The TMS320C30
Floating-Point Digital
Signal Processor

APPLICATION REPORT: SPRA397

Panos Papamichalis

Ray Simar, Jr.

Digital Signal Processor Products
Semiconductor Group

Texas Instruments

Digital Signal Processing Solutions

%‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

The TMS320C30 Floating-Point
Digital Signal Processor

Abstract

This chapter, reprinted from Proceedings of the IEEE, describes
the origin and development of the TMS320 Family of Digital Signal
Processors. The topics covered include:

Q An overview of the characteristics of digital signal processing

Q A history describing how digital signal processing has evolved
over the last several decades

Q A description of the three generations of the TMS320 family

Q Hardware and software tools used in development and support
Q How applications use DSP solutions

Support graphics include:

Q An example of the building blocks comprising the TMS320
DSP family

O A graph showing the instruction cycles available for signal
processing

O A diagram showing a minimal processing system with external
data RAM and PROM/EPROM

O TMS320C10, TMS320C25, TMS320C30 functional block
diagrams

The chapter concludes with a summary and a lengthy list of
references.

The TMS320C30 Floating-Point Digital Signal Processor 5

*i’
SPRA397

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

Email
For technical issues or clarification on switching products, please

send a detailed email to (dsph@ti.com). Questions receive prompt
attention and are usually answered within one business day.

6 The TMS320C30 Floating-Point Digital Signal Processor

The TMS320C30
Floating-Point
Digital Signal Processor

igital signal processors have significantly impacted the way we bring

real-time implementations of sophisticated DSP algorithms to life.

What was once only a laboratory curiosity that required large comput-
ers or specialized, bulky, and expensive hardware is now incorporated into low-
cost consumer products. The rapid advancement of programmable DSPs since
their commercial introduction in the early 1980s lets us satisfy the needs of very
demanding applications. Implementation of basic DSP functions, such as digital
filters and fast Fourier transforms, has been integrated into advanced system
solutions involving speech algorithms, image processing, and control applica-
tions. The variety of the applications increases every day as researchers,
developers, and entrepreneurs discover new areas in which DSP devices can be
used. Atthe same time, the design of new devices incorporates features that make
such implementations easier.

The Texas Instruiments family of TMS320 DSPs' evolved with the expanding
needs of the DSP applications and currently encompasses over 17 devices. The
TMS320 family consists of three generations of devices. The first two genera-
tions are 16-bit, fixed-point-arithmetic devices while the third one, represented
by the TMS320C30 and explained in detail here, is a 32-bit, floating-point
device. Architecturally, the TMS320 family, like most DSP devices, relies on
multiple Harvard buses. In the first two generations, we expanded the basic
Harvard architecture to permit communication between the program and data
spaces. In the third generation, we unified the two spaces to form an organization
that encompasses the advantages of both the Harvard and the von Neumann
architectures.

Overview of the TMS320C30

The 320C30 is a fast processor (16.7 million instructions per second for an
instruction cycle time of 60 nanoseconds) with a large memory space (16 million
32-bit words) and floating-point-arithmetic capabilities. This last feature is a
major trend in new DSP devices, which was developed to answer the need for
quicker, more accurate solutions to numerical problems. DSP algorithms, being
very intensive numerically, cause a designer to worry about overflows and the
accuracy of results. The introduction of floating-point capabilities eliminates
these difficulties.

©1989 IEEE. Reprinted, with permission, from IEEE MICRO MAGAZINE;
Vol. 8, No. 6, pp. 10-28; December 1986

——
Panos Papamichalis
Ray Simar, Jr.

Texas Instruments

In the 320C30, a chip design with 1-um geometries
produces instruction cycle times lower than those achieved
with the fixed-point devices of the first two generations. In
addition, the design produces a controlled increase in die
size that results more from the extended on-chip memory
spaces than from the floating-point capabilities.

The pipelined architecture of the 320C30 permits the
higher throughput achieved by the device, as we explain
later. Yet, programmers do not have to worry about the
pipeline when writing the code. We can describe the design
philosophy of the 320C30 (as well as all the other devices
in the TMS320 family) as an “interlocked” or “hidden-
pipeline” approach. When writing the program, program-
mers can assume that the result of any instruction will be
available for the next instruction. Most of the instructions
execute in one machine cycle. If a conflict arises between
executing an instruction in one cycle and having the data
available for the next instruction, the device automatically
inserts the necessary delay to eliminate the conflict. Since
this delay could result in loss of performance, we provide
development tools that identify where such conflicts occur.
With this data, programmers can rearrange and optimize
code.

Many applications, such as graphics and image process-
ing, are difficult to implement on the earlier DSP devices
because they require a large memory space. To satisfy this
need, the 320C30 provides a total memory space of 16
million 32-bit words, memory several orders of magnitude
larger than the fixed-point devices. Furthermore, it con-
tains significantly increased on-chip memory: six thou-
sand 32-bit words of RAM and ROM. The desire to have
a device capable of offering system-level solutions to the
implemented algorithms guided the design decision to
increase on-chip memory. In other words, the 320C30
attempts to offer the capability of implementing an algo-
rithm with as little peripheral circuitry as possible.

Along the same lines, the 320C30 contains a peripheral
bus on which on-chip peripherals can be attached using a
memory-mapped approach. Currently available peripher-
als include two serial ports, two timers, and a DMA
controller. The modularity of the design permits easy
change, addition, or deletion of peripherals to accommo-
date different needs. For instance, if a p-law-to-linear
format converter or a gate array is more important than one
of the timers for certain applications, a user can make the
change without impacting the core of the device.

As the power of the DSP devices increases, so does the
sophistication of the algorithms that are implemented. The
implication is that constructing and debugging an algo-
rithm at the assembly-language level becomes a more and
more tedious task. To address that problem, we provide the
320C30 development tools, which include a high-level-
language compiler and a DSP operating system. The ex-
tended memory space, the software stack, and the large on-
chip register file also facilitate such a development. We’ve
already introduced a C compiler and announced an Ada
compiler. We expect compiler availability to change sig-

nificantly the way DSP algorithms are ported to DSP
devices. With these tools, programmers can develop the
algorithms on large computers, requiring at the most only
selective optimization when they incorporate the algo-
rithm on the 320C30.

Here, we describe the 320C30 architecture in detail,
discussing both the internal organization of the device and
the external interfaces. We also explain the pipeline struc-
ture, addressing software-related issues and constructs,
and examine the development tools and support. Finally,
we present examples of applications.

Architecture of the 320C30

. Studying the architecture of the device helps in under-
standing how the different components contribute toward
ahigh-throughput system. The interaction and the efficient
use of the parts can contribute to very effective program-
ming. Another very important aspect to consider is the
system cost of the application. We designed the device to
incorporate on-chip features that minimize the amount and
the cost of external logic, thus leading to very compact and
cost-effective solutions. These advantages become ex-
plicit when looking at the architecture in detail. The inter-
nal structure of the 320C30, as shown in Figure 1, consists
of the

+ on-chip memory and cache,

* CPU with register file,

« peripheral bus and peripherals, and
« interconnecting buses.

See Figure 2 for the die photograph. To interface with
the external world, the 320C30 provides pins correspond-
ing to

+two buses (primary and expansion),

* two serial ports and two timers,

» four external interrupt signals,

« two external flags, and

* hold and hold-acknowledge signals.

In addition, other pins exist for address and data strobs,
power, and so on.

The overall architecture of the device is a Harvard type
in the sense that internally and externally it has multiple
buses to access program instructions, data, or perform
DMA transfers. However, it also has a von Neumann flavor
since the memory space is unified, and there is no separa-
tion of program and data spaces. As a result, the user can
choose to locate programs and data at any desired location.

Some of the major features of the 320C30 are:

» 2 60-ns cycle time that results in execution of over 16
million instructions per second (MIPS) and over 33 million
floating-point operations per second (Mflops);

+ 32-bit data buses and 24-bit address buses for a 16M-
word overall memory space;

« dual-access, 4K X 32-bit on-chip ROM and 2K X 32-
bit on-chip RAM;

Program RAM RAM ROM

cache block 0 block 1 block 0
(64 x 32) (1K x 32) (1K x 32) (4K x 32)
RDY J—
] HOLD XROY 3
2 HOLDA IOSTRB 2
z STRB Data buses XRW 2
£ RW ___ /X0 @1-0) 2
& D (31-0) XA(12-0) &
A (23-0) P MSTRB w
e
r
cPU DMA i
p
RESET. Integer/ Integer/ Address : Serr‘lzl
INT (3-0)— floating-point | floating-point generators ; po
TACK @ multiplier ALU
oK «—> (°; : Control registers [—> ? Serial
XF (‘_ﬂ n Extended-precision port1
MC/MP— t registers (8)
xte— o b
X2/CLKIN 1 Address Address u
LKIN—® | generator 0 generator 1 s
Voo (T-00— o
Vgs (10-0)— T Auxiliary registers (8)
VBBP—| /
SUBS @ Control registers (12)
— a— — ——

Figure 1. Block diagram of the TMS320C30 architecture.

» a 64 X 32-bit program cache;

« a 32-bit integer/40-bit floating-point multiplier and
ALU; -

+ eight extended-precision registers, eight auxiliary ; t‘
registers, and 12 control and status registers; 2K x JYWORDS

|
—
G

" TMER o

—y

« generally single-cycle instructions; H

« integer, floating-point, and logical operations; l 3 J

« two- and three-operand instructions; :

« an on-chip DMA controller; and - HOM I s |
« fabrication in 1-um CMOS technology and packag- oS woRes {oow

i
|
i

ing in a 180-pin package.

Memory organization. The 320C30 provides 4K 32-
bit words of on-chip ROM, and 2K 32-bit words of on-chip
RAM. The on-chip ROM is mapped into the first 4K of the
overall memory map; it is accessed when the processor
operates in the microcomputer mode. Location 0 of the
memory map holds the reset vector, and adjacent locations / | . |
hold other interrupt vectors. In microprocessor mode, the e P
reset vector resides in external memory, and on-chip ROM ‘ | oL
is not accessed. The 2K on-chip RAM consists physically
of two segments of 1K words each. These two segments of
RAM are mapped into adjacent sections of the memory.
Figure 3 on the next page shows the arrangement of the on-
chip memory, as well as the cache, buses, and two external
interfaces/buses, which we examine later. Figure 2. Die photograph of the 320C30.

AUXIUARY

o !
x
w
s
2
kY

RAM
block 0
(1K x 32)

Cache
(64 x 32)

RAM ROM
block 1 block
(1K x 32) (4K x 32)

Primary bus
xcZ

Program counter/Instruction register
(PC/IR)

PDATA BUS
PADDR BUS
DDATA BUS
DADDR1 BUS
DADDR2 BUS
I;MADATA BUS

DMAADDR BUS

xcZ
Expansion bus

CPU DMA

Figure 3. On-chip memory, cache, and buses.

The internal memory (both ROM and RAM) supports
two accesses for reads and/or writes in one cycle. This key
feature permits high throughput and ease of programming,
since it makes possible three-operand instructions with
two operands residing in the memory. Notice that, to
support this feature, we include two buses dedicated to data
addresses (DADDR1, DADDR?2) and one bus to carry the
data (DDATA). There are also separate program buses,
PDATA and PADDR.

The address buses are 24 bits wide, indicating that the
overall memory space is 16 million (32-bit) words. We
believe this large space will facilitate implementation of
algorithms in image processing applications that often
require large amounts of memory. The unified memory
space offers flexibility in placing program and data. But it
also permits optimal use of the memory space as a trade-off
between program and data.

An important addition to the architecture is the 64-word
instruction cache. To reduce the overall system cost of
applications, system designers often use slower (and
cheaper) external memories, a tactic that could slow down
the processor and degrade the performance. The instruc-
tion cache addresses this problem by storing on-chip in-
structions that have been fetched previously. Its main
advantage becomes obvious when loops must be executed.
In this case, the first time the instructions are fetched, they
are also stored in the cache. Any subsequent execution of
the loop does not access external memory but fetches
instructions from the cache, resulting in higher speed and

making the external buses available for data transfers.

The cache is segmented into two sections of 32 words
each that are transparent to users. A user can, however,
control the operation of the cache by manipulating three
control bits that are contained in the status register of the
CPU. Each control bit is dedicated to a specific operation:
cache enable/disable, cache freeze, and cache clear. When
acache miss occurs, that is, when the next instruction is not
included in the cache, the instruction is brought in and also
stored in the cache. The two cache sections are updated on
a least recently used basis.

CPU organization. The CPU consists of the ALU
(arithmetic logic unit), the hardware multiplier, and the
register file. These units are shown in Figure 4.

The register file consists of

+eight 40-bit-wide, extended-precision registers RO
through R7,

+eight 32-bit auxiliary registers ARO through AR7,
and

« twelve 32-bit control registers.

The extended-precision registers function as accumula-
tors and can handle both floating-point and integer num-
bers. When they are used for floating-point numbers, the
top eight bits represent the exponent and the bottom 32 bits
the mantissa of the number. In their integer format, regis-
ters RO through R7 use only their bottom 32 bits, keeping
the top 8 bits unchanged in any integer or logical operation.

The eight auxiliary registers ARO through AR7 can
function as memory pointers in indirect addressing, as loop
counters, or as general-purpose registers in integer arith-
metic or logical operations. Associated with these registers
are two auxiliary register arithmetic units (ARAU) that
generate two memory addresses in parallel for the instruc-
tions that need them. The flexibility of indirect addressing
increases even further when two index registers are used in
conjunction with the auxiliary registers, as we discuss
later.

The register file contains 12 control registers designated
for specific functions. If the control registers are not used
for these functions, they can be treated as general-purpose
registers in integer arithmetic and logical operations.
Examples of such control registers are the

« status register,

« index registers,

« stack pointer,

« interrupt mask and interrupt flag registers, and
« repeat-block registers.

In particular, the stack-pointer register points to the
software stack. The user has the flexibility of designating
where the stack resides, and even of changing its location
during the program execution. This feature also makes the
stack of essentially unlimited depth and permits its usage
not only for storing the program counter during subroutine
calls but also for passing arguments to subroutines. Such an
arrangement is particularly convenient in the development
of compilers, and we have used it extensively in the
320C30’s optimizing C compiler.

The ALU performs floating-point, integer, and logical
operations. The ALU always stores the result in the register
file, but the input can come either from the register file or
from memory, or it can be an immediate value.

In the case of floating-point arithmetic, the input to the
ALU can originate from either a 40-bit extended-precision
register or a 32-bit memory datum. Registers RO through
R7 store the 40-bit-word result. On the other hand, in
integer arithmetic, both input and output are 32-bit num-
bers, and the output can move to either the lower 32 bits of
the RO through R7 registers or to any other register in the
register file.

The single-cycle hardware multiplier has been an inte-
gral part of DSPs because any real-time application relies
on the fast execution of multiplies. Following the same
distinction as in the previous paragraph on the ALU, the
multiplier performs both floating-point and integer multi-
plications. The 32-bit inputs to a floating-point multiplica-
tion yield a 40-bit-wide result for storage in one of the
extended-precision registers.

In both the ALU and the multiplier the results of the
operations are automatically normalized, thus handling
any overflows of the mantissa. If there is an exponent
overflow, the resultis saturated in the direction of overflow
and the overflow flag is set. Underflows are handled by
setting the result to zero and setting an underflow flag.

DDATA bus

MUX
H
CPU 1 \\
o AN RN
CPU 2
O | AN AN |
Register 1
3 B <1 T AN
il I I
\ ALU
\ Multiplier 32-bit
barrel
- shifter
o - 5 N
1R {—
E g z N g’, Register file

Figure 4. The 320C30 central processing unit.

Buses and peripherals. Figure 3 shows that multiple
on-chip buses handle program, data, and DMA operations
in parallel. The device contains separate address and data
buses for these three operations, with the data having two
address buses to accommodate the access of multiple
operands from the memory in one cycle. Also, separate
buses lead to the register file. The rule to remember is that,
inone cycle, up to two data memory accesses are permitted
for any on-chip memory block. This multiplicity of buses
eliminates bottlenecks. The user can maximize the through-
put of the device by a judicious combination of the on-chip
memory with the two external buses (the primary bus and
the expansion bus).

The primary bus contains a 24-bit address bus and a 32-
bit data bus. Its true space, though, is 16M words minus the
on-chip memory and the expansion bus. The primary bus
can be placed in high impedance when the device is put on
hold. To facilitate its interfacing with slow memories, the
320C30 offers programmable wait states (up to seven) as
well as an external ready signal.

The expansion bus contains a 13-bit address bus and a
32-bit data bus. It has two strobes, one for memory and one
for I/O accesses. In other words, the memory space of the

Serial port 0
L]
Memory | — 5 3
space Ll - Serial port 1
£ 3
] 1
E E Timer 0
2]
s -
- 3 Timer 1
. (— a
/ DMA controller

Figure 5. Peripheral bus and peripherals.

expansion bus is two segments of 8K words each, one
segment mapped as regular memory and the other one
mapped as 1/O. Like the primary bus, the expansion bus
has up to seven software-programmable wait states.

A major innovation in the 320C30—to support system-
level solutions and to help in adapting the device to
changing needs—is the peripheral bus shown in Figures 1
and 5. The peripheral bus supplies a way of expanding or
varying the interface with the outside world without chang-
ing the core of the device. All of the peripherals attached to
this bus are mapped to memory, and they can be replaced
by others with a minimal effort if certain applications have
different demands.

Currently, we have implemented a DMA controller, two
serial ports, and two timers as peripherals. The DMA
controller performs reads from and writes to any location
in the 320C30 memory map without interfering with the
operation of the CPU. The DMA controller contains its
own address generators, source and destination address
registers, and transfer counter. The two modular and totally
independent serial ports are identical with a complemen-
tary set of control registers. Each serial port can be config-
ured to transfer 8, 16, 24, or 32 bits of data per word, with
each port clock originating either internally or externally.
The pins of the serial ports are configurable as general-
purpose 1/0 pins, while the serial ports can also be config-
ured and used as timers. .

The two 320C30 timer modules function as general-
purpose timer/event counters; each have two signaling
modes and internal or external clocking. Available to each
timer is an I/O pin for use as an input clock to the timer, as
an output signal driven by the timer, or as a general-

purpose pin.

Software

The software features of a programmable DSP are
probably the most important features because they deter-
mine the effectiveness of the implementation. Typically,
the user first develops an application on a large computer
using a high-level language and, once it is working satis-
factorily, ports it to a DSP device. The software features
of the 320C30 that we discuss include the integer and
floating-point number representations, addressing modes,
pipeline effects, and different types of instructions and
constructs.

Integer and floating-point formats. A 32-bit, twos-
complement notation represents the integers. In addition to
this single-precision format, we have a short format, con-
sisting of 16-bit, twos-complement numbers used only for
immediate operands. Every instruction of the 320C30
consists of one 32-bit word.

We use three formats for floating-point numbers: short,
single precision, and extended precision. The single-preci-
sion, 32-bit-wide format assigns 24 bits to the mantissa and
8 bits to the exponent. The exponent occupies the 8 most
significant bits, and it is represented in twos-complement
notation, taking values between —128 and 127. The expo-
nent value —128 is the result reserved to represent zero.

The mantissa, placed at the 24 least significant bits of a
32-bit number, is normalized to a number with an absolute
value between 1.0 and 2.0. Since the mantissa is repre-
sented in a normalized, twos-complement notation, the
leftmost bit, which corresponds to the sign, and its adjacent
bit will always be the complement of each other. As a
result, only the sign bit is represented, with the most
significant bit suppressed. In other words, the mantissa
contains 24 significant bits plus the sign bit, with the most
significant bit implied.

Addressing modes. The 320C30 supports several ad-
dressing modes that allow the user to access data from
memory, registers, and the instruction word. The basic
addressing modes are

eregister,

« direct,

« indirect,

« short immediate,

» long immediate, and
* PC relative.

In register mode the operand is placed into a CPU
register that is explicitly specified in.an instruction. In
direct mode the data memory address is formed by preced-
ing the 16 least significant bits of the instruction word with
the 8 least significant bits of the data page pointer. To keep
all instructions one word long, we store only the 16 least
significant bits from the address in the instruction word: the
rest become the data page pointer. This restriction implies
that in direct addressing the memory space is segmented
into 256 pages of 64K words each.

. Table 1.
Addressing modes of the 320C30.

ARO=B(ARO+ IR0)

Mode Example Operation Description
Register ADDF RO,R1 Operand in RO
Direct ADDF @MEM, R1 Addr=MEM Operand in MEM
Short
immediate =~ ADDF 3.14,R1 Operand = 3.14
Long
immediate = BR LABEL Branch to LABEL
PC relative BGE LABEL Branch to LABEL
Indirect ADDF =* + ARO(di),R! Addr = ARO + di Predisplacement add
without modification
Indirect ADDF * — ARO(di),R1 Addr=AR0-di Predisplacement subtract
without modification
Indirect ADDF * + + ARO(di),R1 Addr = ARO +di Predisplacement add and
ARO=ARO +di modify
Indirect ADDF * — — ARO(di),R1 Addr=AR0-di Predisplacement subtract
ARO=ARO-di and modify
Indirect ADDF *ARO0+ +(di),R1 Addr=AR0 Postdisplacement add
ARO=ARO+di and modify
Indirect ADDF *ARO- —(di),R1 Addr=AR0 Postdisplacement
ARO=ARO-di subtract and modify
Indirect ADDF *ARO+ +(di)%,R1 Addr=AR0 Postdisplacement add
ARO = circ(ARO + di) and circular modify
Indirect ADDF *AR0Q- - (di)%,R1 Addr=AR0 Postdisplacement subtract
ARO = circ(AR0O—di) and circular modify
Indirect ADDF *ARO+ +(IR0O)B,R1 Addr=AR0 Postindex (IR0) add and

bit-reversed modify

di is an integer between 0 and 255 or one of the index registers IR0 and IR1.

Indirect addressing, the most versatile of all the modes,
specifies the address of an operand in memory through the
contents of an auxiliary register. As an option, the contents
of the register can be modified by constant displacements
or by the contents of the index registers. Table 1 lists all of
the addressing modes, with particular emphasis on indirect
addressing modes.

An instruction explicitly specifies the auxiliary register
used for indirect addressing. The user can modify it by a
constant displacement taking values O to 255 or by the
contents of one of the two index registers IRO or IR1. The
modification can take place before or after accessing the
memory. In the case of premodification, the user has the
option to change the contents of the auxiliary register either
permanently or temporarily. The notation used for such
modifications is reminiscent of the C-language syntax.

Two special forms of indirect addressing that are par-
ticularly useful are bit-reversed and circular addressing.
Bit-reversed addressing is used with the fast Fourier trans-
form to compensate for the fact that normally ordered data

at the input of the transform are scrambled at output (bit-
reversed order). To avoid moving the data around to place
them in the proper order, bit-reversed addressing accesses
the data in scrambled order for any subsequent operation.

Circular addressing implements circular buffers. Such
buffers are very convenient for use in digital-filtering
operations. In circular addressing, BK, one of the control
registers, specifies the size of the block. Then, when the
user modifies the contents of an auxiliary register (pointing
within that block) in a circular fashion, the final value is
tested to determine if it is still within the block. If it is not,
it is wrapped around using modulo arithmetic.

The short-immediate mode encodes immediate, 16-bit-
long operands of arithmetic operations. The long-immedi-
ate mode encodes program control instructions (branch
instructions) for which it is useful to have a 24-bit absolute
address contained in the instruction word. Finally, the PC-
relative addressing also applies to program control instruc-
tions and uses the difference from the present location of
the PC counter rather than an absolute address. The last two

modes are transparent to the user. The user specifies the
branching label wanted, and the assembler assigns the
appropriate addressing mode.

Pipeline. To achieve the high throughput of the device,
the 320C30 uses a four-phase pipeline with five major
functional units operating in parallel. These five units are

«instruction fetching,

« instruction decoding and address generation,
« operand reads,

« instruction execution, and

* DMA transfer.

Figure 6 shows diagrammatically how the pipeline
operates on successive instructions. When the pipeline is
full, an instruction completes the execution phase every
60-ns machine cycle.

Occasionally conflicts may arise, as in the case of a
loaded auxiliary register that needs to be used for indirect
addressing in the next instruction. To handle such cases, we
established a priority between the different units, giving
DMA the lowest priority. Among the others, an Execute
instruction has the highest and a Fetch instruction the
lowest priority.

In programming the device, the user does not have to
worry about the pipeline conflicts, which do not occur that
often anyway. When a conflict does occur, the device
automatically inserts the necessary extra cycle(s) to make
the instructions behave as expected. In most cases, this
arrangement will be sufficient for successful operation.
For time-critical operations, though, it may be necessary to
remove the extra cycles caused by pipeline conflicts. The
user can make this correction by rearranging the instruc-
tions of the program. To do so, the user must determine
how to identify the locations where insertions occur. For
that purpose, the development tools (simulator, emulators)
contain a tracing feature that can display the pipeline. In
this trace, any conflicts are immediately identified, and
then the user can take steps to correct the problem.

Instruction set features. The instruction set of the
320C30 supports both two- and three-operand instruc-
tions. In all arithmetic instructions (except Store), the

destination is a register in the register file. The source
operands can come from memory or from a register or, in
the case of two-operand instructions, can be part of the
instruction word.

A unique feature of the 320C30 is the set of instructions
in which operations executein parallel. This construct
permits a high degree of concurrency and execution of any
arithmetic or logical instruction in parallel with a Store
instruction. It also supports parallel multiplies and adds, as
well as parallel loading and storing of two registers. Paral-
lel multiply and adds lead to the peak performance of 33
Mflops. Executing the Store instruction at the same time
with another arithmetic operation essentially permits this
kind of data movement without a penalty. As an example,
the following instruction adds the contents of memory
pointed to by ARI (indicated by *ARI1) to register RO
(treating them as floating-point numbers) and places the
result in register R1. In parallel with that process, the
original contents of R1 are stored in the memory location
indicated by AR3.

ADDF *AR1,RO,R1

Il STF R1,*AR3

When executing a branch instruction, the pipeline must
be flushed since the path followed after the branch is data
dependent. As aresult, aregular branch instruction is more
costly than other instructions, taking four cycles to com-
plete. This overhead may be unacceptable in some time-
critical applications. To alleviate this problem and to offer
more flexibility to the programmer, the 320C30 contains
a set of delayed branches that complement the set of
standard branches. In a delayed branch, the three instruc-
tions following the branch instruction execute whether the
branch is taken or not taken. As aresult, the delayed branch
ends up taking only one cycle to execute. The same
approach can be used even when there are less than three
such instructions, by adding NOPs (no operations). The
branch will still take less than four cycles.

The greatest cost of branching occurs during the execu-
tion of loops. In looping, a counter is decremented and
compared to zero at the end of the loop. If it is not zero, a
branch is taken to the beginning of the loop. The 320C30
offers a special arrangement that implements loops withno

Cycle 1 2 3 4 5 6 7
1 l Fetch I Decode I Read I Execute l
g 2 I Feten J Decode | Read I Execue |
§ 3 I Fetch I Decode l Read l Execute l
g 4 I reen | Decoce I Rea I execte |
= 5 ' Fetch I Decode I Read I
L -

Figure 6. Pipeline of 320C30 instructions.

User-friendly development tools
offer extra support:
an optimizing C compiler and
a DSP operating system.

overhead. The two instructions RPTB (repeat block) and
RPTS (repeat single) realize this arrangement. The format
of the RPTB instruction is:

RPTB LABEL
(put instructions here)

LABEL (last instruction)

Associated with the repeat-block construct are three of
the 12 control registers in the register file. One register
indicates the beginning of the block, the second indicates
the end of the block, and the third acts as the repeat counter.
The assembler automatically assigns values to the firsttwo
registers. They contain the address of the instruction
immediately below RPTB, and the address of LABEL
respectively. Users should initialize the repeat counter
before entering the loop. In terms of execution time, this
arrangement behaves as if the loop were implemented with
straight-line code.

The instruction RPTS has the format

RPTS count

and it repeats the following instruction “count” times. It
differs from RPTB in that it

« applies to only one instruction;

«does not refetch the instruction for every execution, but
keeps it in the instruction register thus freeing the buses for
data transfers, and

« is not interruptible.

Table 2 on the next page is a sample of the instructions
available on the 320C30. Although we included a rich set
of instructions for both DSP and general-purpose process-
ing, the perceived size of the instruction set is much
smaller. The reason is that a symmetry exists between
integer and floating-point instructions, between instruc-
tions with two or three operands, and between single and
parallel instructions. For instance, addition is represented
by ADDI, ADDF, or ADDC in the case of adding integers,
floating-point numbers, or adding with a carry. The three-
operand instructions have the same form, with a 3 ap-
pended at the end (ADDF3). All of the multiplier and ALU
operations can be performed in parallel with a Store in-
struction, and such instructions take the form of the follow-
ing example:

ADDF3 *ARO,R1,R2

I STF RO,*AR1

Furthermore, two loads or two stores can execute in
parallel, as is also the case with a multiply and an addora
multiply and a subtract. The design of the instruction set
has been guided by a desire to ease programming efforts.
The execution results of an instruction are always available
for use in the instruction that follows.

Besides the regular arithmetic and logical instructions,
the 320C30 includes instructions to handle the software
stack, internal and external interrupts, and branches and
subroutine calls. Conditional loads and calls make the
programming more compact and efficient, while special
instructions (called interlocked instructions) can be usedin
multiprocessor environments.

Development tools and support

The newer DSP devices offer increased processing
power that permits the implementation of more compli-
cated and demanding algorithms. However, as the com-
plexity of the algorithm increases, the task of debugging
the implementation becomes more difficult. The 320C30
addresses this problem by providing user-friendly devel-
opment tools and offering extra support in the form of an
optimizing C compiler and a DSP operating system.

The assembler translates assembly-language source
files into machine-language object files. Source files can
contain instructions, assembler directives, and macro di-
rectives. Assembler directives control various aspects of
the assembly process such as the source-listing format,
symbol definition, and method of placing the source code
into sections. Macro directives permit a concise represen-
tation of groups of instructions that occur frequently.

The linker combines object files into one executable
object module. As it creates the executable module, the
linker performs relocation operations and resolves external
references. The linker accepts relocatable COFF (Com-
mon Object File Format) object files, created by the assem-
bler, as input. It can also accept archive library members
and output modules created by a previous linker run.
Linker directives allow the user to combine object-file
sections, bind sections or symbols to specific addresses or
within specific portions of 320C30 memory, and define or
redefine global symbols. An associated archiver can create
macro or object-file libraries.

The software simulator is a very important tool for
debugging 320C30 programs. Its interface consists of a
screen broken into windows that display the internal regis-
ters, the reverse-assembled program, and a versatile win-
dow where memory, breakpoints, and a wealth of other
information can be displayed. The same interface (modi-
fied to accommodate some special features) is also used
with the hardware emulator. The major features of the
simulator include:

« Simulation of the entire 320C30 instruction set and the

Table 2.

Instructions for the 320€30.

Instruction

Description

Instruction

Description

LDE
LDF
LDFcond
LDI
LDIcond
LDM

ABSF

ABSI
ADDC ¢t
ADDF ¢
ADDI t
AND t
ANDN {
ASH t
CMPF ¢
CMPI
FIX
FLOAT
LSH t
MPYF ¢
MPYI ¢
NEGB
NEGF
NEGI

Bcond
BcondD
BR

BRD
CALL
CALLcond
DBcond

DBcondD

Load and store instructions

Load floating-point exponent

Load floating-point value

Load floating-point value conditionally
Load integer

Load integer conditionally

Load floating-point mantissa

Two-operand instructions

Absolute value of a floating-point
number

Absolute value of an integer

Add integers with carry

Add floating-point values

Add integers

Bitwise logical-AND

Bitwise logical- AND with complement
Arithmetic shift

Compare floating-point values
Compare integers

Convert floating-point value to integer
Convert integer to floating-point value
Logical shift

Multiply floating-point values
Multiply integers

Negate integer with borrow

Negate floating-point value

Negate integer

Program control instructions

Branch conditionally (standard)
Branch conditionally (delayed)
Branch unconditionally (standard)
Branch unconditionally (delayed)
Call subroutine

Call subroutine conditionaily
Decrement and branch conditionally
(standard)

Decrement and branch conditionally
(delayed)

t Two- and three-operand versions

POP
POPF
PUSH
PUSHF
STF
STI

NORM

NOT

OR t
RND

ROL
ROLC
ROR
RORC
SUBB ¢
SUBC
SUBF
SUBI
SUBRB
SUBRF
SUBRI

TSTB 1
XOR t

IDLE
NOP
RETIcond
RETScond
RPTB
RPTS

SWI

TRAPcond

Pop integer from stack

Pop floating-point value from stack
Push integer on stack

Push floating-point value on stack
Store floating-point value

Store integer

Normalize floating-point value

Bitwise logical-complement

Bitwise logical-OR

Round floating-point value

Rotate left

Rotate left through carry

Rotate right

Rotate right through carry

Subtract integers with borrow
Subtract integers conditionally
Subtract floating-point values
Subtract integer

Subtract reverse integer with borrow
Subtract reverse floating-point value
Subtract reverse integer

Test bit fields

Bitwise exclusive-OR

Idle until interrupt

No operation

Return from interrupt conditionally
Return from subroutine conditionally
Repeat block of instructions

Repeat single instruction

Software interrupt

Trap conditionally

AN

key peripheral features;

« Command entry from either menu-driven keystrokes
(menu mode) or from line commands (line mode);

« Help menus for all screen modes;

« Quick storage and retrieval of simulation parameters
from files to facilitate preparation for individual sessions;

« Reverse assembly allowing editing and reassembly of
source statements;

« Multiple execution modes;

« Trace expressions that are easy to define;

« Trace execution that can display designated expression
values, cache memory, and the instruction pipeline; and

« Breakpoints that can occur on address read, write, or
both, on address execute, and on expression valid.

Perhaps the most important trend with the newer DSPs
is the availability of high-level-language compilers. The
presence of C and Ada compilers in the 320C30 is not an
accident since the 320C30 was designed with acompilerin
mind. We expect this path to a high-level language to make
the porting of application programs from large computers
much easier. The algorithm can be developed almost
entirely on a large computer and then converted to the
320C30 assembly language by compilation.

The C compiler for the 320C30 has exceptional effi-
ciency,? which makes.a good C program almost as effec-
tive as the assembly-language program. The C compiler
will be sufficient for most applications. The exception is
time-critical applications. In such cases one can use the fact
that most DSP algorithms spend the vast majority of the
execution time on a small section of the code. (Researchers
often mention the 90/10 rule: 90 percent of the time is spent
on 10 percent of the code.) Under these circumstances, the
user can optimize execution by creating very fast assem-
bly-language routines that implement the time-critical
sections, and call them from C as regular C functions. To
achieve this, we define the C function interface very
precisely so that users can create their own routines. The C-
compiler package comes with a library of general-purpose
mathematical, interface, and I/O functions.

Besides this method of optimizing the performance of
the C language, two more methods can be used. The first
one is based on the fact that the output of the compiler is an
assembly-language program. The user can edit this pro-
gram and optimize it by rearranging the instructions. The
second method is to use the “asm” directive supported by
the C compiler. The arguments of this directive are passed
to the output of the compilation without any alteration so
that the user can insert assembly-language instructions into
the middle of the C program.

A key part of the 320C30 development environment is
Spox, the first real-time operating-system for a single-chip
DSP. Spox, developed by Spectron Microsystems, extends
the core C language with a library of standard I/O routines
and, most importantly, a DSP math package. One of Spox’s
unique features is that it provides users with software
objects that are especially suited for DSP. Some of these
objects are vectors, matrices, filters, and streams. The math

Perhaps the most important

trend with the newer DSPs is

the availability of high-level-
language compilers.

package and these software objects are carefully designed
to take full advantage of the capabilities of the 320C30.
Spox also supports multitasking, thus allowing the user to
easily implement the more complex control structures that
are becoming essential for DSP systems.

By providing a complete software development envi-
ronment that includes compilers and operating systems
along with the more-traditional tools such as assemblers
and linkers, we allow the user to move from system
conception to system implementation in the shortest pos-
sible time.

The next level of development tools includes the hard-
ware emulators for debugging target hardware or deter-
mining the performance of an algorithm on the 320C30
device itself. The XDS 1000 is a real-time, in-circuit emu-
lator/software development tool based on the 320C30.
Besides these tools from Texas Instruments, other compa-
nies offer related support, such as the PC-based develop-
ment board by Atlanta Signal Processors and the develop-
ment platform of Spectron Microsystems for PCs and Sun
workstations.

Applications

Certain features of the 320C30 such as its high speed,
versatile architecture, and rich instruction set, make it easy
to implement very demanding algorithms. The large
memory space makes the device suitable for application
areas such as image processing in which memory address-
ing is one of the prime considerations. And the C compiler
makes it easy to construct algorithms with complicated
logic.

General DSP algorithms. Almost every DSP applica-
tion needs to perform some kind of filtering, the first
application considered for a DSP device. Digital filters are
categorized as FIR (finite-length impulse response) and
IIR (infinite impulse response) filters,>* or, equivalently,
as filters that have only zeros or both poles and zeros. Each
of these categories can have either fixed or adaptive coef-
ficients.

The 320C30 implements FIR filters very efficiently. For
instance, let an FIR filter have an impulse response h[0],
h[1), ..., h[N X 1], and let x[n] represent the input of the
filter at time n. Then, the following equation gives the
output y[n] with the equation:

yln} = h(0) X x[n] + (1] X x{n = 1] + ...+
AN=1]1Xx{n=N+1)

Typical Calling Sequence:

load ARO

load AR
load RC
load BK

CALL FIR

Data Memory Organization:

Impul se Initial Final
response input samples input samples
Low o + Oldest
address | h(N-1) i ipput ! x(n=-(N-1)) ! 1 x{n) [ttt 4
!
I x{n=(N-2)) 1| I x(n=(N-1)) | !
H
. . . Circular
. . . queue
i
i x(n-1) [x (n=2) ! !
High B + N t
address ! h(0) ! input x(n) o x(n-1)

The physical address for the start of the input samples must be on
a boundary with the LSBs set to zero according to the length of the
buffer. The pointer to the input sequence (x) is incremented and
assumed to be moving from an older input to a newer input. At the
end of the subroutine AR1 will be pointing to the position for the
next input sample.

Argument Assignments:

Argument ! Function

ARC ! Address of h(N-1)

AR1 ! Address of x(N-1)

RC i Length of filter - 2 (N-2)
BE i Length of filter (N)

Registers used as input: ARO, AR1, RC, BK
Registers modified: RO, R2, ARO, AR1, RC
Register containing result: RO

Frogram si1ze: & words

Execution cycles: 11 + (N-1)

W me e er 90 W Ml e e WS wn e se we W we W es Wt WD e W0 we We e WS WS ue W s WS s We we W we Ve we W0 we = we We e we WS we Wi we W we we we
+

.global FIR

H 3 initialize RO:

FIR MPYF3 #ARO++ (1) ,#ARL++(1)%,RO j h(N-1) #* x(n-(N-1)) -> RO
LDF 0.0,R2 $ initialize R2.

H
y) filter (1 <= i < N)
]
RFTS RC 3 setup the repeat single.
MFYF3 #ARO++ (1) (#AR1++(1)X,RO § h(N-1-i) # x(n—-(N-1-i)) -> RO
H ADDF3 RO,R2,R2 multiply and add operation

]
ADDF RO,R2,RO

add last product
3

j} return sequence

]

RETS return

-

i
3 end
3
.end

Figure 7. FIR filter implementation on the 320C30.

v

Typical Calling Sequencet

load R2
load ARD
load AR1
load IRO
load IR1
load BK
load RC
CALL 1IR2

Data Memory Organization:

Initial delay
node values

Final delay
node values

e s e e WS e e e s W we We me W wm Wt ws e we

The physical address

Filter
coefficients
Low t
address | a2(0) ! delay
t b2(0) H

H Hmm e + oldest
H i a1 (0) ! delay
3 B ettt +
I ! b1(O) t
] D ettt +
5 i OO i
3 e —————— +
1 .
3 .
1} .
3 D ittt +
H i a2(N-1) i
3 Fm——mm—————— +
f i B2(N-1) :
] P ————— +
; t al(N-1) !
H e +
5 t bL(N-1)]
3 High #=———————eeee +
} address ! bO(N-1) H
3 o ——————— +
s
H
3
3

length of the buffer.

i d(0,n) H t d(0,n-1) l-—--?

I d(o,n-1) i t d(0,n-2) H cir;ular
queue

i d(0,n-2) i H d(0,n?) :--—-l

H Empty H H Empty

:

i d(N-1,n) ! I d(N-1,n=-1) l=——=%+

i d(N-1,n-1) ! t d(N-1,n-2) | cir;ullr
queue

i di‘l,ﬂ-?) H i d(N-1,m) !—--—;

The BK (block size) register must contain the

Empty H H Empty

———

for the start of each circular queue of delay node
values must be on a boundary with the LSBs set to zero according to the

- =
Figure 8. Implementation of N biquads on the 320C30.

Two features of the 320C30 facilitate the implementa-
tion of the FIR filters: parallel multiply/add operations and
circular addressing. The first feature permits a multiplica-
tion and an addition to execute in one machine cycle, while
the second makes a finite buffer of length N sufficient for
the data x(n]. Figure 7 shows the arrangement of the data
and the assembly code for an FIR filter. Note that the filter
takes one cycle of execution per tap.

The transfer function of the IIR filters contains both
poles and zeros, and its output depends on both the input
and the past output. As a rule, these filters need less
computation than a FIR filter of similar frequency re-
sponse, but they have the drawback of being sensitive to
coefficient quantization. Most often, the IIR filters are
implemented as a cascade of second-order sections, called
biquads. Toimplementan IIR filter consisting of N biquads,
let a1{i], a2[i] be the numerator coefficients of the ith bi-
quad and b0[i}, b1[i], b2[i] the denominator coefficients of

the same biquad. Also, let x{n] be the input and y[n] be the
output of the IIR filter. In canonic form, the following C
code implements the N biquads:

y[0,n] = x[n];

for (i=0; i<N; i++){

d[i,n] = a2(i}*d(i,n-2] + al[i)*d[i,n-1} + y[i-1,n];

y(i,n] = b2[i]*d[i,n-2] + bl[i]*d[i,n-1] +

bO[i]*dli.n];

}

y[n] = y[N=Ln};

Figure 8 shows the memory arrangement and the code
for this implementation on the 320C30.

In addition to the fixed-coefficient filters, the 320C30
can also implement very effectively adaptive filters (with
three cycles per updated tap).

Fourier transforms are another important tool often used
in DSP systems. The purpose of the transform is to convert
information from the time domain to the frequency do-

(Continued on page 26)
R

value 3. The result y(n) is placed in RO. At the end of the program,
ARl points to the new d(0,n~2) so that it is set when the New sample
comes in.

rrgument Assignmente:
Argument ! Function

Input sample x(n)

K2

o0 e ee e e ee e e e

ARO Address of filter coefficients (a2(0))
AK1 ! Address of delay node values (d(O,n-2))
Bk i Bk = I

1RO i IRO = 4

IR1 i IR1 = quN-4°

RC i Number of biquads (N) - 2

Registers used as input: R2, ARO, AR1, IRO, IR1, BK, RC
Registers modified: RO, R1, kK2, ARO, AR1, RC

Register containing result; RO

Frogram size: 17 words

Execution cycles: 23 + &N

.global I1IR2

11R2 MPYF3 %ARO, *AR1, RO
MEYF3 #++ARO(1), *AR1--(1)%, R1

a2(0) # d(0,n-2) -> RO
b2(0) # d(0,n-2) -> R}

MPYF3 #++AR0 (1), #ARL, RO
HH ADDF3 RO, R2, R2

al1(0) * d(0,n-1) -> RO
first sum term of do,n).

MPYF3 #++AR0O (1), #AR1--(1)%, RO b1(0) # d(O,n-1) ~> RO
HY ADDF3 RO, R2, R2 3} second sum term of d(O,n).

-

MPYF3 *+4+QRO(1), R2, R2
H STF k2, #AR1--(1)%

b0(0) # d(0,n) -> R2
store d(0,n); point to
d(0,n-2).

RPTB LOOF loop for 1 <= i < N

MFYF3 *++AR0O (1), #++AR1 (IR0O), RO } 82(i) # d(i,n-2) -> RO
t ADDF 3 RO,R2,R2 first sum term of yti-1,n)

MPYF3 #+4ARO(1), #AR1--(1)%, R1
] ADDF3 R1,R2,R2

b2¢i) # d(i,n-2) -> R1
second sum term of y(i=1,n)

MFYF3 #++ARO (1), *AR1, RO
i ADDF3 RO, R2, R2

al(i) # d(i,n-1) -> RO
first sum term of d(i,n).

MEYF3 #++ARO(1), *AR1-=-(1)%, RO
i ADDF3 RO, R2, R2

bl(i) * d(i,n-1) -» RO
second sum term of d{i,n).,

STF R2, #AR1--(1)7%

store d(i,n); point to
ddi,n-2).
bOGi) # d(i,n) -> R2

3
LOOF MFYF3 #++ARO (1), R2, R2
3
3 final summation

3

first sum term of y(N=-1,n)
second sum term of YIN=1,n)

ADDF ROLR2
ADDFZ R1,R2,R0O

NOF *AR1 CIR1)
NOP *AR1--(1)%

return to first biquad
point to d(0,n-1)

3§ return sequence

RETS return

3 end

.end
Figure 8 (cont'd)) '

main. Computationally efficientimplementation of Fourier
transforms are known as the fast Fourier transform
(FFT).** Table 3 shows the timing for different FFTs on
the 320C30. The code for these FFTs, as well as the
routines listed in Table 4, appear in the TMS320C30 User’s
Guide

The 320C30 has many features that make it well suited
for FFTs, such as the high speed of the device, the floating-
point capability, the block-repeat construct, and the bit-
reversed addressing mode. For instance, the FFT shown in
Figure 9 on the next page can be implemented in code that
can be entirely contained in the 64-word cache of the
320C30.7

Telecommunications and speech. Telecommunica-
tions and speech applications have many requirements in
common with other DSP applications, but they also have
some special needs. For instance, telecommunications
applications interfacing to T1 carriers sometimes need to
convert between a linear signal and one compressed by |-
law or A-law formats. Such a conversion can be realized
with hardware by adding a peripheral to the DSP peripheral
bus. This is the approach taken in some members of the
TMS320 first generation of devices. An alternative way is
to do the same function with software.

In speech applications, digital filters are often imple-
mented in lattice form. Depending on the application, both
FIR and IIR filters are realized this way, although some-
times the terminology lattice filter and inverse lattice filter
is used respectively.

Graphics and image processing. In graphics and im-
age processing applications DSPs perform operations on
two-dimensional signals, and matrix arithmetic takes on
particular significance. In the 320C30 matrix arithmetic
can be decomposed into a series of dot products, which can
be very effectively implemented using constructs similar
to the FIR filter implementation discussed earlier. Addi-
tionally, the large memory space of the 320C30 allows
processing of large segments of data at a time.

Benchmarks. We have implemented several general-
purpose and applications-oriented routines for the 320C30
and include these in the User’s Guide.® Table 4 lists some
of these routines with the necessary cycles and the memory
requirements for the program.

in the utility of digital signal processors. This

growth has been fueled, at least in part, by the
ever-increasing level of performance and ease of use of
general-purpose DSPs. The TMS320C30 represents the
newest generation of DSPs. But, the end of this trend is not
yet in sight. Rather, we expect the trend of higher levels of
performance and greater ease of use to continue. For DSPs,
the next five years look bright indeed.

T he last five years have seen a tremendous growth

Table 3.
Timing of an FFT on the 320C30.
|
Number of Radix-2 Radix4 Radix-2

points (complex) (complex) (real)

FFT timing (ms)
64

0.167 0.123 0.075
128 0.367 — 0.162
256 0.801 0.624 0.354
512 1.740 - 0.771
1,024 3.750 3.040 1.670
Code size
(Words) 55 176 86

The code size does not include the sine/
cosine tables. The timing does not include bit
reversal or data 1/0.

Table 4.
Program memory and timing
requirements for 320C30 routines.

Cycles
(best case/

Application Words worst case)
Inverse of a floating-point

number 31 31
Integer division 27 27/58
Double-precision integer

multiplication 24 20/24
Square root 32 35
Dot product of two vectors 10 8+ (N-1
Matrix times vector

operation 10 2+ RC+)9
FIR filter 5 T+ (N=-1)
IIR filter (one biquad) 7 7
IIR filter (N> 1 biquads) 16 19+ 6N
LMS adaptive filter 9 8+3N-1
LPC lattice filter 11 9+5P-1)
Inverse LPC lattice filter 9 9+3P-1)
u-law compression 16 16
p-law expansion 13 11716
A-law compression 18 18

A-law expansion 15 14/21

N = length of appropriate vector

P = length of lattice filter
R = number of rows of a matrix
C = number of columns of a matrix

GENERIC PROGRAM TO DO A LOOPED-CODE RADIX-2 FFT COMPUTATION IN 320C30.

THE FROGRAM IS ADAPTED FROM THE FORTRAN FROGRAM IN PAGE 111 OF

JULY 16, 1987
FFT SIZE

LOG2(N)

ADDRESS OF SINE TABLE

MEMORY WITH INPUT/OUTPUT DATA

3 STARTING LOCATION OF THE PROGRAM
3 RESERVE 100 WORDS FOR VECTORS, ETC.

COMMAND TO LOAD DATA FAGE FOINTER

IR1=N/4, POINTER FOR SIN/COS TABLE
AR6 HOLDS THE CURRENT STAGE NUMEER

IRO=2#N1
R7=N2
INITIALIZE REFEAT COUNTER OF FIRST LOOF
INITIALIZE IE INDEX (ARS=IE)

(BECAUSE OF REAL/IMAG)

CURRENT FFT STWGE
ARO FOINTS TO x(I)
ARZ FOINTS TO X(L)

RC SHOULD BE ONE LESS THAN DESIRED #

RO=X (1) +X L)
R1=X(I)=-X(L)
R2=Y (1) +Y (L)
R3=Y(I)-Y(L)
Y(I)=RZ AND...
Y (L) =RT
Xil)=RO
3 X (L)=R1

AND. ..
AND ARO,2 = ARO,2 + 2#N1

INIT LOOF COUNTER FOR INNER LOOF
INITIALIZE 1A INDEX (AR4=1A)
IA=IA+IE; AR4 FOINTS TO COSINE

INCREMENT INNER LOOF COUNTER
(X<I),Y(1)) POINTER
(X(L),Y(L)) FOINTER

RC SHOULD BE ONE LESS THAN DESIRED #
3 Ré6=SIN

R2=X (1) =X (L)
Ri=Y (I)-Y(L)
RO=R2#SIN AND...
R3=Y (I)+Y (L)
R3=R1#C0S AND...

REFERENCE (5]
AUTHOR: PANOS E. PAPAMICHALIS
TEXAS INSTRUMENTS
«GLOBL N
.GLOBL M
«BLOBL SINE
.BSS INP,1024
«TEXT
] INITIALIZE
« WORD FFT
«SPACE 100
FFT81Z « WORD N
LOGFFT « WORD L
SINTAB « WORD SINE
INPUT «WORD INF
FFTs LDP FFTS1Z
LDI @FFTSIZ, IR1
LSH -2,1IR1
Lor 0,ARS
LDI- @FFTSI1Z,IR0O
LSH 1,IRO
LDI @FFTSIZ,R7
LDI 1,AR7
LoI 1,ARS
H OUTER LOOF
LGOF: NOF *r+ARG (1)
LDI @INFUT, AR
ADDI R7,AF0, Ak ..
LDI At.7 \RC
SUBI 1.RC
3 BUTTERFLY WITHOUT TWIDDLE FACTORS
RPTE BLKk1
ADDF *#ARO , #ARZ , RO
SUBF *AR2++, #ARO++ K1
ADDF *AR2 , #ARO ,R2
SUBF #AR2, #ARO , R3
STF R2, #ARO—-
B STF R3,*AR2--
BLK1 8TF RO, #ARO++ (IRO)
B STF R1,#AR2++ (IFD)
3 IF THIS IS THE LAST STAGE, YOU ARE DONE
CMPI @LOGFFT,ARS
BZD END
3 MAIN INNEF LOOF
LDI 2,AR1
LDI Q@SINTAE,AR4
INLOF: ADDI ARS ,AR4
LDI AR1,ARO
ADDI 2,AR1
ADDI Q@INPUT, ARO
ADDI R7,AR0,AR2
LbI AR7,RC
SUB1 1,RC
LDF *ARS ,R6
3 GENERAL BUTTERFLY
RPTB BLK2
SUBF #AR2, #AR0 ,R2
SUBF #+AR2, #+ARO,R1
MPYF R2,R6,R0O
[Nl ADDF #+AR2, #+AR0,R3
MPYF R1,%#+AR4 (IR1) \R3

Figure 9. Example of a radix-2, decimation-in-frequency FFT.

1 STF R3, #+ARO 3 OY(D=Y (D +Y)
SUBF RO,R3,R4 3 R4=R1#COS-R2#SIN
MPYF R1,Ré6,RO 3 RO=R1#SIN AND...

t ADDF #AR2, #ARO,R3 3 R3=X(I)+X(L)
MPYF R2,#+AR4 (IR1) ,R3 3 R3=R2#COS AND...

" STF R3, #ARO++ (IRO) § X(I)=mX(I)+X(L) AND ARO=ARO+2#N1
ADDF RO,R3,RS 3 RS5=R2#COS+R1#SIN

BLK2 STF RS, #AR2++ (IRO) J X(L)=R2#COS+R1#SIN, INCR AR2

AND. ..

1" STF R4, #+AR2 § Y(L)=R1#COS-R2#SIN
cMPL R7,AR1
ENE INLOF 3 LOOP BACK TO THE INNER LOOF
LSH 1,AR7 3 INCREMENT LOOP COUNTER FOR NEXT TIME
LSH 1,ARS IE=241E
LDI R7, IRO 5 Ni=N2
LSH ~1,R7 3 N2=N2/2
BR LoOP t NEXT FFT STAGE

END NOF
.END

Figure 9 (cont'd.)
References processing and telecommunications.

1.K.-S. Lin, G.A. Frantz, and R. Simar, “The TMS320 Family
of Digital Signal Processors,” Proc. IEEE, Vol. 75, No. 9,
Sept. 1987, pp. 1143-1159.

2. R. Simar and A. Davis, “The Application of High-Level
Languages to Single-Chip Digital Signal Progessors,” Proc.
1988 Int’l. Conf. Acoustics, Speech, and Signal Processing,
Apr. 1988, pp. 1678-1681.

3. A. Oppenheim and R. Schafer, Digital Signal Processing,
Prentice Hall, Englewood Cliffs, N.J., 1975, 585 pp.

4. L. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice Hall, 1975, 762 pp.

5. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution
Algorithms, John Wiley & Sons, New York, 1985, 232 pp.
6. TMS320C30 User’s Guide, Texas Instruments, Dallas, Tex.,

1988.
ichali

7. P.Pap “FFT Impl ion on the TMS320C30,”
Proc. 1988 Int'l. Conf. on Acoustics, Speech, and Signal
Processing, Apr. 1988, pp. 1399-1402.

[

s hali,

Panos Papam isasenior ber of the technical staff and
a section manager in the Texas Instr DSP Applicati

Group. He is also an adjunct professor for the Electrical and
Computer Engineering Department at Rice University in Houston.
Author of Practical Approaches to Speech Coding, his interests
include digital signal processing with applications to speech

Papamichalis received his engineering degree from the School
of Mechanical and Electrical Engineering, National Technical
University of Athens. His MS and PhD degrees in electrical
engineering come from the Georgia Institute of Technology in
Atlanta. He isamember of the Institute of Electrical and Electronics
Engineers and Sigma Xi.

Ray Simar, Jr. is a group member of the TI Semiconductor
technical staff and the pnincipal architect and program manager of
the TMS320C30. He has supported the TMS320 family of digital
signal processors.

Simar holds a BS degree in bioengineering from Texas A&M
University, College Station, and an MSEE from Rice University.
He is amember of Tau Beta Pi, Phi Eta Sigma, and Phi Kappa Phi.

Questions concerning this article can be directed to Panos
ichalis, Texas Instr Inc., PO Box 1443, M/S 701,

Houston, TX 77251-1443.

