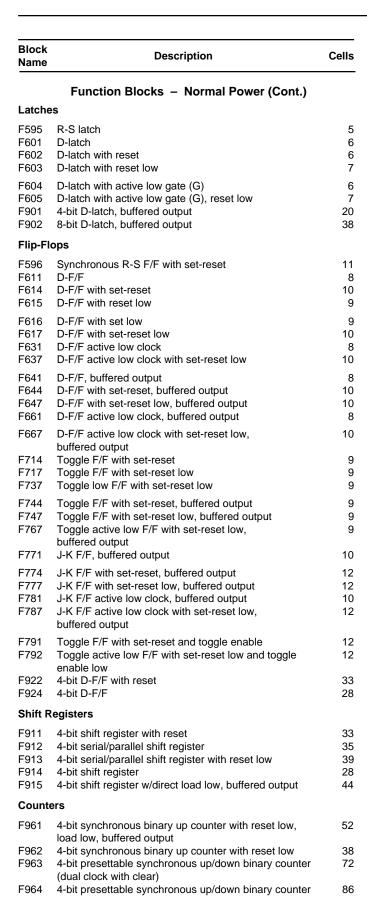
Note: Number of internal cells required is shown in parentheses. * Indicates ${\rm I}_{\rm OH}$

Block Name	Description	I _{oL} (mA)	Cells
	Interface Blocks (Cont.)		
5V CM	OS Open Drain Output Buffers		
EVTH EVTJ EVT1 EVT9	5V N-ch open drain 5V N-ch open drain 5V N-ch open drain 5V N-ch open drain	3.0 6.0 9.0 12.0	1 (4) 1 (4) 1 (8) 1 (8)
EVT5 EVTD	5V N-ch open drain 5V N-ch open drain	18.0 24.0	2 (8) 2 (8)
5V CM	OS Slew-Rate Output Buffers		
EYT9 EYT5 EYTD	5V N-ch open drain 5V N-ch open drain 5V N-ch open drain	12.0 18.0 24.0	1 (2) 2 (2) 2 (2)
3V CM	OS Bi-Directional Output Buffers		
B00U B0DU B0UU B0WU	$\begin{array}{l} \mbox{CMOS input, CMOS 3-state output} \\ CMOS input, CMOS 3-state out, 50 $k$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	3.0 3.0 3.0 3.0	1 (9) 1 (9) 1 (9) 1 (9)
B00C B0DC B0UC B0WC	CMOS input, CMOS 3-state output CMOS input, CMOS 3-state out, 50 k\Omega pull-down CMOS input, CMOS 3-state out, 50 kΩ pull-up CMOS input, CMOS 3-state out, 5 kΩ pull-up	6.0 6.0 6.0 6.0	1 (9) 1 (9) 1 (9) 1 (9)
B003 B0D3 B0U3 B0W3	CMOS inut, CMOS 3-state output CMOS input, CMOS 3-state out, 50 k Ω pull-down CMOS input, CMOS 3-state out, 50 k Ω pull-up CMOS in, CMOS 3-state out, 5 k Ω pull-up	9.0 9.0 9.0 9.0	1 (8) 1 (8) 1 (8) 1 (8)
B001 B0D1 B0U1 B0W1	CMOS input, CMOS 3-state out CMOS input, CMOS 3-state out, 50 k Ω pull-down CMOS input, CMOS 3-state out, 50 k Ω pull-up CMOS input, CMOS 3-state out, 5 k Ω pull-up	12.0 12.0 12.0 12.0	1 (9) 1 (9) 1 (9) 1 (9)
B005 B0D5 B0U5 B0W5	CMOS input, CMOS 3-state out CMOS input, CMOS 3-state out, 50 k Ω pull-down CMOS input, CMOS 3-state out, 50 k Ω pull-up CMOS input, CMOS 3-state out, 5 k Ω pull-up	18.0 18.0 18.0 18.0	1 (12) 1 (12) 1 (12) 1 (12)
B00F B0DF B0UF B0WF	CMOS input, CMOS 3-state out CMOS input, CMOS 3-state out, 50 k Ω pull-down CMOS input, CMOS 3-state out, 50 k Ω pull-up CMOS input, CMOS 3-state out, 5 k Ω pull-up	24.0 24.0 24.0 24.0	1 (12) 1 (12) 1 (12) 1 (12) 1 (12)
B00W B0DW		48.0 48.0	2 (12) 2 (12)
	CMOS input, CMOS 3-state out, 50 kΩ pull-up resistor	48.0	2 (12)
B0WW	CMOS input, CMOS 3-state output, 5 k Ω pull-up resistor	48.0	2 (12)
BSIU BSDU	CMOS Schmitt input, CMOS 3-state ouput CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	3.0 3.0	. ,
BSUU	CMOS Schmitt input, CMOS 3-state out, 50 k Ω pull-up		1 (14)
	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	3.0	1 (14)
BSIC BSDC	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	6.0 6.0	. ,
BSUC	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up		1 (14)
BSWC	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	6.0	1 (14)

CMOS-8LCX

Block Name	Description	I _{oL} (mA)	Cells
	Interface Blocks (Cont.)		
3V CM	OS Bi-Directional Output Buffers		
BSI3 BSD3	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	9.0 9.0	1 (14) 1 (14)
BSU3	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up	9.0	1 (14)
BSW3	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	9.0	1 (14)
3V CM	OS Three-State I/O Buffers		
BSI1 BSD1	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down		1 (14) 1 (14)
BSU1	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up	12.0	1 (14)
BSW1	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	12.0	1 (14)
BSI5 BSD5	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	18.0 18.0	1 (17) 1 (17)
BSU5	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up	18.0	1 (17)
BSW5	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	18.0	1 (17)
BSIF	CMOS Schmitt input, CMOS 3-state output		1 (17)
BSDF	CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	24.0	1 (17)
BSUF	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up	24.0	1 (17)
BSWF	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	24.0	1 (17)
BSIW BSDW	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	48.0 48.0	2 (17) 2 (17)
BSUW	CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-up	48.0	2 (17)
BSWW	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	48.0	2 (17)
3V CM	OS Slew-Rate Three-State Output Buffers		
BE01 BED1	CMOS input, CMOS 3-state output CMOS input, CMOS 3-state output, 50 kΩ pull-dn	12.0 12.0	1 (8) 1 (8)
BEU1 BEW1	CMOS input, CMOS 3-state output, 50 k Ω pull-up CMOS input, CMOS 3-state output, 50 k Ω pull-up CMOS input, CMOS 3-state output, 5 k Ω pull-up	12.0 12.0 12.0	1 (8) 1 (8) 1 (8)
BE05	CMOS input, CMOS 3-state output	18.0	1 (8)
BED5 BEU5 BEW5	CMOS input, CMOS 3-state output, 50 k Ω pull-dn CMOS input, CMOS 3-state output, 50 k Ω pull-up CMOS input, CMOS 3-state output, 5 k Ω pull-up	18.0 18.0 18.0	1 (8) 1 (8) 1 (8)
BE0F	CMOS input, CMOS 3-state output	24.0	1 (8)
BEDF BEUF	CMOS input, CMOS 3-state output, 50 k Ω pull-dn CMOS input, CMOS 3-state output, 50 k Ω pull-up	24.0 24.0	1 (8) 1 (8)
BEWF	CMOS input, CMOS 3-state output, 5 k Ω pull-up	24.0	1 (8)
BE0W BEDW	CMOS input, CMOS 3-state output CMOS input, CMOS 3-state output, 50 k Ω pull-dn	48.0 48.0	2 (8) 2 (8)
BEUW	CMOS input, CMOS 3-state output, 50 k Ω pull-up	48.0	2 (8)
	CMOS input, CMOS 3-state output, 5 k Ω pull-up	48.0	2 (8)

Note: Number of internal cells required is shown in parentheses.


Block Name	Description	I _{OL} (mA)	Cells
	Interface Blocks (Cont.)		
3V CM	OS Slew-Rate Three-State Output Buffers (Cont	.)	
BFI1 BFD1	CMOS Schmitt input, CMOS 3-state output, CMOS Schmitt input, CMOS 3-state output, 50 kΩ pull-down	12.0 12.0	1 (13) 1 (13)
BFU1	CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-up	12.0	1 (13)
BFW1	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	12.0	1 (13)
BFI5 BFD5	CMOS Schmitt input, CMOS 3-state output CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	18.0 18.0	1 (13) 1 (13)
BFU5	CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-up	18.0	1 (13)
BFW5	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	18.0	1 (13)
BFIF BFDF	CMOS Schmitt input, CMOS 3-state output, CMOSSchmitt input, CMOS 3-state output,	24.0 24.0	1 (13) 1 (13)
	50 kΩ pull-down		
BFUF	50 kΩ pull-up	24.0	1 (13)
BFWF	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	24.0	1 (13)
	CMOS Schmitt input, CMOS 3-state output, CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	48.0 48.0	2 (13) 2 (13)
BFUW	CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-up	48.0	2 (13)
BFWW	CMOS Schmitt input, CMOS 3-state output, 5 k Ω pull-up	48.0	2 (13)
5V CM	OS Bi-Directional Output Buffers		
	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50KΩ pull-down	1.0 1.0	1 (19) 1 (19)
	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50K Ω pull-down	2.0 2.0	1 (19) 1 (19)
	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50K Ω pull-down	3.0 3.0	1 (19) 1 (19)
BW0C BWDC	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50KΩ pull-down	6.0 6.0	1 (19) 1 (19)
BW03 BWD3	5V CMOS input / CMOS 3-state output,	9.0 9.0	1 (22) 1 (22)
BW01 BWD1	with 50K Ω pull-down 5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50K Ω pull-down		2 (22) 2 (22)
BW05 BWD5	5V CMOS input / CMOS 3-state output 5V CMOS input/ CMOS 3-state output, with $50K\Omega$ pull-down	18.0 18.0	2 (22) 2 (22)
BW0F BWDF			3 (22) 3 (22)

Block Name	Description	I _{OL} (mA)	Cells
	Interface Blocks (Cont.)		
5V CM	OS Bi-Directional Output Buffers (Cont.)		
BKIX BKDX	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	1.0 1.0	1 (24
bkik BKDK	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50kΩ pull-down	2.0 2.0	1 (24 1 (24
BKIU BKDU	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	3.0 3.0	1 (24 1 (24
BKIC BKDC	5V CMOS Schmitt in, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state out, 50 k Ω pull-down resistor	6.0 6.0	1 (24 1 (24
BKI3 BKD3	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	9.0 9.0	1 (27 1 (24
BKI1 BKD1	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, $50k\Omega$ pull-down	12.0 12.0	
BKI5 BKD5	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down resistor	18.0 18.0	
BKIF BKDF	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	24.0 24.0	3 (27 3 (27
5V CM	OS Slew-Rate Bi-Directional Output Buffers		
BX01 BXD1	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with $50K\Omega$ pull-down	12.0 12.0	•
BX05 BXD5	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50K Ω pull-down	18.0 18.0	`
BX0F BXDF	5V CMOS input / CMOS 3-state output 5V CMOS input / CMOS 3-state output, with 50KΩ pull-down	24.0 24.0	`
BZI1 BZD1	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt in, CMOS 3-state output, 50k Ω pull-down	12.0 12.0	
BZI5 BZD5	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	18.0 18.0	
BZ1F BZDF	5V CMOS Schmitt input, CMOS 3-state output 5V CMOS Schmitt input, CMOS 3-state output, 50 k Ω pull-down	24.0 24.0	•

Block Name	Description	Cells	Block Name	Description	Cells
	Interface Blocks			Function Blocks – Normal Power	
Inverte	rs		AND-N	IOR Gates	
F101 F102 F103 F104	Inverter (F/O = 17) Inverter (F/O = 37) Inverter (F/O = 60) Inverter (F/O = 92)	1 2 3 4	F421 F422 F423 F424	2-wide 1-2-input AND-OR inverter 3-wide 1-1-2-input AND-OR inverter 2-wide 1-3-input AND-OR inverter 2-wide 2-2-input AND-OR inverter	3 4 4 4
F108 Buffers	Inverter (F/O = 160) s	12	F425 F426 F429	3-wide 2-2-2-input AND-OR inverter 2-wide 3-3-input AND-OR inverter 4-wide 2-2-2-2-input AND-OR inverter	6 6 8
F111 F112 F113	Non-inverting buffer (F/O = 17) Non-inverting buffer (F/O = 35) Non-inverting buffer (F/O = 54)	2 3 4	F442 F462	2-wide 4-4-input AND-OR inverter 3-wide 1-2-3-input AND-OR inverter	8 6
F114	Non-inverting buffer $(F/O = 74)$	5	OR-N/	AND Gates	
F118 NOR G		11	F431 F432 F433	2-wide 1-2-input OR-AND inverter 3-wide 1-1-2-input OR-AND inverter 2-wide 1-3-input OR-AND inverter	3 4 4
F202 F203	2-input NOR 3-input NOR	2 3	F434	2-wide 2-2-input OR-AND inverter	4
F204 F205	4-input NOR 5-input NOR	4 5	F435 F436 F454	2-wide 2-3-input OR-AND inverter 2-wide 3-3-input OR-AND inverter 4-wide 2-2-2-2-input OR-AND inverter	5 6 8
F206 F208	6-input NOR 8-input NOR	5 7	Clock	Drivers	
F222 F223	2-input NOR, power 3-input NOR, power	4 6	FCK2	Clock driver (F/O = 360) Clock driver (F/O = 720)	40 80
F224 OR Ga	4-input NOR, power tes	8	FCK3 FCK4 FCK5	Clock driver (F/O = 1080) Clock driver (F/O = 1440) Clock driver (F/O = 1800)	120 160 200
F212	2-input OR	2	Exclus	sive OR Functions	
F213 F214 F215	3-input OR 4-input OR 5-input OR	3 3 5	F511 F512	2-input Exclusive-OR 2-input Exclusive-NOR	4 4
F216	6-input OR	5	Parity	Generators	
F232 F233 F234	2-input OR, power 3-input OR, power 4-input OR, power	3 4 4	F581 F582	8-bit odd parity generator 8-bit even parity generator	19 19
NAND	Gates		Adder	S	
F302 F303 F304 F305	2-input NAND 3-input NAND 4-input NAND 5-input NAND	2 3 4 5	F521 F523 F526 F527	1-bit full-adder 4-bit binary full-adder Carry look-ahead generator 4-bit full-adder	9 32 34 66
F306	6-input NAND	5	Misce	laneous	
F308 F322 F323	8-input NAND 2-input NAND, power 3-input NAND, power	6 4 6	F091 F093	H, L level generator Interface block for oscillator buffer	1 1
F324	4-input NAND, power	8	Three-	state Buffers	
AND G		C C	F531 F532	3-state buffer with enable 3-state buffer with active low enable	5 5
F312	2-input AND	2	Decod	lers	
F313 F314 F315	3-input AND 4-input AND 5-input AND	3 3 5	F561 F981	2-to-4 decoder 2-to-4 decoder with active low enable	10 13
F316	6-input AND	5	F982	3-to-8 decoder with active low enable	26
F332 F333 F334	2-input AND, power 3-input AND, power 4-input AND, power	3 4 4	Multip F569 F570 F571 F572	lexers 8-to-1 multiplexer 4-to-1 multiplexer 2-to-1 multiplexer Quad 2-to-1 multiplexer	18 10 6 14

N	E	C	
		Cells	

Description

Block

Name

L423

L424

2-wide 1-3-input AND-OR inverter

2-wide 2-2-input AND-OR inverter

2

2

	Function Blocks – Normal Power (Cont.)	
Comp	arator	
F985	4-bit magnitude comparator	32
Scan		
S000 S002 S050 S052	Scan path D-F/F with set-reset Scan path D-F/F Scan path D-F/F with set-reset, hold Scan path D-F/F with hold	11 9 14 12
S100 S102 S150 S152	Scan path J-K F/F with set-reset Scan path J-K F/F Scan path J-K F/F with set-reset, hold Scan path J-K F/F with hold	14 12 17 15
S201 S202 S301 S302	Scan path D-latch with reset Scan path D-latch Scan path D-latch with reset Scan path D-latch	12 11 8 7
S999	Scan path 2-to-1 data selector	4
Delays	5	
F130 F131 F132	Delay block (for monostable multivibrator) Delay gate Delay gate	8 6 1
	Function Blocks – Low Power	
Inverte	er	
L101	Inverter	1
Buffer		
L111	Non-inverting buffer	1
NOR 0	Gates	
L202 L203 L204	2-input NOR 3-input NOR 4-input NOR	1 2 2
OR Ga	ites	
L212 L213 L214	2-input OR 3-input OR 4-input OR	2 2 3
NAND	Gates	
L302 L303 L304 L305 L306	2-input NAND 3-input NAND 4-input NAND 5-input NAND 6-input NAND	1 2 3 3
AND G	Bates	
L312 L313 L314	2-input AND 3-input AND 4-input AND	2 2 3
AND-N	IOR Gates	
L421 L422	2-wide 1-2-input AND-OR inverter 3-wide 1-1-2-input AND-OR inverter	2 2

Block Name	Description	Cells	Block	Description	Basic RAM	BIST	Cells
	Function Blocks – Low Power (Cont.)			RAM Memory Block	S		
AND-N	IOR Gates		High-S	peed Basic RAM Blocks - Hard Mac	ros		
L425	3-wide 2-2-2-input AND-OR inverter	3	KD49	Single-port RAM (32 word x 4 bit)	_	_	578
L426	2-wide 3-3-input AND-OR inverter	3	KD8B	Single-port RAM (64 word x 8 bit)	_	_	1712
L429	4-wide 2-2-2-input AND-OR inverter	4	KD8F	Single-port RAM (256 word x 8 bit)	—	_	6070
L442 L462	2-wide 4-4-input AND-OR inverter 3-wide 1-2-3-input AND-OR inverter	4 3	KDAB KDAF	Single-port RAM (64 word x 10 bit) Single-port RAM (256 word x 10 bit)	_	_	2020 7292
OR-NA	AND Gates		KE49	Dual-port RAM (32 word x 4 bit)	_	_	798
L431	2-wide 1-2-input OR-AND inverter	2	KE87	Dual-port RAM (16 word x 8 bit)	_	_	634
L432	3-wide 1-1-2-input OR-AND inverter	2	KE8B	Dual-port RAM (64 word x 8 bit)	_	_	2178
L433	2-wide 1-3-input OR-AND inverter	2	KE8F	Dual-port RAM (256 word x 8 bit)	—	_	6408
L434	2-wide 2-2-input OR-AND inverter	2	KEAB	Dual-port RAM (64 word x 10 bit)	_		2486
L435	2-wide 2-3-input OR-AND inverter	3	KEAF	Dual-port RAM (256 word x 10 bit)	_	_	7630
L436	2-wide 3-3-input OR-AND inverter	3	KE9H	Dual-port RAM (512 word x 9 bit)	_	_	12682
L454	4-wide 2-2-2-2-input OR-AND inverter	4					
Exclus	sive OR Functions		•	peed Single Port RAM Blocks - Soft			
L511	2-input EX-OR	3	RJ49	Single-port RAM (32 word x 4 bit)	KD49		782
			RJ4B RJ4D	Single-port RAM (64 word x 4 bit) Single-port RAM (128 word x 4 bit)	KD49 KD49		1389 2572
EX-NC	DR Gate		RJ4F	Single-port RAM (256 word x 4 bit)	KD49		4940
L512	2-input EX-NOR	3	RJ89	Single-port RAM (32 word x 8 bit)		RU89	1382
Decod	lers		RJ89 RJ8B	Single-port RAM (32 word x 8 bit)		RU8B	1964
		0	RJ8D	Single-port RAM (128 word x 8 bit)		RU8D	3712
L561	2-to-4 decoder	6 8	RJ8F	Single-port RAM (256 word x 8 bit)		RU8F	6354
L981 L982	2-to-4 decoder with active low enable 3-to-8 decoder with active low enable	ہ 17	RJ8H	Single-port RAM (512 word x 8 bit)	KD8B	RU8H	12460
Latche			RJAB	Single-port RAM (64 word x 10 bit)	KDAB	RUAB	2290
		_	RJAD	Single-port RAM (128 word x 10 bit)		RUAD	
L601	D-latch	3	RJAF	Single-port RAM (256 word x 10 bit)		RUAF	7592
L602 L603	D-latch with reset D-latch with reset low	4 4	RJAH	Single-port RAM (512 word x 10 bit)	KDAB	RUAH	14924
L604	D-latch with active low gates (G)	3	RJC9	Single-port RAM (32 word x 16 bit)	KD49	RUC9	2618
			RJCB	Single-port RAM (64 word x 16 bit)		RUCB	3746
L605	D-latch with active low gates (G), reset low	4	RJCD	Single-port RAM (128 word x 16 bit)		RUCD	
L901 L902	4-bit latch 8-bit latch	10 18	RJCF	Single-port RAM (256 word x 16 bit)	KD8B	RUCF	12493
L902		10	RJEB	Single-port RAM (64 word x 20 bit)	KDAB	RUEB	4394
Flip-Fl	ops		RJED	Single-port RAM (128 word x 20 bit)		RUED	
L611	D-F/F	5	RJEF	Single-port RAM (256 word x 20 bit)	KDAB	RUEF	14968
L614	D-F/F with set-reset	7	RJH9	Single-port RAM (32 word x 32 bit)	KD49	RUH9	5062
L617	D-F/F with set-reset low	7	RJHB	Single-port RAM (64 word x 32 bit)		RUHB	7303
L631	D-F/F with active low clock	5	RJHD	Single-port RAM (128 word x 32 bit)	KD8B	RUHD	14235
L637	D-F/F with active low clock, set-reset low	7	RJKB	Single-port RAM (64 word x 40 bit)	KDAB	RUKB	8399
L714	Toggle-F/F with set-reset	7	RJKD	Single-port RAM (128 word x 40 bit)		RUKD	
L717	Toggle-F/F with set-reset low	7 7					
L737	Toggle active low F/F with set-reset low		-	peed Dual Port RAM Blocks - Soft N			
L922 L924	4-bit D-F/F with reset 4-bit D-F/F	23 18	RK49	Dual-port RAM (32 word x 4 bit)	KE49	RU49	1029
L924	4-bit D-171	10	RK4B RK4D	Dual-port RAM (64 word x 4 bit) Dual-port RAM (128 word x 4 bit)	KE49 KE49		1866 3502
Multip	lexer		RK4F	Dual-port RAM (256 word x 4 bit)		RU4F	6768
L571	2-to-1 multiplexer	6	RK87		KE07	RU87	995
L572	Quad 2-to-1 multiplexer	10	RK87 RK89	Dual-port RAM (16 word x 8 bit) Dual-port RAM (32 word x 8 bit)	KE87 KE49		885 1860
Shift F	Registers		RK8B	Dual-port RAM (64 word x 8 bit)		RU8B	2463
		00	RK8D	Dual-port RAM (128 word x 8 bit)		RU8D	4687
L911 L912	4-bit shift register with reset 4-bit serial/parallel shift register	23 23	RK8F	Dual-port RAM (256 word x 8 bit)	KE8F	RU8F	6733
L912 L913	4-bit serial/parallel shift register 4-bit serial/parallel in shift register with reset low	23 27	RK8H	Dual-port RAM (512 word x 8 bit)	KE8F	RU8H	13187
L913	4-bit shift register	18	RKAB	Dual-port RAM (64 word x 10 bit)	KEAR	RUAB	2787
			RKAD	Dual-port RAM (128 word x 10 bit)		RUAD	5323
			RKAF	Dual-port RAM (256 word x 10 bit)		RUAF	7971
			RKAH	Dual-port RAM (512 word x 10 bit)		RUAH	
							10

CMOS-8LCX

Block	Description	Basic RAM	BIST	Cells	Block
	Memory Blocks (Con	it.)			
High-S	peed RAM Blocks - Soft Macros (Co	ont.)			ROM
RKC9 RKCB RKCD RKCF	Dual-port RAM (32 word x 16 bit) Dual-port RAM (64 word x 16 bit) Dual-port RAM (128 word x 16 bit) Dual-port RAM (256 word x 16 bit)	KE49 KE8B KE8B KE8F	RUC9 RUCB RUCD RUCF	3524 4709 9127 13209	J14D J14F J14H J14M J14S
RKEB RKED RKEF	Dual-port RAM (64 word x 20 bit) Dual-port RAM (128 word x 20 bit) Dual-port RAM (256 word x 20 bit)	KEAB KEAB KE49	RUEB RUED RUH9	5357 10399 15256	J140 J14U J18D J18F
RKH9 RKHB RKHD	Dual-port RAM (32 word x 32 bit) Dual-port RAM (64 word x 32 bit) Dual-port RAM (128 word x 32 bit)	KE8B KE8B KE8B	RUHB RUHD RUHD	6849 9198 18004	J18H J18M J18S J18U
RKKB RKKD	Dual-port RAM (64 word x 40 bit) Dual-port RAM (128 word x 40 bit)	KEAB KEAB	RUKB RUKD	10494 20548	J18W J1CD
High-D	ensity Single-Port RAM Blocks - So	ft Macro	s		J1CF
RB4D RB4F RB4H RB4M RB4S RB4U	Single-port RAM (128 word x 4 bit) Single-port RAM (256 word x 4 bit) Single-port RAM (512 word x 4 bit) Single-port RAM (1K word x 4 bit) Single-port RAM (2K word x 4 bit) Single-port RAM (4K word x 4 bit)	K14D K14D K14D K14D K14D K14D	RU4D RU4F RU4H RU4M RU4S RU4U	1315 2423 4610 8986 17754 35172	J1CH J1CM J1CS J1CU J1HF J1HH
RB8D RB8F RB8H RB8M RB8S	Single-port RAM (128 word x 8 bit) Single-port RAM (256 word x 8 bit) Single-port RAM (512 word x 8 bit) Single-port RAM (1K word x 8 bit) Single-port RAM (2K word x 8 bit)	K14D K18F K18F K18M K18M	RU8D RU8F RU8H RU8M RU8S	2472 3978 7711 12523 24770	J1HM J1HS RAM RU49
RBAF RBAH RBAM RBAS	Single-port RAM (256 word x 10 bit) Single-port RAM (512 word x 10 bit) Single-port RAM (1K word x 10 bit) Single-port RAM (2K word x 10 bit)	K1AF K1AF K1AM K1AM	RUAF RUAH RUAM RUAS	4877 9495 15499 30710	RU4B RU4D RU4F RU87
RBCD RBCF RBCH RBCM	Single-port RAM (128 word x 16 bit) Single-port RAM (256 word x 16 bit) Single-port RAM (512 word x 16 bit) Single-port RAM (1K word x 16 bit)	K14D K18F K18F K18M	RUCD RUCF RUCH RUCM	4657 7744 15188 24801	RU89 RU8E RU8E RU8F RU8F
RBEF RBEH RBEM	Single-port RAM (256 word x 20 bit) Single-port RAM (512 word x 20 bit) Single-port RAM (1K word x 20 bit)	K1AF K1AF K1AM	RUEF RUEH RUHM	9539 18756 30754	RUAE RUAE RUAF
RBHD RBHF RBHH	Single-port RAM (128 word x 32 bit) Single-port RAM (256 word x 32 bit) Single-port RAM (512 word x 32 bit)	K14D K18F K18F	RUHD RUHF RUHH	9109 15268 30137	RUAH RUCS RUCE RUCE
RBKF RBKH	Single-port RAM (256 word x 40 bit) Single-port RAM (512 word x 40 bit)	K1AF K1AF	RUKF RUKH	18861 37273	RUCE

NEC

Block	Description	Cells
	ROM Memory Blocks	
ROM B	locks	
J14D J14F J14H J14M J14S J14S J14U	128 word x 4 bit ROM 256 word x 4 bit ROM 512 word x 4 bit ROM 1K word x 4 bit ROM 2K word x 4 bit ROM 4K word x 4 bit ROM	720 1040 1512 2408 3960 6776
J18D J18F J18H J18M J18S J18U J18U J18W	128 word x 8 bit ROM 256 word x 8 bit ROM 512 word x 8 bit ROM 1K word x 8 bit ROM 2K word x 8 bit ROM 4K word x 8 bit ROM 8K word x 8 bit ROM	1040 1456 2352 3784 6600 11704 21584
J1CD J1CF J1CH J1CM J1CS J1CS J1CU	128 word x 16 bit ROM 256 word x 16 bit ROM 512 word x 16 bit ROM 1K word x 16 bit ROM 2K word x 16 bit ROM 4K word x 16 bit ROM	1456 2352 3696 6512 11400 21280
J1HF J1HH J1HM J1HS	256 word x 32 bit ROM 512 word x 32 bit ROM 1K word x 32 bit ROM 2K word x 32 bit ROM	3696 6512 11248 21128
RAMT	est (BIST)	
RU49 RU4B RU4D RU4F	32 word x 4 bit 64 word x 4 bit 128 word x 4 bit 256 word x 4 bit	
RU87 RU89 RU8B RU8D RU8F RU8H	16 word x 8 bit 32 word x 8 bit 64 word x 8 bit 128 word x 8 bit 256 word x 8 bit 512 word x 8 bit	
RUAB RUAD RUAF RUAH	64 word x 10 bit 128 word x 10 bit 256 word x 10 bit 512 word x 10 bit	
RUC9 RUCB RUCD RUCF	32 word x 16 bit 64 word x 16 bit 128 word x 16 bit 256 word x 16 bit	
RUEB RUED RUEF	64 word x 20 bit 128 word x 20 bit 256 word x 20 bit	

RUH932 word x 32 bitRUHB64 word x 32 bitRUHD128 word x 32 bitRUKB64 word x 40 bitRUKD128 word x 40 bit

Notes:

Notes:

Notes:

NEC ASIC DESIGN CENTERS

WEST

 3033 Scott Boulevard Santa Clara, CA 95054

TEL 408-588-5008 FAX 408-588-5017

 One Embassy Centre 9020 S.W. Washington Square Road, Suite 400 Tigard, OR 97223

TEL 503-671-0177 FAX 503-643-5911

SOUTH CENTRAL/SOUTHEAST

 16475 Dallas Parkway, Suite 380 Dallas, TX 75248

TEL 972-250-4522 FAX 972-931-8680

 Research Triangle Park 2000 Regency Parkway, Suite 455 Cary, NC 27511

TEL 919-460-1890 FAX 919-469-5926

NORTH CENTRAL/NORTHEAST

 One Natick Executive Park Natick, MA 01760

TEL 508-655-8833 FAX 508-653-2915

 Greenspoint Tower 2800 W. Higgins Road, Suite 765 Hoffman Estates, IL 60195

TEL 708-519-3945 FAX 708-882-7564

THIRD-PARTY DESIGN CENTERS

SOUTH CENTRAL/SOUTHEAST

Koos Technical Services, Inc.
 385 Commerce Way, Suite 101
 Longwood, FL 32750

TEL 407-260-8727 FAX 407-260-6227

 Integrated Silicon Systems Inc.
 2222 Chapel Hill Nelson Highway Durham, NC 27713

TEL 919-361-5814 FAX 919-361-2019

2880 Scott Boulevard P.O. Box 58062 Santa Clara, CA 95052 TEL 408-588-6000 For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-366-9782 or FAX your request to: 1-800-729-9288

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL's willingness to support a given application.