
#### **FEATURES**

- Linearized Temperature-to-Voltage Converters
- **Direct Centigrade Output Voltage Scaling (TC1023)**
- Shutdown/Calibrate Mode
- **Multi-Zone Temperature Sensing Capability**
- Wide Temperature Measurement Range (TC1024) ..... - 40°C to +125°C
- Excellent Temperature Converter Linearity .. 0.8°C Over Temperature
- High Temperature Converter Accuracy......±2°C at 25°C Guaranteed
- Small Packages ......8-Pin SOIC and 8-Pin MSOP

#### **APPLICATIONS**

- **Power Supply Thermal Shut-Down**
- **Temperature-Controlled Fans**
- Temperature Measurement/Instrumentation
- **Temperature Regulators**
- **Consumer Electronics**
- **Lithium Battery Temperature Monitor**

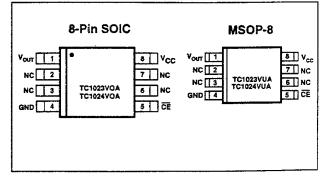
#### TYPICAL APPLICATION



#### **GENERAL DESCRIPTION**

The TC1023/1024 temperature sensors furnish a linearized output voltage directly proportional to measured temperature. The TC1023 has a temperature measurement range of - 40°C to +100°C. Its output voltage is directly calibrated in degrees Centigrade (i.e., Vout = 10mV/°C x Temperature °C). An external pull-down resistor to a negative voltage source is required for temperature measurement below 0°C.

**CONVERTERS WITH SHUTDOWN MODE** 


The TC1024 has a temperature measurement range of -40°C to +125°C, and operates with a single supply. It has the same output voltage slope with temperature as the TC1023 (10mV/°C). The output voltage range is 100mV at - 40°C to 1,750mV at +125°C. Both devices have a chip enable input that reduces supply current to 1µA (typical) when pulled active high. In this state, the output defaults to a high resistance allowing an external reference voltage to be directly connected for A/D calibration.

Small size, low cost, flexibility and low power operation make the TC1023/1024 suitable for a wide range of general purpose temperature measurement applications.

#### ORDERING INFORMATION

| Part No.  | Package    | Output<br>Voltage<br>At 25°C | Temp. Range      |
|-----------|------------|------------------------------|------------------|
| TC1023VOA | 8-Pin SOIC | 250mV                        | - 40°C to +100°C |
| TC1023VUA | 8-Pin MSOP | 250mV                        | - 40°C to +100°C |
| TC1024VOA | 8-Pin SOIC | 750mV                        | - 40°C to +125°C |
| TC1024VUA | 8-Pin MSOP | 750mV                        | - 40°C to +125°C |

#### PIN CONFIGURATION



**GMT Microelectronics** Rev. 1.0 03/15/99 Page 1 of 6 22-021-700

### TC1023

### TC1024

## PRECISION TEMPERATURE-TO-VOLTAGE CONVERTERS WITH SHUTDOWN MODE

#### **ABSOLUTE MAXIMUM RATINGS \***

| Supply Voltage                       | 15V                            |
|--------------------------------------|--------------------------------|
| Input Voltage, Any Terminal          | 1.0 to (V <sub>CC</sub> +0.3V) |
| Operating Temperature (TC1023)       | 40°C to +100°C                 |
| Operating Temperature (TC1024)       | 40°C to +125°C                 |
| Storage Temperature                  | 55°C to +150°C                 |
| Lead Temperature (Soldering, 10 sec) | +300°C                         |

\* Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: T<sub>A</sub> = -40°C to +125°C, V<sub>CC</sub> = 5V ±5%, GND = 0V, unless otherwise specified.

| Symbol          | Parameter                                | Test Conditions                                                                                                  | Min        | Тур | Max                   | Unit  |
|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|-----|-----------------------|-------|
| Vcc             | Supply Voltage (TC1023)<br>(TC1024)      |                                                                                                                  | 2.2<br>3.0 | _   | 12<br>12              | V     |
| ls              | Supply Current                           | CE = V <sub>IL</sub><br>(Note 1)                                                                                 | _          | 40  | 60                    | μА    |
| ICE             | Shutdown Current                         | CE = V <sub>IH</sub><br>(Note 2)                                                                                 | _          | 1   | 5                     | μА    |
| V <sub>IH</sub> | CE Input Logic HIGH Level                |                                                                                                                  | 2.4        | _   | _                     | V     |
| VIL             | CE Input Logic LOW Level                 |                                                                                                                  |            |     | 0.8                   | V     |
| ICE             | CE Input Leakage Current                 | CE = V <sub>IH</sub> or V <sub>IL</sub>                                                                          | -1         | _   | +1                    | μА    |
| trec            | Recovery Time from Shutdown              | CE = step from V <sub>IH</sub> to V <sub>IL</sub><br>(Note 3)                                                    | -          | 400 |                       | µѕес  |
| ¥′о∪т           | Vout Output Voltage (TC1024)             | T <sub>A</sub> = - 40°C and + 125°C                                                                              | 70         | -   | 1780                  | nrv'  |
|                 | V <sub>OUT</sub> Output Voltage (TC1023) | T <sub>A</sub> = - 40°C and +100°C<br>Circuit per Figure 1:<br>R1 = 240kΩ<br>V <sub>SS</sub> = - 12V<br>(Note 1) | - 430      | _   | 1030                  | mV    |
| İSRC            | Vout Output Source Current               |                                                                                                                  | _          | _   | 1.0                   | mΑ    |
|                 | Accuracy at Room Temperature             | T <sub>A</sub> = +25°C<br>(Note 4)                                                                               | -2         |     | +2                    | °C    |
|                 | Accuracy at Maximum Temperature          | TC1023: T <sub>A</sub> = +100°C<br>TC1024: T <sub>A</sub> = +125°C<br>(Note 4)                                   | -3         | -   | +3                    | ిం    |
|                 | Accuracy at Minimum Temperature          | TC1023: T <sub>A</sub> = -40°C<br>TC1024: T <sub>A</sub> = -40°C<br>(Note 4)                                     | -3         |     | +3                    | °င    |
|                 | Nonlinearity                             | Note 5                                                                                                           | - 0.8      | _   | +0.8                  | °C    |
|                 | Line Regulation                          |                                                                                                                  |            | 80  | _                     | μV/V  |
| Α <sub>V</sub>  | Average Slope of Output Voltage          |                                                                                                                  |            | 10  |                       | mV/°C |
| VOUTMAX         | Maximum Output Voltage                   | TC1023: 2.2V ≤ V <sub>CC</sub> ≤ 12V<br>TC1024: 3.0V ≤ V <sub>CC</sub> ≤ 12V<br>(Note 1)                         |            |     | V <sub>CC</sub> - 1.2 | ٧     |

NOTES: 1. Vour outputs open circuited.

Rev. 1.0 03/15/99 22-021-700

<sup>2.</sup>  $V_{OUT}$  is 0V through approximately 100k $\Omega$  to ground when  $CE = V_{IH}$ .

Recovery time is the period required for V<sub>OUT</sub> to rise from 0V (shutdown state) to the voltage corresponding to the measured temperature driving a 100pF capacitive load.

<sup>4.</sup> Accuracy = Difference between calculated output voltage (10mV/°C x Device case temperature at specified temperature and power supply) and measured output voltage expressed in °C.

<sup>5.</sup> Nonlinearity = deviation of output voltage versus temperature from the best-fit straight line over the device rated temperature range.

## PRECISION TEMPERATURE-TO-VOLTAGE CONVERTERS WITH SHUTDOWN MODE

#### **DETAILED DESCRIPTION**

A plot of output voltage versus temperature for both the TC1023 and TC1024 appears in Figure 5. The TC1023 can be used with single power supply to measure temperatures from 0°C to 100°C. A pull-down resistor (R1 in Figure 1) must be added from the output pin to the negative power supply for measuring temperatures less than 0°C. The value of the resistor must be chosen to limit the maximum current pulled from the output to the negative supply to  $-50\mu A$  (i.e., R1 =  $V_{SS}/50\mu A$ ).

#### **Output Stage**

Both devices have Class A output stages capable of sourcing 1mA. These devices have a limited ability to drive heavy capacitive loads. Loads of 50pF (to ground) can be driven directly. For heavier loads, a  $2k\Omega$  (or greater) resistor should be placed in series with the output for decoupling. If the TC1023/1024 is used in a noisy electrical environment, a  $0.1\mu F$  bypass capacitor from  $V_{CC}$  to GND is recommended.

#### Shutdown/Calibrate Mode

The TC1023/1024 enters shutdown when the  $\overline{CE}$  input is taken to V<sub>IH</sub>. This causes quiescent current to fall to 1µA (typ) and the output to drop immediately to 0V through approximately 100k $\Omega$ . For applications where the TC1023/1024 is connected to an external A/D converter, a reference voltage can be directly connected to V<sub>OUT</sub> while in shutdown for A/D calibration, as shown in Figure 3. A CMOS gate provides bias voltage to the bandgap reference V<sub>R</sub>, and at the same time disables the TC102x by taking  $\overline{CE}$  to V<sub>IH</sub>. Limiting resistor R1 should be chosen to limit current through the voltage reference to the desired current (I<sub>REF</sub>). That is, R1 = (V<sub>OH</sub> - V<sub>REF</sub>)/I<sub>REF</sub> (where V<sub>OH</sub> is the CMOS gate output high voltage at output current equal to I<sub>REF</sub>; and V<sub>REF</sub> is the reference voltage of V<sub>R</sub>).

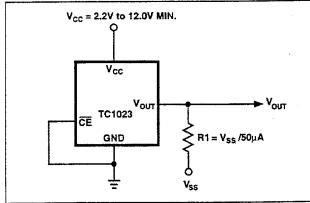



Figure 1. TC1023 Connections

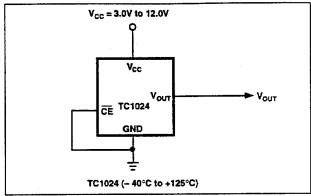



Figure 2. TC1024 Connections

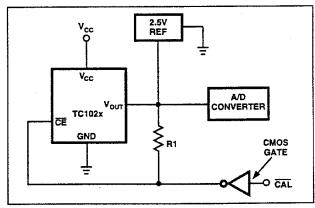



Figure 3. A/D Calibration

#### **Multi-Zone Temperature Sensing**

The  $\overline{CE}$  input facilitates multi-zone temperature sensing as shown in the example of Figure 4. In this example, the processor addresses either of two sensors with a single I/O port pin. The TC102x V<sub>OUT</sub> pins are connected together and routed to the processor's A/D converter, eliminating the need for separate A/D input channels for each sensor.

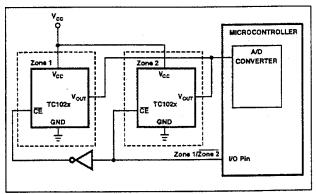



Figure 4. TC1023/1024 Addressing

# TC1023 TC1024 PRECISION TEMPERATURE-TO-VOLTAGE CONVERTERS WITH SHUTDOWN MODE

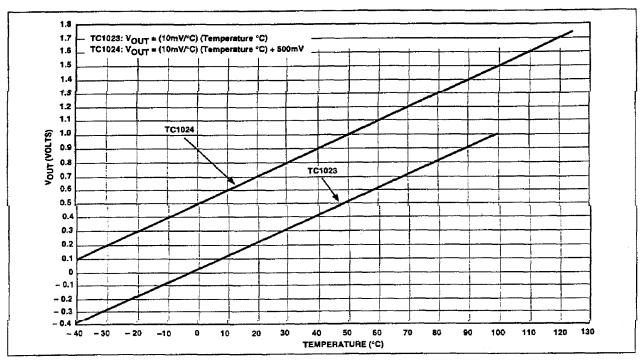
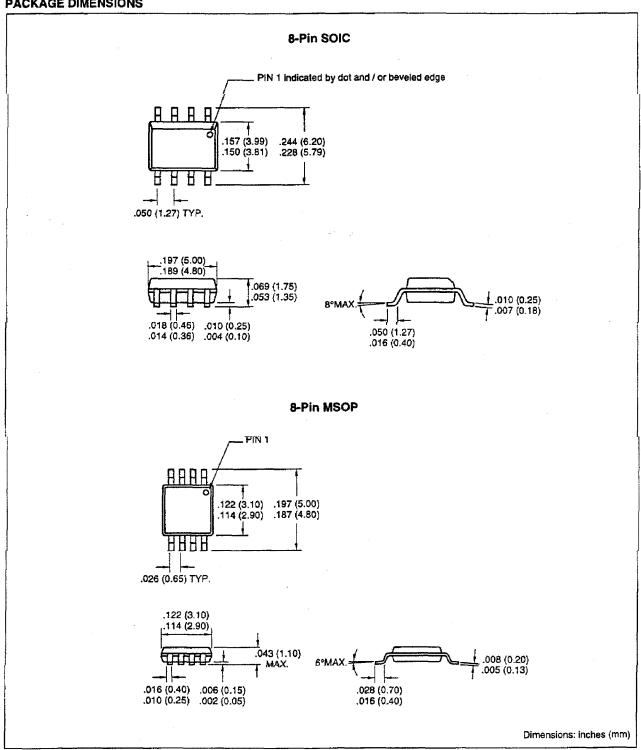




Figure 5. Output Voltage vs. Temperature

Rev. 1.0 03/15/99 GMT Microelectronics 22-021-700 Page 4 of 6

#### **PACKAGE DIMENSIONS**



# TC1023 TC1024 PRECISION TEMPERATURE-TO-VOLTAGE CONVERTERS WITH SHUTDOWN MODE

#### LIFE SUPPORT USAGE POLICY:

GMT's products are not authorized for use as critical components in life support devices or systems without the express written approval of the CEO of GMT. As used herein:

- (a) Life support devices or systems are devices or systems which (1) are intended for surgical implant into the body; or (2) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user; and
- (b) A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system.

#### **Corporate Headquarters**

GMT Microelectronics Corporation 950 Rittenhouse Road Norristown, PA 19403 Toll Free: (888) GMT-4771 (610) 666-7950 Fax: (610) 666-2729

Email: marketing@gmtme.com Website: www.gmtme.com

#### Sales Offices

**GMT Microelectronics** 1735 North First Street Suite 302A San Jose, CA 95112 (408) 487-9050 Fax (408) 487-9051

**GMT Microelectronics** 25251 Paseo De Alicia Suite 200 Laguna Hills, CA 92653 (714) 699-3462 Fax (714) 699-3463

**GMT Microelectronics** 17218 Preston Road Suite 400 Dallas, TX 75287 (972) 735-3155 Fax (972) 735-3156

**GMT Microelectronics** 14502 North Dale Mabry Suite 200 Tampa, FL 33618 (813) 908-9544 Fax (813) 908-7683

Amurtron Corp. 8FL-2, No. 171 Sung Teh Rd. Taipei, Taiwan R.O.C. (886) 2-23461381 Fax (886) 2-23461382