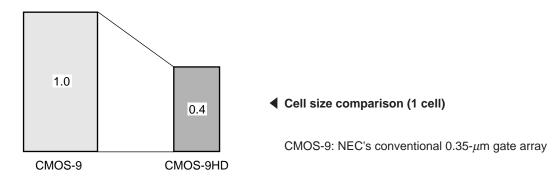





# 0.35 µm CMOS Gate Array **CMOS-9HD Family**



Second-generation highly integrated Considerable cost reduction



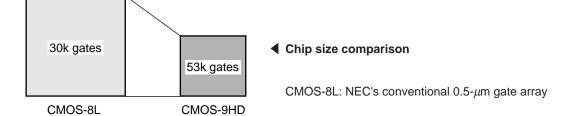

# **FEATURES**

The CMOS-9HD Family is a channel-less type gate array that uses the 0.35- $\mu$ m leading-edge process and realizes 960,000 usable gates. This family is adaptable for both high-speed and low-power consumption systems. Currently supporting a 3.3-V supply voltage, it is expected that the future lineup will be able to support a supply voltage of 2.5 V.

## **High Integration/Low Power Consumption**

- Maximum of 960,000 usable gates integrated
- Improved cell structure, higher density
- Lower power consumption (a further 30% reduction from CMOS-9)




## In Pursuit of Lower Cost

- Enhanced cost competitiveness through chip-size shrinkage
- Fewer gate masters leading to further cost reduction

(Example) Comparison with CMOS-8L

Although the 30k-gate CMOS-8L and the 53k-gate CMOS-9HD are similar in terms of price, because the cell density is higher in the CMOS-9HD, for an area of 30k integrated gates or more, the CMOS-9HD is the more cost-competitive choice.

Note that the applicable-package pin-count range differs depending on the chip size, even if the gate scale is identical.



## **Ultra High-Speed Operation**

- tpd = 131 ps (2-input NAND, fanout = 1, standard wiring length)
- tpd = 107 ps (2-input NAND (power gate), fanout = 1, standard wiring length)
- tpd = 229 ps (input buffer, fanout = 1, standard wiring length)
- tpd = 222 ps (input buffer, standard load)
- tPD = 1396 ps (output buffer, CL = 50 pF)

## **Provision of Function Block Enabling High Speed/High Integration**

- Including high speed and low power, compatible with CMOS-8L Family
- · Scan path block
- Driver for clock tree synthesis
- Asynchronous single-port RAM (45 types)
- Asynchronous dual-port RAM (45 types)
- · Asynchronous compiled single-port RAM
- Synchronous/asynchronous compiled dual-port RAM

## **Abundance of Peripheral Blocks**

- LVTTL/TTL 5-V withstand voltage interface buffer
- LVTTL interface buffer with fail safe function
- High drive capacity buffer (IoL = 24 mA)
- PCI
- GTL+

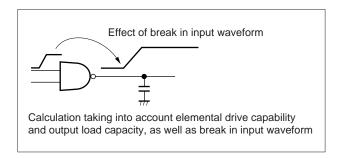
- Low-noise buffer
- Buffers with on-chip pull-up resistors (5 k $\Omega$ , 50 k $\Omega$ )
- Buffers with on-chip pull-down resistors (50 kΩ)
- Digital PLL (33 to 80 MHz)
- Digital PLL (multiple)

## **Power Consumption**

• 0.524  $\mu$ W/MHz/cell (Internal gates, V<sub>DD</sub> = 3.3 V)

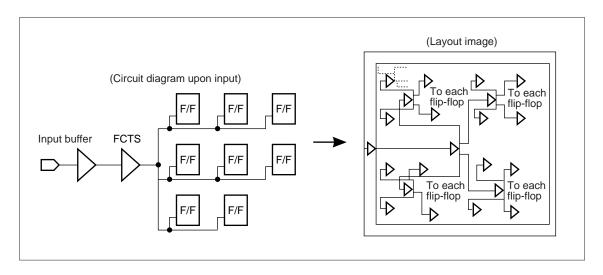
## **Support of Variety of Pin Count Packages**

- 100- to 304-pin plastic QFP (fine-pitch)
- 160-pin, 208-pin plastic QFP (fine-pitch, with heat spreader)
- 48- to 120-pin plastic TQFP
- 144-pin plastic LQFP
- 225- to 352-pin plastic BGA
- 108- to 304-pin plastic FBGA
- 256- to 696-pin tape BGA (with heat spreader)


## **Precision Delay Estimation**

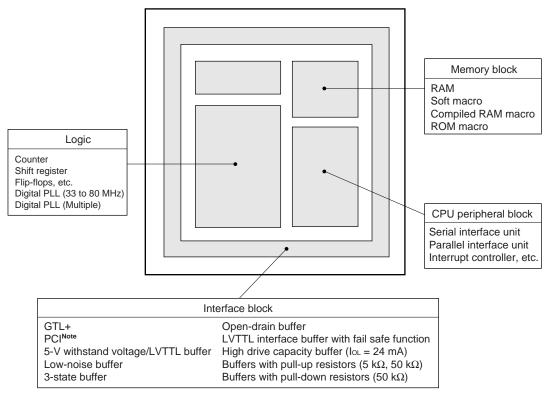
### <Wiring length calculation>

- Can be calculated using a floorplan
- Floorplan-calculated wiring length can be used in logic synthesis and design rule check programs


### <Delay calculation>

• Takes into account the break in the block's input waveform




## **Clock Tree Synthesis**

- Clock tree automatically synthesized during layout to minimize clock skew
- Up to 10000 flip-flops can be connected



## **Multifarious Function Block Mounting Capability**

The function blocks ensure functional compatibility with conventional products and facilitate transfer or appropriation of existing design data.



Note Standard interface recommended by Intel Corp. (PCI = Peripheral Component Interconnect)

## **Applications (Supported Fields)**

All fields from large-scale high-speed processing systems to small and medium scale general applications are covered.

- Multimedia market
  - PC, AV, moving picture processing, 3D, etc.
- Communications market
   High-speed communication, cellular terminals, etc.
- OA, industrial, and other applications.

# PRODUCT OUTLINE

## **List of Product Types**

## 3-layer wiring

| Part Number                | μPD65943 | μPD65944 | μPD65945 | μPD65946 | μPD65948 | μPD65949 | μPD65951 | μPD65954 | μPD65956 | μPD65958 |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Number of signals          | 156      | 180      | 200      | 252      | 308      | 364      | 416      | 496      | 572      | 692      |
| Number of pads             | 172      | 196      | 216      | 268      | 324      | 380      | 436      | 516      | 588      | 708      |
| Number of integrated gates | 75740    | 100602   | 128338   | 202630   | 312684   | 437136   | 585390   | 835664   | 1096452  | 1615646  |
| Number of usable gates     | 53018    | 70421    | 89836    | 141841   | 218879   | 262281   | 321964   | 459615   | 603048   | 807823   |

Remark The actual number of usable signal lines depends on the package and the number of power supply and GND pins used.

## 4-layer wiring

| Part Number                | μPD65961 | μPD65964 | μPD65966 | μPD65968 | μPD65969 | μPD65970 | μPD65971 |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|
| Number of signals          | -        | -        | -        | -        | _        | -        | -        |
| Number of pads             | 436      | 516      | 588      | 708      | 764      | 820      | 876      |
| Number of integrated gates | 585390   | 835664   | 1096452  | 1615646  | 1904700  | 2196592  | 2509284  |
| Number of usable gates     | 380503   | 54318    | 712693   | 969387   | 1142820  | 1317955  | 1505570  |

Remark The actual number of usable signal lines depends on the package and the number of power supply and GND pins used.

## **List of Packages**

3-layer wiring (1/2)

| Package                      | Pins | μPD65943 | μPD65944 | μPD65945 | μPD65946 | μPD65948 |
|------------------------------|------|----------|----------|----------|----------|----------|
| Plastic QFP (fine-pitch)     | 100  | ✓        | 1        | 1        | 1        | ✓        |
|                              | 120  | -        | _        | _        | ✓        | _        |
|                              | 144  | ✓        | 1        | 1        | 1        | ✓        |
|                              | 160  | ✓        | ✓        | ✓        | ✓        | ✓        |
|                              | 176  | _        | /        | 1        |          |          |
|                              | 208  | -        | _        | 1        | 1        | ✓        |
|                              | 240  | _        | _        | _        | ✓        | ✓        |
|                              | 304  | -        | _        | _        | _        | ✓        |
| Plastic QFP (fine-pitch)Note | 160  | _        | _        | _        | _        | _        |
|                              | 208  | -        | _        | _        | _        | _        |
| Plastic TQFP                 | 48   |          | _        | _        | _        | _        |
|                              | 64   |          | _        | _        | _        | _        |
|                              | 80   | ✓        |          |          |          | _        |
|                              | 100  | ✓        | _        | _        | _        | ✓        |
|                              | 120  |          | _        | _        | ✓        |          |
| Plastic LQFP                 | 144  | -        | _        | _        | _        | ✓        |
| Plastic BGA                  | 225  | -        | _        | _        |          |          |
|                              | 256  | _        | _        | _        | _        | ✓        |
|                              | 272  | _        | _        | _        | _        |          |
|                              | 313  | _        | _        | _        | _        | _        |
|                              | 352  | _        | _        | _        | _        | _        |
| Plastic FBGA                 | 108  |          |          |          |          |          |
|                              | 144  |          |          |          |          |          |
|                              | 160  |          |          |          |          |          |
|                              | 176  | _        | ✓        | ✓        |          |          |
|                              | 208  | _        | _        | _        | _        | -        |
|                              | 240  | -        | _        | _        | _        | _        |
|                              | 304  | -        | _        | _        | _        | _        |
| Plastic BGA (advanced)       | 672  | -        | _        | _        | _        | _        |
| Tape BGA <sup>Note</sup>     | 256  | _        | _        | _        | 1        | ✓        |
|                              | 352  | _        | _        | _        | _        | _        |
|                              | 420  | -        | _        | _        | _        | -        |
|                              | 500  | _        | _        | _        | _        | -        |
|                              | 576  | _        | _        | _        | _        | -        |
|                              | 696  | _        | _        | _        | _        | _        |

Note With heat spreader

**Remark** ✓: Supported, –: Not supported, Blank: Under consideration

## **List of Packages**

3-layer wiring (2/2)

| Package                       | Pins | μPD65949 | μPD65951 | μPD65954 | μPD65956 | μPD65958 |
|-------------------------------|------|----------|----------|----------|----------|----------|
| Plastic QFP (fine-pitch)      | 100  | ✓        | 1        | ✓        | _        | _        |
|                               | 120  | -        | _        | _        | _        | _        |
|                               | 144  | ✓        | ✓        | _        | _        | _        |
|                               | 160  | ✓        | ✓        | ✓        | 1        | _        |
|                               | 176  |          |          |          |          | _        |
|                               | 208  | ✓        | 1        | 1        | 1        | 1        |
|                               | 240  | ✓        | /        | /        | 1        | 1        |
|                               | 304  | _        | 1        | ✓        | 1        | 1        |
| Plastic QFP (fine-pitch) Note | 160  |          |          |          |          |          |
|                               | 208  |          |          |          |          |          |
| Plastic TQFP                  | 48   | -        | _        | _        | _        | _        |
|                               | 64   | _        | -        | _        | _        | _        |
|                               | 80   | -        | _        | _        | _        | _        |
|                               | 100  | ✓        | _        | _        | _        | _        |
|                               | 120  |          | _        | _        | _        | _        |
| Plastic LQFP                  | 144  |          | _        | _        | _        | _        |
| Plastic BGA                   | 225  |          |          |          |          | _        |
|                               | 256  | ✓        | /        |          |          | _        |
|                               | 272  | ✓        | ✓        |          | _        | _        |
|                               | 313  | ✓        | ✓        |          |          |          |
|                               | 352  | ✓        | ✓        |          |          | 1        |
| Plastic FBGA                  | 108  | -        | _        | _        | _        | _        |
|                               | 144  |          |          | _        | _        | _        |
|                               | 160  |          |          | _        | _        | _        |
|                               | 176  |          |          |          |          | _        |
|                               | 208  | ✓        |          |          |          | _        |
|                               | 240  | _        |          |          |          |          |
|                               | 304  | _        | _        | _        |          |          |
| Plastic BGA (advanced)        | 672  | -        | _        | _        | _        | 1        |
| Tape BGA Note                 | 256  | ✓        | 1        |          | _        | _        |
|                               | 352  | ✓        | 1        | 1        | 1        | _        |
|                               | 420  | -        | ✓        | ✓        | 1        | ✓        |
|                               | 500  | -        | _        | 1        | 1        | ✓        |
|                               | 576  | -        | _        | _        | 1        | ✓        |
|                               | 696  | -        | _        | _        | _        | ✓        |

Note With heat spreader

**Remark** ✓: Supported, –: Not supported, Blank: Under consideration

## **List of Packages**

4-layer wiring (1/2)

| Package                      | Pins | μPD65961 | μPD65964 | μPD65966 | μPD65968 | μPD65969 |
|------------------------------|------|----------|----------|----------|----------|----------|
| Plastic QFP (fine-pitch)Note | 160  | _        | _        | _        | _        | _        |
|                              | 208  |          |          |          |          |          |
| Tape BGA <sup>Note</sup>     | 256  | -        | _        | _        | _        | _        |
|                              | 352  |          |          |          |          | _        |
|                              | 420  |          |          |          |          |          |
|                              | 500  | _        |          |          |          |          |
|                              | 576  | _        | _        |          |          |          |
|                              | 696  | _        | _        |          |          |          |
| Plastic BGA (advanced)       | 672  | _        | _        | _        |          |          |

Note With heat spreader

**Remark** –: Not supported, Blank: Under consideration

## 4-layer wiring

(2/2)

| Package                      | Pins | μPD65970 | μPD65971 |
|------------------------------|------|----------|----------|
| Plastic QFP (fine-pitch)Note | 160  | _        | _        |
|                              | 208  |          |          |
| Tape BGA <sup>Note</sup>     | 256  | _        | -        |
|                              | 352  |          |          |
|                              | 420  |          |          |
|                              | 500  |          |          |
|                              | 576  |          |          |
|                              | 696  |          |          |
| Plastic BGA (advanced)       | 672  |          |          |

Note With heat spreader

**Remark** –: Not supported, Blank: Under consideration

# **ELECTRICAL SPECIFICATIONS**

## **Absolute Maximum Ratings**

| Parameter                                  | Symbol           | Conditions         | Ratings                       | Unit |
|--------------------------------------------|------------------|--------------------|-------------------------------|------|
| Supply voltage                             | V <sub>DD</sub>  |                    | -0.5 to +4.6                  | V    |
| Input voltage                              |                  |                    |                               |      |
| LVTTL interface buffer                     | Vı               | VI < VDD + 0.5 V   | -0.5 to +4.6                  | V    |
| LVTTL interface buffer                     | Vı               | VI < VDD + 0.5 V   | -0.5 to +4.6                  | V    |
| with fail safe function                    |                  |                    |                               |      |
| TTL 5-V withstand voltage interface buffer | Vı               | VI < VDD + 3.0 V   | -0.5 to +6.6                  | V    |
| Output voltage                             |                  |                    |                               |      |
| LVTTL output buffer                        | Vo               | Vo < VDD + 0.5 V   | -0.5 to +4.6                  | V    |
| TTL 5-V output buffer                      | Vo               | Vo < VDD + 3.0 V   | -0.5 to +6.6                  | V    |
| 5-V output buffer for CMOS                 | Vo               | Vo < VDD + 3.0 V   | -0.5 to +6.6                  | V    |
| Input/output voltage                       | Vı/Vo            | Normal I/O pin     | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| Output currentNote                         | lo               | IoL = 1 mA (FV0A)  | 3                             | mA   |
|                                            |                  | IoL = 2 mA (FV0B)  | 7                             | mA   |
|                                            |                  | IoL = 3 mA (FO09)  | 10                            | mA   |
|                                            |                  | IoL = 6 mA (FO04)  | 20                            | mA   |
|                                            |                  | IoL = 9 mA (FO01)  | 30                            | mA   |
|                                            |                  | loL = 12 mA (FO02) | 40                            | mA   |
|                                            |                  | IoL = 18 mA (FO03) | 60                            | mA   |
|                                            |                  | IoL = 24 mA (FO06) | 75                            | mA   |
| Operating ambient temperature              | TA               |                    | -40 to +85                    | °C   |
| Storage temperature                        | T <sub>stg</sub> |                    | -65 to +150                   | °C   |

Note Output current: Indicates the maximum value of the current that is allowed to flow directly through this output pin.

Remark With the exception of the buffer with fail safe function, be sure to input voltage to the I/O pins only after the supply voltage has been fixed.

# **Recommended Operating Range**

| Parameter                | Symbol          | Conditions                | MIN. | TYP. | MAX. | Unit |
|--------------------------|-----------------|---------------------------|------|------|------|------|
| Supply voltage           | V <sub>DD</sub> | LVTTL interface           | 3.00 | 3.30 | 3.60 | V    |
| High-level input voltage | ViH             |                           | 2.0  |      | Vdd  | V    |
| Low-level input voltage  | VIL             |                           | 0    |      | 0.8  | V    |
| Positive trigger voltage | VP              |                           | 1.4  |      | 2.4  | V    |
| Negative trigger voltage | Vn              |                           | 0.8  |      | 1.6  | V    |
| Hysteresis voltage       | Vн              |                           | 0.3  |      | 1.5  | V    |
| High-level input voltage | ViH             | TTL 5-V withstand voltage | 2.0  |      | 5.5  | V    |
| Low-level input voltage  | VIL             | interface                 | 0    |      | 0.8  | V    |
| Positive trigger voltage | VP              |                           | 1.4  |      | 2.4  | V    |
| Negative trigger voltage | Vn              |                           | 0.8  |      | 1.6  | V    |
| Hysteresis voltage       | Vн              |                           | 0.3  |      | 1.5  | V    |
| Input rise time          | tri             | Normal input              | 0    |      | 200  | ns   |
| Input fall time          | tfi             |                           | 0    |      | 200  | ns   |
| Input rise time          | tri             | Schmitt input             | 0    |      | 10   | ms   |
| Input fall time          | tfi             |                           | 0    |      | 10   | ms   |

## DC Characteristics (VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$ )

(1/3)

| Parameter                              | Symbol | Conditions                                                | MIN. | TYP. | MAX.  | Unit |
|----------------------------------------|--------|-----------------------------------------------------------|------|------|-------|------|
| Static current consumptionNote 1       |        |                                                           |      |      |       |      |
| μPD65943, μPD65944,                    | Idds   | VI = VDD or GND                                           |      | 2.0  | 300   | μΑ   |
| μPD65945, μPD65946,                    |        |                                                           |      |      |       |      |
| μPD65948, μPD65949,                    |        |                                                           |      |      |       |      |
| μPD65951, μPD65954,                    | Idds   | VI = VDD or GND                                           |      | 0    | 400   | μΑ   |
| μPD65956                               |        |                                                           |      |      |       |      |
| μPD65958                               | IDDS   | VI = VDD or GND                                           |      | 4.0  | 800   | μΑ   |
| Off-state output currentNote 2         |        |                                                           |      |      |       |      |
| LVTTL output                           | loz    | Vo = VDD or GND                                           |      |      | ±10   | μΑ   |
| TTL 5-V withstand voltage output       | loz    | Vo = VDD or GND                                           |      |      | ±10   | μΑ   |
| 5-V withstand voltage for CMOS         | loz    | Vo = VDD or GND                                           |      |      | ±10   | μΑ   |
| Output current flowNote 3              | lR     | $V_{PU} = 5.5 \text{ V}, \text{Rpu} = 2 \text{ k}\Omega,$ |      |      | 0.1   | μΑ   |
| 5-V output for CMOS                    |        | Vo = 3.0 V                                                |      |      |       |      |
| Output short-circuit currentNote 4     | los    | Vo = GND                                                  |      |      | -250  | mA   |
| Input leakage current                  |        |                                                           |      |      |       |      |
| Normal input                           | lı     | VI = VDD or GND                                           |      |      | ±1.0  | μΑ   |
| With pull-up resistor (50 k $\Omega$ ) | lı     | Vı = GND                                                  | -28  | -83  | -190  | μΑ   |
| With pull-up resistor (5 k $\Omega$ )  | lı     | Vı = GND                                                  | -280 | -700 | -1900 | μΑ   |
| With pull-down resistor (50 kΩ)        | lı     | VI = VDD                                                  | 28   | 83   | 190   | μΑ   |
| Pull-up resistor 50 kΩ                 | Rpu    |                                                           | 18.9 | 39.8 | 107.1 | kΩ   |
| Pull-up resistor 5 kΩ                  | Rpu    |                                                           | 1.9  | 4.7  | 10.7  | kΩ   |
| Pull-down resistor 50 kΩ               | Rpd    |                                                           | 18.9 | 39.8 | 107.1 | kΩ   |

Notes 1. When using I/O blocks (etc.) with pull-up/pull-down resistors incorporated, the static current consumption increases.

<sup>2.</sup> Because there is a bias toward the 5-V protection circuit in the TTL 5-V withstand voltage and 5-V withstand voltage for CMOS 3-state or I/O buffers, the output-off state current increases slightly.

<sup>3.</sup> When the LSI supply current is pulled up to a higher voltage in the CMOS output buffer, a current that flows from the output pin to inside the LSI is generated.

<sup>4.</sup> The output short-circuit time is less than 1 second and for 1 LSI pin only.

Remarks 1. The + and - symbols attached to the current values in the table indicate the direction of the current. The symbol is + when the current is flowing into the device, and - when flowing out of the device.

<sup>2.</sup> Blanks in the table indicate that the values are undergoing evaluation.

# DC Characteristics (VDD = 3.3 V $\pm$ 0.3 V)

(2/3)

| Parameter                | Symbol | Conditions                   | MIN.  | TYP. | MAX. | Unit |
|--------------------------|--------|------------------------------|-------|------|------|------|
| Low-level output current |        |                              |       |      |      |      |
| 3 mA buffer (FO09)       | loL    | LVTTL output type            | 3.00  |      |      | mA   |
| 6 mA buffer (FO04)       | loL    | VoL = 0.4 V                  | 6.00  |      |      | mA   |
| 9 mA buffer (FO01)       | loL    |                              | 9.00  |      |      | mA   |
| 12 mA buffer (FO02)      | loL    |                              | 12.00 |      |      | mA   |
| 18 mA buffer (FO03)      | loL    |                              | 18.00 |      |      | mA   |
| 24 mA buffer (FO06)      | loL    |                              | 24.00 |      |      | mA   |
| 1 mA buffer (FV0A)       | loL    | TTL 5-V withstand voltage    | 1.00  |      |      | mA   |
| 2 mA buffer (FV0B)       | loL    | output type VoL = 0.4 V      | 2.00  |      |      | mA   |
| 3 mA buffer (FV09)       | loL    |                              | 3.00  |      |      | mA   |
| 6 mA buffer (FV04)       | loL    |                              | 6.00  |      |      | mA   |
| 9 mA buffer (FV01)       | loL    |                              | 9.00  |      |      | mA   |
| 12 mA buffer (FV02)      | loL    |                              | 12.00 |      |      | mA   |
| 18 mA buffer (FV03)      | loL    |                              | 18.00 |      |      | mA   |
| 24 mA buffer (FV06)      | loL    |                              | 24.00 |      |      | mA   |
| 3 mA buffer (FY09)       | loL    | 5-V withstand voltage output | 3.00  |      |      | mA   |
| 6 mA buffer (FY04)       | loL    | for CMOS type                | 6.00  |      |      | mA   |
| 9 mA buffer (FY01)       | loL    | VoL = 0.4 V                  | 9.00  |      |      | mA   |
| 12 mA buffer (FY02)      | loL    |                              | 12.00 |      |      | mA   |
| 18 mA buffer (FY03)      | loL    |                              | 18.00 |      |      | mA   |
| 24 mA buffer (FY06)      | loL    |                              | 24.00 |      |      | mA   |

# DC Characteristics (VDD = 3.3 V $\pm$ 0.3 V)

(3/3)

| Parameter                                              | Symbol | Conditions                | MIN.                  | TYP. | MAX. | Unit |
|--------------------------------------------------------|--------|---------------------------|-----------------------|------|------|------|
| High-level output current                              |        |                           |                       |      |      |      |
| 3 mA buffer (FO09)                                     | Іон    | LVTTL output type         | -3.00                 |      |      | mA   |
| 6 mA buffer (FO04)                                     | Іон    | Vон = 2.4 V               | -6.00                 |      |      | mA   |
| 9 mA buffer (FO01)                                     | Іон    |                           | -9.00                 |      |      | mA   |
| 12 mA buffer (FO02)                                    | Іон    |                           | -12.00                |      |      | mA   |
| 18 mA buffer (FO03)                                    | Іон    |                           | -18.00                |      |      | mA   |
| 24 mA buffer (FO06)                                    | Іон    |                           | -24.00                |      |      | mA   |
| 1 mA buffer (FV0A)                                     | Іон    | TTL 5-V withstand voltage | -1.00                 |      |      | mA   |
| 2 mA buffer (FV0B)                                     | Іон    | output type               | -1.00                 |      |      | mA   |
| 3 mA buffer (FV09)                                     | Іон    | Vон = 2.4 V               | -3.00                 |      |      | mA   |
| 6 mA buffer (FV04)                                     | Іон    |                           | -3.00                 |      |      | mA   |
| 9 mA buffer (FV01)                                     | Іон    |                           | -3.00                 |      |      | mΑ   |
| 12 mA buffer (FV02)                                    | Іон    |                           | -3.00                 |      |      | mΑ   |
| 18 mA buffer (FV03)                                    | Іон    |                           | -6.00                 |      |      | mA   |
| 24 mA buffer (FV06)                                    | Іон    |                           | -6.00                 |      |      | mA   |
| _ow-level output voltage                               |        |                           |                       |      |      |      |
| LVTTL output type                                      | Vol    | IoL = 0 mA                |                       |      | 0.1  | V    |
| LVTTL output type (with 5 k $\Omega$ pull-up resistor) | Vol    | IoL = 0 mA                |                       |      | 0.2  | V    |
| TTL 5-V withstand voltage output type                  | Vol    | IoL = 0 mA                |                       |      | 0.1  | V    |
| 5-V withstand voltage output for CMOS type             | Vol    | IoL = 0 mA                |                       |      | 0.1  | V    |
| High-level output voltage                              |        |                           |                       |      |      |      |
| LVTTL output type                                      | Vон    | Iон = 0 mA                | V <sub>DD</sub> - 0.1 |      |      | V    |
| TTL 5-V withstand voltage output type                  | Vон    | Iон = 0 mA                | V <sub>DD</sub> - 0.2 |      |      | V    |

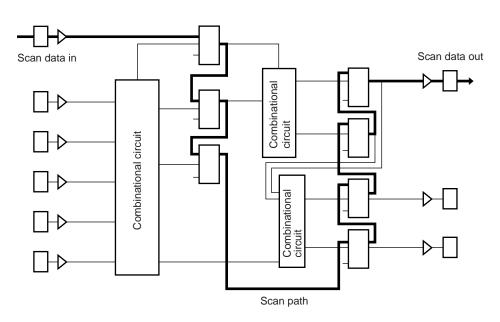
## **AC Characteristics**

The values in the table below refer to when the supply voltage of the internal gate array block is 3.3 V.

| Parameter              | Symbol      |                                             | Conditions                         | MIN. | TYP. | MAX. | Unit |
|------------------------|-------------|---------------------------------------------|------------------------------------|------|------|------|------|
| Toggle frequency       | ftog        | Internal toggl                              | Internal toggle F/F (fanout = 2)   |      |      |      | MHz  |
| Propagation delay time | <b>t</b> PD | Internal gates                              | Fanout = 1, wiring length 0 mm     |      | 94   |      | ps   |
|                        |             |                                             | Fanout = 1, standard wiring length |      | 131  |      | ps   |
|                        |             | Internal gates, power gates,                | Standard load                      |      | 108  |      | ps   |
|                        |             |                                             | Fanout = 1, standard wiring length |      | 107  |      | ps   |
|                        |             |                                             | Standard load                      |      | 94   |      | ps   |
|                        |             | Input buffers                               | Fanout = 1, standard wiring length |      | 229  |      | ps   |
|                        |             |                                             | Standard load                      |      | 222  |      | ps   |
|                        |             | Output buffer (FO01) C <sub>L</sub> = 15 pF |                                    |      | 1396 |      | ps   |
| Output rise time       | tr          | Output buffer                               | (FO01) C <sub>L</sub> = 15 pF      | ·    | 2391 | ·    | ps   |
| Output fall time       | tf          | Output buffer                               | (FO01) C <sub>L</sub> = 15 pF      |      | 1872 |      | ps   |

Remark Standard load: Fanout = 2, wiring length 0 mm

# **TEST DESIGN**


## **Scan Path Test**

The scan path test is an effective technique in test simplification design. The ATG (Automatic Testpattern Generator) makes it possible to automatically generate a test pattern with high fault coverage.

The features of NEC's scan path test are outlined below.

- · Automatic configuration of scan path
- Faults of asynchronous clock detectable
- Check tools for scan path design rule fully provided

#### **Outline of Scan Path Test Method**



# **DEVELOPMENT TOOLS**

## Easy interface with your EWS or PC

Users can choose the following tools to their environment.

Caution Some functions may not be supported. Make it sure before use.

## **OPENCAD™ V5.3 Configuration Tool**

| Function                    | NEC Tool                   | Interface Data    | Commercially Available Tool Interface          |
|-----------------------------|----------------------------|-------------------|------------------------------------------------|
| Function simulator          | _                          |                   | ModelSim <sup>™ Note 1</sup> /Verilog-XL™/VCS™ |
| Schematic editor            | Vdraw <sup>™ Note 1</sup>  | Net list          | _                                              |
| Logic synthesis             | _                          | PWC/EDIF (2.0.0)/ | Design Compiler™                               |
| Gate-level simulator Note 2 | V. sim <sup>™ Note 1</sup> | Verilog HDL       | ModelSim <sup>Note 1</sup> /Verilog-XL/VCS     |
| Formal verifier             | _                          |                   | Formality™                                     |
| STA <sup>Note 2</sup>       | Tiara <sup>Note 1</sup>    | Test pattern      | PrimeTime™                                     |
| Fault simulationNote 3      | C. FGRADE™                 | ALBA/LOGPAT       | -                                              |
| Design for test             | NEC_SCAN                   |                   | Testgen™ Note 4                                |
| Floor plannerNote 4         | ace_floorplan              | Delay data SDF    | _                                              |
|                             | galet_floorplan            |                   |                                                |
| Layout and wiringNotes 3, 4 | Galet                      | Timing limit      | Gate Ensemble™                                 |
|                             |                            |                   | Silicon Ensemble™                              |

**Notes 1.** Tool supported in the Windows NT™ version

2. Sign-off tool

**3.** Tool not supported in the HP™ version

4. Individually supported tool

Remark Platform: SUN™ (Solaris™)/HP (HP-UX™)/PC-9800 series (Windows NT)/IBM PC/AT™

(Windows NT)

GUI : X11R5/Motif<sup>TM</sup> 1.2/Windows NT

OPENCAD, Vdraw, V. sim and C. FGRADE are trademarks of NEC Corporation.

Verilog-XL, Gate Ensemble and Silicon Ensemble are trademarks of Cadence Design Systems, Inc.

ModelSim is a trademark of Model Technology Inc.

VCS, Design Compiler, Formality, PrimeTime and Testgen are trademarks of Synopsys, Inc.

Windows NT is either registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

HP and HP-UX are trademarks of Hewlett-Packard Co.

SUN and Solaris are trademarks of SUN Microsystems, Inc.

PC/AT is a trademark of IBM Corporation.

Motif is a trademark of Open Software Foundation, Inc. (OSF).

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of April, 2000. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
  books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
  third parties by or arising from the use of NEC semiconductor products listed in this document or any other
  liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
  patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
  purposes in semiconductor product operation and application examples. The incorporation of these
  circuits, software and information in the design of customer's equipment shall be done under the full
  responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
  parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
  - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for @NEC (as defined above).

M8E 00.4

### For further information, please contact:

#### **NEC Corporation**

NEC Building 7-1, Shiba 5-chome, Minato-ku Tokyo 108-8001, Japan Tel: 03-3454-1111 http://www.ic.nec.co.jp/

#### [North & South America]

#### **NEC Electronics Inc.**

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782

Fax: 408-588-6130 800-729-9288 http://www.necel.com/

#### NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

#### [Europe]

#### **NEC Electronics (Germany) GmbH**

Kanzlerstr. 2, 40472 Düsseldorf Germany Tel: 0211-650302

Fax: 0211-6503490 http://www.nec.de/

#### **Munich Office**

Arabellastr. 17 81925 München, Germany Tel: 089-921003-0 Fax: 089-92100315

#### Stuttgart Office

Industriestr. 3 70507 Stuttgart, Germany Tel: 0711-99010-0 Fax: 0711-99010-19

#### **Hannover Office**

Podbielskistr. 164 D-30177 Hannover, Germany Tel: 0511-33402-0

Tel: 0511-33402-0 Fax: 0511-33402-34

#### **Benelux Office**

Boschdijk 187a 5612 HB Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

### Scandinavia Office

P.O. Box 134 18322 Taeby, Sweden Tel: 08-6380820 Fax: 08-6380388

#### **NEC Electronics (UK) Limited**

Cygnus House, Sunrise Park Way, Milton Keynes, MK14 6NP, U.K.

Tel: 01908-691-133 Fax: 01908-670-290

#### **NEC Electronics (France) S.A.**

9, rue Paul Dautier-BP 187 78142 Velizy-Villacoublay Cédex France

Tel: 01-30-67-58-00 Fax: 01-30675899

#### **Madrid Office**

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

#### NEC Electronics Italiana s.r.l.

Via Fabio Filzi, 25/A, 20124 Milano, Italy Tel: 02-667541 Fax: 02-66754299

#### [Asia & Oceania]

#### **NEC Electronics Hong Kong Limited**

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318

Fax: 2886-9022/9044

#### Seoul Branch

10F, ILSONG Bldg., 157-37, Samsung-Dong, Kangnam-Ku Seoul, the Republic of Korea Tel: 02-528-0303

Fax: 02-528-4411

#### **NEC Electronics Taiwan Ltd.**

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377 Fax: 02-2719-5951

### **NEC Electronics Singapore Pte. Ltd.**

101 Thomson Road #04-01/05 United Square, Singapore 307591

Tel: 65-253-8311 Fax: 65-250-3583

G99. 11

Document No. A12852EJ3V0PF00(3rd edition)
Date Published June 2000 N CP(K)

© NEC Corporation 1997 Printed in Japan