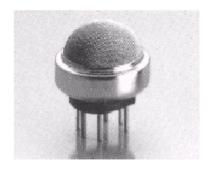
TGS 826 - for the Detection of Amine Compounds

Features:


- * High sensitivity to amine compounds
- * Quick response to low concentrations of ammonia
- * Uses simple electrical circuit
- * Ceramic base resistant to severe environment

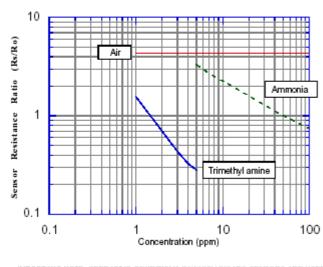
Applications:

- * Ammonia leak detection in refrigerators
- * Ventilation control for the agricultural and poultry industries

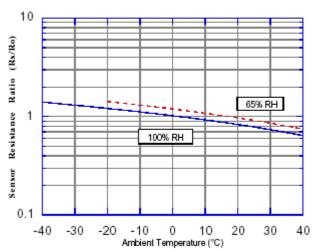
The sensing element of TGS-826 is a metal oxide semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The TGS-826 has high sensitivity to amine compounds, especially ammonia gas. The sensor can detect concentrations as low as 30ppm in the air and is ideally suited to critical safety-related applications such as the detection of ammonia leaks in refrigeration systems and ammonia detection in the agricultural field.

The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows:


Rs = Sensor resistance of displayed gases at various concentrations

Ro = Sensor resistance at 50ppm of ammonia


The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows:

Rs = Sensor resistance at 50ppm of ammonia at various temperatures/humidities Ro = Sensor resistance at 50ppm of ammonia at 20°C and 65% R.H.

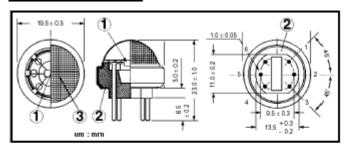
Sensitivity Characteristics:

Temperature/Humidity Dependency:

IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL WARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTINGOUR TECHNICAL STAFFBEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HERE N. FIGARO CANNOT ASSUME ANY RESPONSIBLITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

传感与控制事业部

深圳市光之神电子有眼公司


地址:深圳市深南中路北方大厦1006-1018 电话: 0755-83279118/83278699/83278860

网址: www.apollosz.com

邮编: 518033 传真: 0755-83279283

邮箱: Sensor@apollosz.com

Structure and Dimensions:

(1) Sensing Element:

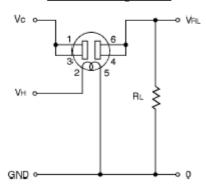
Metal oxide is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.

(2) Sensor Base:

Alumina ceramic

3) Flame Arrestor:

100 mesh SUS 316 double gauze


Pin Connection and Basic Measuring Circuit:

The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). Since the sensor has a polarity, DC voltage is always required for circuit voltage (a white dot indicates pin 2). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Standard Circuit Conditions:

Standard Circuit Conditions:				
Item	Symbol	Rated Values	Remarks	
Heater Voltage	Vн	5.0±0.2V	AC or DC	
Circuit Voltage	Vc	Max. 24V	DC only *PS≤15mW	
Load Resistance	Rı.	Variable	*PS≤15mW	

Basic Measuring Circuit:

Pin #2 is indicated by a white dot on the sensor's base.

Electrical Characteristics:

Item	Symbol	Condition	Specification
Sensor Resistance	Rs	Ammonia at 50ppm/Air	20kΩ ~ 100kΩ
Change Ratio of Sensor Resistance	Rs/Ro	Rs (Ammonia at 150ppm/air) Rs (Ammonia at 50ppm/air)	0.4 ~ 0.70
Heater Resistance	RH	Room temperature	$30.0\pm3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	833mW
Cross Sensitivity		Rs (H2 at 50ppm) Rs (NH3 at 50ppm)	≥ 1.0

Standard Test Conditions:

TGS 826 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

Test Gas Conditions: 20°±2°C, 65±5%R.H.
Circuit Conditions: Vc = 5.0±0.1V (DC),

VH = 5.0±0.1V (DC),

 $R\iota = 33.0k\Omega\pm1\%$

Preheating period before testing: More than 7 days

Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = (\frac{Vc}{V_{RL}} - 1) \times RL$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{Vc^2 \times Rs}{(Rs + RL)}$$

<u>Special Note</u>: A more narrowly defined range of Rs or Rs/ Ro will be indicated on each production lot. Preselected ranges of Rs or Rs/Ro are not available.

传感与控制事业部

深圳市光之神电子有眼公言

地址:深圳市深南中路北方大厦1006-1018 电话: 0755-83279118/83278699/83278860

网址: www.apollosz.com

邮编: 518033 传真: 0755-83279283

邮箱: Sensor@apollosz.com