Inverting Dual (-V_{IN}, -2V_{IN}) Charge Pump Voltage Converters with Shutdown #### **FEATURES** - 10-Pin MSOP Package - Operates from 1.8V to 5.5V - Up to 5mA Output Current at -V_{IN} Pin - Up to 1mA Output Current at -2V_{IN} Pin - **■** Power-Saving Shutdown Mode - -V_{IN} and -2V_{IN} Outputs Available - Low Active Supply Current ■ Fully Compatible with 1.8V Logic Systems #### TYPICAL APPLICATIONS - **LCD Panel Bias** - Cellular Phones PA Bias - Pagers - PDAs, Portable Dataloggers - Battery Powered Devices # GENERAL DESCRIPTION The TC1235/1236/1237 are CMOS dual inverting charge pump voltage converters with a low power shutdown mode in MSOP 10-Pin packages. Only four external capacitors are required for full circuit implementation. Switching frequencies are 12kHz for the TC1235, 35kHz for the TC1236 and 125kHz for the TC1237. When the shutdown pin is held at a logic low, the device goes into a very low power mode of operation, consuming less than $1\mu A$ of supply current. These devices provide both a negative voltage inversion (available at the $-V_{IN}$ output), and a negative doubling voltage inversion (available at the -2 V_{IN} output) with a low output impedance capable of providing output currents up to 5mA for the $-V_{IN}$ output and 1mA for the $-2V_{IN}$ output. The input voltage can range from +1.8V to +5.5V. ### ORDERING INFORMATION | Part No. | Package Os | sc Freq (KHz) | Temp Range | |-----------|-------------|---------------|----------------| | TC1235EUN | 10-Pin MSOP | 12 | –40°C to +85°C | | TC1236EUN | 10-Pin MSOP | 35 | -40°C to +85°C | | TC1237EUN | 10-Pin MSOP | 125 | –40°C to +85°C | ### **PIN CONFIGURATION** ### TYPICAL OPERATING CIRCUIT than or equal to 2V_{IN} TC1235 TC1236 TC1237 ### **ABSOLUTE MAXIMUM RATINGS*** | Input Voltage (V _{IN} to GND) | +6.0V, -0.3V | |--|---------------| | Output Voltage (-V _{IN} , -2V _{IN} to GND) | | | Current at $-V_{IN}$, $-2V_{IN}$ Pins | 10mA | | Short-Circuit Duration –V _{IN} , –2V _{IN} to GND | Indefinite | | Operating Temperature Range | 40°C to +85°C | Power Dissipation ($T_A \le 70^{\circ}C$) MSOP-10320mW Storage Temperature (Unbiased) - 65°C to +150°C Lead Temperature (Soldering, 10sec)+260°C *This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. **ELECTRICAL CHARACTERISTICS:** $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{\text{IN}} = +5\text{V}$, $C1 = 3.3 \mu\text{F}$, $C2 = 1 \mu\text{F}$ (TC1235); $C1 = 1 \mu\text{F}$, $C2 = 1 \mu\text{F}$ = $0.33\mu F$ (TC1236); C1 = $0.33\mu F$, C2 = $0.1\mu F$ (TC1237), $\overline{SHDN} = V_{IN}$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. | Symbol | Parameter | Device | Test Conditions | Min | Тур | Max | Unit | |-------------------|---|----------------------------|--|-------------------|-------------------|---------------------|------| | I _{DD} | Supply Current | TC1235
TC1236 | SHDN = V _{IN}
SHDN = V _{IN} | | 75
200 | 120
360 | μΑ | | | | TC1237 | SHDN = VIN | _ | 625 | 1500 | | | I _{SHDN} | Shutdown Supply Current | All | SHDN = GND, V _{IN} = +5V | _ | 0.1 | 1 | μΑ | | V_{MIN} | Minimum Supply Voltage | All | $R_{LOAD} = 1k\Omega$ for $-V_{IN}$ output
$R_{LOAD} = 10k\Omega$ for $-2V_{IN}$ output | 1.8 | _ | _ | V | | V_{MAX} | Maximum Supply Voltage | All | R_{LOAD} = 1kΩ for $-V_{IN}$ output
R_{LOAD} = 10kΩ for $-2V_{IN}$ output | _ | _ | 5.5 | V | | Fosc | Oscillator Frequency | TC1235
TC1236
TC1237 | | 8.4
24.5
65 | 12
35
125 | 15.6
45.5
170 | kHz | | V _{IH} | Shutdown Input
Logic High | All | $V_{IN} = V_{MIN}$ to V_{MAX} | 1.4 | _ | _ | V | | V _{IL} | Shutdown Input
Logic low | All | $V_{IN} = V_{MIN}$ to V_{MAX} | _ | _ | 0.4 | V | | V _{EFF1} | Voltage Conversion
Efficiency (Stage 1) | All | $R_{LOAD} = \infty$ for $-V_{IN}$ output
$R_{LOAD} = \infty$ for $-2V_{IN}$ output | 96 | 99.5 | _ | % | | V _{EFF2} | Voltage Conversion
Efficiency (Stage 2) | All | $R_{LOAD} = \infty$ for $-V_{IN}$ output
$R_{LOAD} = \infty$ for $-2V_{IN}$ output | 94 | 99 | _ | % | | R _{OUT1} | Output Resistance for –V _{IN} output (Note 1) | All | I _{LOAD} = 0.5mA to 5mA
No Load at -V _{IN} Output | _ | 45 | 80 | Ω | | R _{OUT2} | Output Resistance for –2V _{IN} output (Note 1) | All | I _{LOAD} = 0.1mA to 1mA
No Load at -2V _{IN} Output | _ | 135 | 420 | Ω | | T _{WK1} | Wake-Up Time | TC1235 | $R_{LOAD} = 1k\Omega$ for $-V_{IN}$ Output | _ | 650 | _ | μsec | | | From Shutdown Mode
Stage 1 | TC1236
TC1237 | $R_{LOAD} = 10k\Omega$ for $-2V_{IN}$ Output | | 250
100 | _ | | | T _{WK2} | Wake-Up Time
From Shutdown Mode
Stage 2 | TC1235
TC1236
TC1237 | R_{LOAD} = 1kΩ for -V _{IN} Output
R_{LOAD} = 10kΩ for -2V _{IN} Output | _
_
_ | 750
280
120 | _ | μsec | NOTES: 1. Capacitor contribution is approximately 20% of the output impedance [ESR = 1 / pump frequency x capacitance)]. ### PIN DESCRIPTION | Pin Number | Name | Description | | |------------|-------------------|--|--| | 1 | C1- | C1 Commutation Capacitor Negative Terminal. | | | 2 | C2+ | C2 Commutation Capacitor Positive Terminal. | | | 3 | NC | No Connection. | | | 4 | C2- | C2 Commutation Capacitor Negative Terminal. | | | 5 | -2V _{IN} | Doubling Inverting Charge Pump Output (–2 x V _{IN}). | | | 6 | GND | Ground. | | | 7 | V_{IN} | Positive Power Supply Input. | | | 8 | SHDN | Shutdown Input (Active Low). | | | 9 | C1+ | C1 Commutation Capacitor Positive Terminal. | | | 10 | -V _{IN} | Inverting Charge Pump Output (–1 x V _{IN}). | | #### **DETAILED DESCRIPTION** The TC1235/1236/1237 dual charge pump converters perform both a -1x and -2x multiply of the voltage applied to the V_{IN} pin. Output '- V_{IN} ' provides a negative voltage inversion of the V_{IN} supply, while output '-2 V_{IN} ' provides a negative doubling inversion of V_{IN} . Conversion is performed using two **synchronous** switching matrices and four external capacitors. When the shutdown input is held at a logic low both stages go into a very low power mode of operation consuming less than 1uA of supply current. Figure 1 (below) is a block diagram representation of the TC1235/1236/1237 architecture. The first switching stage inverts the voltage present at V_{IN} and the second stage uses the ' $-V_{IN}$ ' output generated from the first stage to produce the ' $-2V_{IN}$ ' output function from the second stage switching matrix. Each device contains an on-board oscillator that synchronously controls the operation of the charge pump switching matrices. The TC1235 synchronously switches at 12KHz, the TC1236 synchronously switches at 35KHz, and the TC1237 synchronously switches at 125KHz. The different oscillator frequencies for this device family allow the user to trade-off capacitor size versus supply current. Faster oscillators can use smaller external capacitors but will consume more supply current (see Electrical Characteristics Table). When the shutdown input is in a low state, the oscillator and both switch matrices are powered off placing the TC1235/1236/1237 in the shutdown mode. When the $V_{\rm IN}$ supply input is powered from an external battery, the shutdown mode minimizes power consumption, which in turn will extend the life of the battery. Figure 1. Functional Block Diagram ### **APPLICATIONS INFORMATION** #### **Output Voltage Considerations** The TC1235/1236/1237 performs voltage conversions but does not provide any type of regulation. The two output voltage stages will droop in a linear manner with respect to their respective load currents. The value of the equivalent output resistance of the '-V_{IN}' output is approximately 50Ω nominal at +25°C and V_{IN} = +5V. The value of the '-2V_{IN}' output and is approximately 140 Ω nominal at +25°C and V_{IN} = +5V. In this particular case, '-V_{IN}' is approximately -5V and '-2V_{IN}' is approximately -10V at very light loads, and each stage will droop according to the equation below: $$\begin{split} V_{DROOP} &= I_{OUT} \times R_{OUT} \\ &[-V_{IN} \ OUTPUT] = V_{OUT1} = - (V_{IN} - V_{DROOP1}) \\ &[-2V_{IN} \ OUTPUT] = V_{OUT2} = V_{OUT1} - (V_{IN} - V_{DROOP2}) \end{split}$$ where V_{DROOP1} is the output voltage droop contributed from stage 1 loading , and V_{DROOP2} is the output voltage droop from stage 2 loading. ### **Charge Pump Efficiency** The overall power efficiency of the two charge pump stages is affected by four factors: - (1) Losses from power consumed by the internal oscillator, switch drive, etc. (which vary with input voltage, temperature and oscillator frequency). - (2) I²R losses due to the on-resistance of the MOSFET switches on-board each charge pump. - (3) Charge pump capacitor losses due to effective series resistance (ESR). - (4) Losses that occur during charge transfer (from the commutation capacitor to the output capacitor) when a voltage difference between the two capacitors exists. Most of the conversion losses are due to factor (2), (3) and (4) above. The losses for the first stage are given by Equation 1a and the losses for the second stage are given by Equation 1b. $$P1_{LOSS (2, 3, 4)} = I_{OUT1}^{2} x R_{OUT1}$$ where $R_{OUT1} = [1 / [f_{OSC}(C1)] + 8R_{SWITCH1} + 4ESR_{C1} + ESR_{COUT1}]$ ## Inverting Dual (–V_{IN}, –2V_{IN}) Charge Pump Voltage Converters with Shutdown $P2_{LOSS (2, 3, 4)} = I_{OUT2}^{2} x R_{OUT2}$ where $R_{OUT2} = [1 / [f_{OSC}(C2)] + 8R_{SWITCH2} + 4ESR_{C2} + ESR_{COUT2}]$ ### Equation 1b. The internal switch resistance for the first stage (i.e. $R_{SWITCH1}$) is approximately 3Ω and the switch resistance for the second stage (i.e. $R_{SWITCH2}$) is approximately 7Ω . The losses in the circuit due to factor (4) above are also shown in Equation 2a for stage 1 and Equation 2b for stage 2. The output voltage ripple for stage 1 is given by Equation 3a and the output voltage ripple for stage 2 is given by Equation 3b. $$P_{LOSS1 (4)} = [(0.5)(C1)(V_{IN}^2 - V_{OUT1}^2) + (0.5) (C_{OUT1}) (V_{RIPPLE1}^2 - 2V_{OUT1} V_{RIPPLE1})] x f_{OSC}$$ ### Equation 2a. $$P_{LOSS2 (4)} = [(0.5) (C2) (V_{IN}^2 - V_{OUT2}^2) + (0.5) (C_{OUT2}) (V_{RIPPLE2}^2 - 2V_{OUT2} V_{RIPPLE2})] x fosc$$ ### Equation 2b. $$V_{RIPPLE1} = [I_{OUT1} / (f_{OSC}) (C_{OUT1})] + 2 (I_{OUT1})$$ (ESR_{COUT1}) #### Equation 3a. $$V_{RIPPLE2} = [I_{OUT2} / (f_{OSC}) (C_{OUT2})] + 2 (I_{OUT2})$$ (ESR_{COUT2}) ### Equation 3b. #### **Capacitor Selection** In order to maintain the lowest output resistance and output ripple voltage, it is recommended that low ESR capacitors be used. Additionally, larger values of C1 and C2 will lower the output resistance and larger values of C_{OUT1} and C_{OUT2} will reduce output ripple. (See Equations 1a, 1b, 3a, and 3b). NOTE: For proper charge pump operation, C1 and C_{OUT1} must have a voltage rating greater than or equal to V_{IN} , while C2 and C_{OUT2} must have a voltage rating greater than or equal to $2V_{IN}$. Table 1a shows various values of C1 and the corresponding output resistance values for V_{IN} =5V @ +25°C for stage 1 and Table 1b shows various values of C2 and the corresponding output resistance values for V_{IN} =5V @ +25°C for stage 2. It assumes a 0.1Ω ESR_{C1}, a 0.1Ω ESR_{C2}, a 3Ω R_{SWITCH1}, and a 7Ω R_{SWITCH2}. Table 2a shows the output voltage ripple for various values of C_{OUT1} and Table 2b shows the output voltage ripple for various values of C_{OUT2} (again assuming $V_{IN} = 5V$ @ +25°C). The $V_{RIPPLE1}$ values assume a 3mA output load current for stage 1 and a 0.1 Ω ESR_{COUT1}. The $V_{RIPPLE2}$ values assume a 200 μ A output load current for stage 2 and a 0.1 Ω ESR_{COUT1}. Table 1a. Output Resistance vs. C1 (ESR = 0.1Ω). For Stage 1 | C1 (µF) | TC1235 R _{OUT} (Ω) | TC1236 R _{OUT} (Ω) | TC1237 R _{OUT} (Ω) | |---------|--------------------------------------|--------------------------------------|-----------------------------| | 0.47 | 202 | 85 | 42 | | 1 | 108 | 53 | 33 | | 3.3 | 50 | 33 | 27 | Table 1b. Output Resistance vs. C2 (ESR = 0.1Ω). For Stage 2 | C2 (µF) | TC1235 R _{OUT} (Ω) | TC1236 R _{OUT} (Ω) | TC1237 R _{OUT} (Ω) | |---------|--------------------------------------|--------------------------------------|-----------------------------| | 0.1 | 890 | 342 | 137 | | 0.47 | 239 | 117 | 74 | | 1 | 140 | 85 | 65 | Table 2a. Output Voltage Ripple vs. C_{OUT1} (ESR = 0.1 Ω) For Stage 1 (I_{OUT1} = 3mA) | (55) | | | | | |------------------------------------|----------------------------------|----------------------------------|----------------------------------|--| | C _{OUT1}
(μ F) | TC1235 V _{RIPPLE1} (mV) | TC1236 V _{RIPPLE1} (mV) | TC1237 V _{RIPPLE1} (mV) | | | 0.47 | 533 | 183 | 52 | | | 1 | 251 | 86 | 25 | | | 3.3 | 76 | 27 | 8 | | Table 2b. Output Voltage Ripple vs. C_{OUT2} (ESR = 0.1 Ω) For Stage 2 (I_{OUT2} = 200 μ A) | • • | | | | | | |---------------------------|----------------------------------|----------------------------------|----------------------------------|--|--| | C _{OUT2}
(µF) | TC1235 V _{RIPPLE2} (mV) | TC1236 V _{RIPPLE2} (mV) | TC1237 V _{RIPPLE2} (mV) | | | | 0.1 | 167 | 57 | 16 | | | | 0.47 | 36 | 12 | 3.4 | | | | 1 | 17 | 5.8 | 1.6 | | | ### **Input Supply Bypassing** The $V_{\rm IN}$ input should be capacitively bypassed to reduce AC impedance and minimize noise effects due to the switching internal to the device. It is recommended that a large value capacitor (at least equal to C1) be connected from $V_{\rm IN}$ to GND for optimal circuit performance. #### **Shutdown Input** The TC12351/1236/1237 is enabled when /SHDN is high, and disabled when /SHDN is low. This input cannot be allowed to float. (If /SHDN is not required, see the TC1225/1226/1227 data sheet.) The /SHDN input should be limited to 0.3V above V_{IN} to avoid significant current flows. ### **Dual Voltage Inverter** The most common application for the TC1235/1236/1237 devices is the dual voltage inverter (Figure 2). This application uses four external capacitors: C1, C2, C_{OUT1} , and C_{OUT2} (NOTE: a power supply bypass capacitor is recommended). The outputs are equal to $-V_{IN}$ and -2VIN plus any voltage drops due to loading. Refer to Tables 1a, 1b, 2a, and 2b for capacitor selection guidelines. | Device | C _{IN} | C1 | C2 | C _{OUT1} | C _{OUT2} | |--------|-----------------|--------|--------|-------------------|-------------------| | TC1235 | 3.3µF | 3.3µF | 1μF | 3.3μF | 1μF | | TC1236 | 1μF | 1μF | 0.33μF | 1μF | 0.33μF | | TC1237 | 0.33μF | 0.33μF | 0.1μF | 0.33μF | 0.1μF | Figure 2. Dual Voltage Inverter Test Circuit ### **Layout Considerations** As with any switching power supply circuit good layout practice is recommended. Mount components as close together as possible to minimize stray inductance and capacitance. Also use a large ground plane to minimize noise leakage into other circuitry. #### TC1235 DEMO Card The TC1235 DEMO Card is a 2.0" x 2.0" card containing both a TC1235 and two cascaded TC1219s that allow the user to compare the operation of each approach for generating a –1X and –2X function. Each circuit is fully assembled with the required external capacitors along with variable load resistors that allow the user to vary the output load current of each stage. For convenience, several test points and jumpers are available for measuring various voltages and currents on the demo board. Figure 3 is a schematic of the TC1235 DEMO Card, and Figure 4 shows the assembly drawing and artwork for the board. Table 3 lists the voltages that are monitored by the test points and Table 4 lists the currents that can be measured using the jumpers. Table 3. TC1235 DEMO Card Test Points | TEST POINT | VOLTAGE MEASUREMENT | |------------|---------------------------------| | TP1 | VIN [+5V] | | TP2 | GROUND | | TP3 | GROUND | | TP4 | TC1219 U1 OUTPUT [-5V(1)] | | TP5 | TC1219 U2 OUTPUT [-10V(1)] | | TP6 | TC1235 STAGE 1 OUTPUT [-5V(2)] | | TP7 | TC1235 STAGE 2 OUTPUT [-10V(2)] | | TP8 | EXTERNAL /SHDN INPUT | | TP9 | TC1219 U1 /SHDN INPUT | | TP10 | TC1235 U3 /SHDN INPUT | Table 4. TC1235 DEMO Card Jumpers | JUMPER | CURRENT MEASUREMNT | |--------|---------------------------------------| | J1 | DUAL TC1219 QUIESCENT CURRENT | | J2 | TC1235 QUIESCENT CURRENT | | J3 | TC1219 U1 [-5V(1)] LOAD CURRENT | | J4 | TC1219 U2 [-10V(1)] LOAD CURRENT | | J5 | TC1235 STAGE 1 [-5V(2)] LOAD CURRENT | | J6 | TC1235 STAGE 2 [-10V(2)] LOAD CURRENT | | J7 | TC1219 U1 /SHDN INPUT CURRENT | | J8 | TC1235 U3 /SHDN INPUT CURRENT | | J9 | GROUND EXTERNAL /SHDN INPUT | Figure 3. TC1235 DEMO Card Schematic Figure 4. TC1235 DEMO Card Assembly Drawing and Artwork ### TYPICAL RIPPLE WAVEFORMS ### **TYPICAL RIPPLE WAVEFORMS** ### **TAPING FORM** ### **PACKAGE DIMENSIONS** 9 TC1235/6/7-1 3/24/00 ## WORLDWIDE SALES AND SERVICE #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456 Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 Austin Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085 **Boston** 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 **Boston** Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050 Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 Dallas 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175 **Detroit** Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 **Mountain View** Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590 **New York** 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC China - Beijing Microchip Technology Beijing Office New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Shanghai Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **Hong Kong** Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, OíShaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Tel: 82-2-554-7200 Fax: 82-2-558-5934 **ASIA/PACIFIC** (continued) Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 #### **EUROPE** Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 **France** Arizona Microchip Technology SARL Parc díActivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Germany Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 **United Kingdom** Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01 🚺 Printed on recycled paper. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchipis products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. © 2001 Microchip Technology Inc. DS21371A 10 TC1235/6/7-1 3/24/00