{9 TeEXAS
INSTRUMENTS

TMS320C32

How TMS320 Tools Interact With the TMS320C32’s
Enhanced Memory Interface

Application

Report

1995 Digital Signal Processing Products

*’:‘ TEXAS
INSTRUMENTS

Printed in U.S.A., November 1995 SPRA048

TMS320C32

How TMS320 Tools Interact With the TMS320C32'’s
Enhanced Memory Interface

Pedro R. Gelabert
Digital Signal Processing Products — Semiconductor Group

SPRA048
November 1995

&

T b TEXAS 2s

SOYINK - NSTRUM ENTS Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 00 1995, Texas Instruments Incorporated

Contents

Title Page
ADSIIaCT . . . 1
INtrodUCTHION . . . 2...
External Memory Interface. 3..
STRBOCONtrOl REQIStEr . . . oo e e 5...
STRBLCONrOl REQIStEL . . . o o 6. ..
IOSTRBControl Register. e 6. ..
Data Type Size Field. 6. ..
Physical-Memory-Width Field 7..
Sign Ext/Zero Fill Field. e 7...
STRB Config Field. 7 ...
STRB Switch Field. 8...
C Compiler Interaction With the TMS320C32 Memory Interface. 9
DATA_SECTION Pragma Directive e 9.
MEMORY 8. C . . 10...
MEMORY L6.C . . . 10...
Memory Pool Limitations 11. .
C Compiler and Assembler Switch. e 12
Linker SWItCheS. e 12. ..
Debugger Configuration.t 12..
TMS320C32 Configuration Examples 13
ReferenCes. 23..
APPENAIX . ottt e 24 .
MEMORY8.C Runtime Support Functions. i 24
MEMORY16.C Runtime Support FUNCtiONSot 26

Figure

© 00 N O O A W N P

Table

o OB W NP

List of lllustrations

Title Page
TMS320C32 MemOry Mapot 3
TMS320C32 Memory AdAress SPaCES. v v vttt e 5
STRBOCONIOI REGISIEN. o oo oot ettt et e et 5...
STRBICONIOI REGISIEL. . . . o o ettt e et e e e e e e e e e e 6...
TOSTRBCONIOI REGISIE. . . . o\ vttt e e e et 6...
Zero Wait-State Interface for 32- and 8-Bit SRAM Banks 14
Zero Wait-State Interface for 32-Bit SRAMs with 16- and 32-Bit Data Accesses. 19
External Memory Map. . .. oot e 20. .
TMS320C32 Memory Map oot e e 20.

Title Page
Data Type Size Field 6. ..
Physical-Memory-Width Field. e 7..
Sign Ext/Zero Fill FUNCLION 7 ..
STRB Configuration FUNCHON e 8..
STRB Switch FUNCtion 8...
Data Sizes Supported by Sections Created by the C Compiler. 9

Abstract

This application report describes how to use the TMS320 floating-point digital signal processor (DSP)
optimizing C compiler and assembly language tools with the variable memory width and data sizes
supported by the TMS320C32’s enhanced memory interface. The author provides an overview of the
'C32’s strobe control registers as well as a description of how these registers are configured for compiler,

linker, and debugger usage. This report also contains examples of different memory configurations that
demonstrate the flexibility of the 'C32’s memory interface.

Introduction

The TMS320C32 DSP is an enhanced, low-cost version of the TMS320C3x DSP devices. The following
CPU enhancements have been incorporated into the 'C32:
¢ \Variable-width memory interface
Faster instruction cycle time
Power-down modes
Relocatable interrupt vector table
Edge- or level-triggered interrupts

This report describes the capability of the 'C32 to support variable memory widths and data sizes. Topics
include the 'C32’s external memory interface and C compiler/linker/debugger interaction with the 'C32.
Additionally, examples are provided which demonstrate how to do the following:

¢ Allocate buffers dynamically and statically using C code

e Build link files to allocate code in a desired configuration

e Configure a debugger to handle 'C32 memory (as configured)

External Memory Interface

The 'C32’s memory interface accesses external memory through one 24-bit address bus and one 32-bit data
bus. The data bus is shared by three mutually-exclusive strobes: SIRBB1, and IOSTRBDepending
upon the address accessed, the 'C32 activates one of these strobes as indicated by the memory map shown

in Figure 1.

Oh Reset Vector Location Oh Reserved for Boot-Loader
Operations
1h FFFh
External 1000h | Boot1
—_— External
STRBO Active _
STRBO Active
7FFFFFh 7FFFFFh
800000h 800000h
Reserved Reserved
(32K) (32K)
807FFFh 807FFFh
808000h Peripheral Bus 808000h Peripheral Bus
Memory-Mapped Registers Memory-Mapped Registers
8097FEh (6K) Internal 8097FFh (6K) Internal
809800h R d 809800h R g
eserve eserve
80FFFFh Y 80FFFFh v
810000h External 810000h Boot 2 External
IOSTRB Active IOSTRB Active
128K 128K
82FFFFh (128) 82FFFFh (128)
830000h 830000h
Reserved Reserved
87FDFFh 87FDFFh
87FEQCh RAM Block 0 87FEQOh RAM Block 0
(256 Internal) (256 Internal)
87FEFFh 87FEFFh
87FFOOh RAM Block 1 87FF00h RAM Block 1
(256 Internal) (256 Internal)
87FFFFh 87FFFFh
880000h External 880000h External
8EFEFED STRBO Active SFFEFFh STRBO Active
900000h External 900000h | Boot3 External
FEFEFEh STRBL1 Active FEFFFFh STRB1 Active

a) Microprocessor Mode

b) Microcomputer/Boot-
Loader Mode

Figure 1. TMS320C32 Memory Map

STRBOand STRBI1can access 8-, 16-, or 32-bit data quantities from 8-, 16-, or 32-bit-wide memory.
Access is achieved by four signals within each strobe. These signals are as follows:

e STRBx_B3A_1

* STRBx_B2A_,

e STRBx_B1

e STRBx_BO

The listed signals serve as byte-enable pins for accessing a byte, half-word, or full-word from external
memory. The first two signals also serve as additional address pins when performing two or four
consecutive accesses in 8- or 16-bit-wide external memory. The data accessed is truncated, packed, or
unpacked accordingly, with no additional overhead. The following list shows the behavior of these pins
as dictated by the data size and memory-width bit fields of a strobe control register.

Memory width (default value dependent upon the program memory width select [PRGW] pin level):
¢ 8-bit wide memory
— STRBx_B3A_q and STRBx_BPA_, are address pins.
— STRBx_BOis a byte-enable/chip-select signal.
— STRBx_Blis not used.
e 16-bit wide memory
— STRBx_B3A_4 are address pins.
— STRBx_Bland STRBx_BGare byte-enable signals.
— STRBx_BZ2A_, are not used.
e 32-bit wide memory
— STRBx_B3A_1, STRBx_BZA_5, STRBx_B1 and STRBx_B(@re byte-enable signals.

Data size:
e 8-bit data
— The physical address is the logical address shifted right by two.
e 16-bit data
— The physical address is the logical address shifted right by one.
* 32-bit data

— The physical address is the logical address.

IOSTRBcan access 32-bit data from 32-bit-wide memory. However, IOSItgeB not have the flexibility

of STRBOand STRBDecause it is composed of a single signal, i.e., IOSTEBBTRBbus cycles differ

from STRBOand STRBDus cycles. (See section 7.4 of the TMS320C32 User’s Guide [literature number
SPRU132] for additional information regarding IOSTRis cycles.) This timing difference
accommodates slower I/O peripherals.

The 'C32 also supports program execution from 16- and 32-bit external memory widths. Execution is
controlled through the status of the PRGW pin. When this giulled high the 'C32 executes from
16-bit-wide memory. When the PRGW pirmpigdled low the 'C32 executes from 32-bit-wide memory. For
16-bit-wide, zero wait-state memory, the 'C32 takes two instruction cycles to fetch a single 32-bit
instruction. The lower 16 bits of the instruction are obtained during the first cycle; during the second cycle,
the upper 16 bits are retrieved and concatenated with the lower 16 bits. The 'C32’s 32-bit memory fetches
are identical to those of the TMS320C30 and TMS320C31.

In summary, the 'C32 memory interface parallel bus implements three mutually-exclusive address spaces
that are distinguished through the use of three separate control signals (see Figure 2ar8iTRBIB1

support 8-, 16-, and 32-bit data access in 8-, 16-, and 32-bit-wide external memory and 32-bit program
access in 16/32-bit wide external memory. IOSTdRBress space supports 32-bit data/program access in

32-bit-wide external memory. Internally, the 'C32 has a 32-bit architecture, hence the memory interface
accordingly packs and unpacks the data accessed. Three strobe control registers manipulate the
variable-width memory interface of the 'C32. The following subsections describe these registers.

T T T T T T T T T T T T T T B

\ \ _ 8/16/32-Bit Data in

‘ TMS320C32 | STRBO 8/16/32-Bit-Wide Memory
—

} } Program in 16/32-Bit-Wide

‘ | Memory

| i \

32-Bit .
| CPU PROWPN | - 8/16/32-Bit Data in
} * \ STRB1 8/16/32-Bit-Wide Memory
\ —>|

\ \ Program in 16/32-Bit-Wide

| —> Memory \ Memory

} Strobe Interface 1

Control > —_— 32-Bit Data in 32-Bit-Wid

‘) OSTRB -Bit Data in 32-Bit-Wide

| Registers } Memory
.

| \ Program in 32-Bit-Wide

‘L _J Memory

Figure 2. TMS320C32 Memory Address Spaces

STRBO Control Register

The STRBOcontrol register (see Figure 3) is a 32-bit register that contains control bits for the portion of
external bus memory space that is mapped to STRB@ire 3 lists the register bits, bit names, and
functions. (Shaded entries denote bit fields present only in the 'C32.) At system reset, OF10F8h is written
to the STRBQontrol register if the PRGW pin lisgic low; 0710F8h is written to this register when the
PRGW pin idogic high

31 23 22 21 20 19 18 17 16
STRB STRB Sign Ext/ .) .
Reserved Switch Config Zero Fill Physical Memory Width Data Type Size
RIW RIW RIW RIW RIW
15 13 12 8 7 5 4 3 2 1 0
Reserved BNKCMP | WTCNT | SWw | Hiz [NoHOLD | HoLDST
RIW RIW RIW RW RW R

Figure 3. STRBO Control Register

STRB1 Control Register

The STRBIcontrol register (see Figure 4) is a 32-bit register that contains control bits for the portion of
external bus memory space that is mapped to STRRjlre 4 lists the register bits, bit names, and
functions. (Shaded entries denote bit fields present only in the 'C32.) At system reset, OF10F8h is written
to the STRBIcontrol register if the PRGW pin lisgic low; 0710F8h is written to this register when the
PRGW pin idogic high

31 21 20 19 18 17 16 15 13 12 8 7 5 4 3 2 0
Sign Ext/ Physical Data Type
Reserved Zero Fill | Memory Width Size Reserved | BNKCMP | WTCNT | SWW | Reserved

R/W R/W R/W R/W R/W R/W

Figure 4. STRB1 Control Register

IOSTRB Control Register

The IOSTRBcontrol register (see Figure 5) is a 32-bit register that contains control bits for the portion of
external bus memory space that is mapped to IOSTREke STRBCand STRB1there is no byte-enable
signal for the IOSTRBegister. Data access through IOSTiRBIways 32 bits. Figure 5 shows the register
bits, bit names, and functions. At system reset, OF8h is written to the IO&IRBI register. IOSTRB
timing is identical to that of the ‘C30’s IOSTR®ntrol register.

31 8 7 5 4 3 2 0
Reserved WTCNT SWW Reserved
R/W R/W

Figure 5. IOSTRB Control Register

Data-Type-Size Field

The data-type-size fields indicate the size of the data type that has been written to memory. This field can
have the values listed in Table 1.

Table 1. Data Type Size Field

BIT 17 BIT 16 DATA TYPE SIZE
0 0 8 bits
0 1 16 bits
1 0 Reserved
1 1 32 hits

NOTE: The shaded entry indicates the reset value.

Physical-Memory-Width Field

The physical-memory-width field indicates the size of the physical memory connected to the device. The
reset value is dependent upon the status of the PRGW pin. If the PRGWaqgjit iew, the physical
memory width is configured to 32 bhits (bit 18 = 1, bit 19 = 1). If the PRGW piogis high the
physical-memory-width is configured to 16 bits (bit 18 = 1, bit 19 = 0). These fields can have the following
values listed in Table 2.

Table 2. Physical-Memory-Width Field

BIT 19 BIT 18 PHYSICAL MEMORY WIDTH
0 0 8 bits
0 1 16 bits
1 0 Reserved
1 1 32 bits

NOTE: The shaded entries indicate reset values. The reset
value is dependent upon the state of the PRGW pin.

Setting the physical-memory-width field of the STRBUI'RB1control registers changes the functionality
of the STRBQ STRB1signals as follows:

* When the physical-memory-width field is configured to 32 bits, the corresponding STRBx_BO
— STRBx_B3signals are configured as byte-enable pins.

e When the physical-memory-width field is configured to 16 bits, the corresponding
STRBx_B3A_4signalis configured as an address pin while STRBxarBISTRBx_Bignals
are configured as byte-enable pins.

* When the physical-memory-width field is configured to 8 bits, the STRBM B3and
STRBx_BZA_5 signals are configured as addresses while STRBxs BOnfigured as byte
enable.

* Once a STRBx_Bsignal is configured as an address pin, it is active for any external memory
access, i.e., STRBGTRB], IOSTRB and external program fetches.

Sign Ext/Zero Fill Field

The sign ext(ension)/zero fill field indicates the conversion method to be applied upon 8- and 16-bit integer
data transferred from external memory to an internal register or memory location. This field can contain
the values listed in Table 3.

Table 3. Sign Ext/Zero Fill Function

BIT 20 SIGN EXT/ZERO FILL FUNCTION DESCRIPTION
0 Sign-extend 8- or 16-bit integers to 32 bits.
1 Zero-fill 8- or 16-bit integers to make 32-bit numbers.

NOTE: The shaded entry indicates the reset value.

Integer loads (8- and 16-bits) are stored in the least significant bits of 'C32 registers/memory. The most
significant bits are sign-extended or zero-filled according to the setting of this bit field.

STRB Config Field

The STRB Config field indicates if the STRBO_Bignals are active when data is being accessed from
either STRBOor STRB1memory space. This mode is useful when accessing a single external memory
bank that stores two different data types, each mapped to a different STRB. This field can have the values
listed in Table 4.

Table 4. STRB Configuration Function

BIT 21
(STRBO STRB CONFIG FUNCTION DESCRIPTION
ONLY)
0 STRBO_Bx signals are active for address locations Oh—7FFFFFh and 880000h—8FFFFFh.

STRB1_Bx signals are active for address locations 900000h— FFFFFFh.

STRBO_Bx signals are active for address locations Oh—7FFFFFh, 880000h—8FFFFFh, and

1 900000h— FFFFFFh.
STRB1_Bx signals are active for address locations 900000h— FFFFFFh.

NOTE: The shaded entry indicates the reset value.

STRB Switch Field

The STRB switch field indicates whether or not a single cycle is inserted between back-to-back reads when
crossing STRBAo-STRBlor STRBXto-STRBOboundaries (switching STRBS). The extra cycle toggles

the strobe signal during back-to-back reads; otherwise, the strobe remains low. This field can contain the
values listed in Table 5.

Table 5. STRB Switch Function

BIT 22

(STRBO ONLY) STRB SWITCH FUNCTION DESCRIPTION

Does not insert a single cycle between back-to-back reads that switch from STRBO to STRBL1 or vice

0
versa.

Inserts a single cycle between back-to-back reads when switching from STRBO to STRBL1 or vice
versa.

1

NOTE: The shaded entry indicates the reset value.

C Compiler Interaction With the TMS320C32 Memory Interface

The 'C32s internal 32-bit architecture allows the C compiler’s data types to remain at 32 bits. However,
the C compiler’s runtime-support library includes pragma directives and new dynamic-allocation routines
(malloc, realloc, calloc, bmalloc, free, etc.) that support the creation of data sections. These data sections
serve as memory pools, or heaps, for storing 8- and 16-bit data. These sections can reside in 8-, 16-, and
32-bit-wide memory. The programmer must ensure that the appropriate strobe control register is loaded
with the correct data size and memory width. The 'C32’s memory interface truncates, packs, or unpacks
the data in the manner specified by the settings of the strobe control register. Table 6 lists the data sizes
supported by the different sections created by the C compiler.

Table 6. Data Sizes Supported by Sections Created by the C Compiler

DATA SIZE
SECTION TYPE 32 BITS 16 BITS 8 BITS
text
- .cinit . .
Initialized .user_section .user_section
.const - -
.user_section
.bss
Uninitialized stack .sysm16 sysm8-
.sysmem .user_section .user_section
.user_section

The contents of the above-named sections are as follows:
e _text: executable code and/or string literals
e _cinit: tables for variable and constant initialization
e .const string literals and switch tables
* .bss global variables and statically-allocated variables
e _stack system stack used to pass function arguments and to allocate local function variables
e .sysmem memory pool for dynamic allocation of 32-bit data
e .sysm16 memory pool for dynamic allocation of 16-bit data
e .sysm8 memory pool for dynamic allocation of 8-bit data
* .user_sectionsection created using the #pragma DATA_SECTION directive

The following section describes the C compiler’'s preprocessor pragma. Subsequent sections discuss
modules that were incorporated into the runtime-support library, which supports 8- and 16-bit memory
pools. 32-bit memory pools are handled through the standard minit(), malloc(), calloc(), realloc(), and
free() routines which operate on the .sysmem section.

DATA_SECTION Pragma Directive

To support additional memory pools, the C compiler utilizes a data section pragma directive. This directive
instructs the C compiler to allocate spacesfonbol_naman the section specified lsgction_namef size
symbol_sizeRefer to section 3.4 in tH&VIS320 Floating-Point DSP Optimizing C Compiler User’s Guide
(literature number SPRUO34E) for additional information. The syntax for DATA_SECTION is as follows:

#pragma DATA_SECTION(symbol_name, “section_name”)
type symbol_name ;
For example, define a new section called .mydata as an array of 1K integer values in the following manner:

#pragma DATA_SECTION(dataBuf, “.mydata”)

int dataBuf[1024];

MEMORY8.C

The MEMORY8.C module contains functions that implement dynamic memory management routines for
using 8-bit data with the 'C32. The following subsections describe each of these functions. (Refer to the
appendix for additional information on 8-bit runtime-support functions.)

Pragma Directive

MEMORYS8.C contains a pragma directive that defines a .sysm8 section. The size of this memory pool in
words (system memory or heap) is set at link time by using the -heap8 option. If the -heap8 option is not
used, the compiler does not allocate an 8-bit system memory area. If arguments are not used in conjunction
with this switch, the size of the 8-bit system memory area defaults to 1K 8-bit words.

minit8() Function

The minit8() function initializes and resets the 8-bit dynamic memory management system. This function
is analogous to minit() with the exception that minit8() operates in the 8-bit .sysm8 section.

malloc8() Function

The malloc8() function allocates 8-bit words from the 8-bit memory pool and returns a pointer to the
allocated space. This function is analogous to malloc() with the exception that malloc8() operates in the
8-bit .sysm8 section.

calloc8() Function

The calloc8() function allocates 8-bit words from the 8-bit memory pool, clears allocated memory
locations, and returns a pointer to the allocated space. This function is analogous to calloc() with the
exception that calloc8() operates in the 8-bit .sysm8 section.

realloc8() Function

The realloc8() function reallocates 8-bit words from previously unallocated areas in the 8-bit memory
pool; a pointer to the allocated space is also returned. This function is analogous to the realloc() function
with the exception that realloc8() operates in the 8-bit .sysm8 section.

free8() Function

The free8() function frees previously allocated space from the 8-bit memory pool. This function is
analogous to free() with the exception that free8() operates in the 8-bit .sysm8 section.

bmalloc8() Function

The bmalloc8() function allocates 8-bit words from the 8-bit memory pool. The allocated words are aligned
to a boundary that is suitable for the 'C32’s circular- and bit-reversed buffers; a pointer to the allocated
space is also returned. This function is analogous to bmalloc() with the exception that bmalloc8() operates
in the 8-bit .sysm8 section.

_SYSMEMS8_SIZE Label

_SYSMEMB8_SIZEis an external label that contains the size, in words, of the 8-bit system memory
pool.

MEMORY16.C

The MEMORY16.C module contains functions that implement dynamic memory management routines
for the 'C32’s 16-bit data. The following subsections describe each of these functions. (Refer to the
appendix for additional information on 16-bit runtime-support functions.)

10

Pragma Directive

MEMORY16.C contains a pragma directive that defines a .sysm16 section. The size of this memory pool
in words (system memory or heap) is set at link time by using the -heap16 option. If the -heap16 option
is not used, the compiler does not allocate a 16-bit system memory area. If arguments are not used in
conjunction with this switch, the size of the 16-bit system memory area defaults to 1K 16-bit words.

minit16() Function

The minitl6() function initializes and resets the 16-bit dynamic memory management system. This
function is analogous to minit() with the exception that minit16() operates in the 16-bit .sysm16 section.

malloc16() Function

The malloc16() function allocates 16-bit words from the 16-bit memory pool and returns a pointer to the
allocated space. This function is analogous to malloc() with the exception that malloc16() operates in the
16-bit .sysm16 section.

calloc16() Function

The calloc16() function allocates 16-bit words from the 16-bit memory pool, clears allocated memory
locations, and returns a pointer to the allocated space. This function is analogous to calloc() with the
exception that calloc16() operates in the 16-bit .sysm16 section.

realloc16() Function

The realloc16() function reallocates 16-bit words from previously unallocated areas in the 16-bit memory
pool; a pointer to the allocated space is also returned. This function is analogous to the realloc() function
with the exception that realloc16() operates in the 16-bit .sysm16 section.

free16() Function

The freel6() function frees previously allocated space from the 16-bit memory pool. This function is
analogous to free() with the exception that free16() operates in the 16-bit .sysm16 section.

bmalloc16() Function

The bmalloc16() function allocates 16-bit words from the 16-bit memory pool. The allocated words are
aligned to a boundary that is suitable for the 'C32’s circular- and bit-reversed buffers; a pointer to the
allocated space is also returned. This function is analogous to bmalloc() with the exception that
bmalloc16() operates in thel6-bit .sysm16 section.

SYSMEM16 SIZE Label

_SYSMEM16_SIZHs an external label that contains the size, in words, of the 16-bit system memory
pool.

Memory Pool Limitations

The 'C32 has only three strobes: STRBIRBJ, and IOSTRB Therefore, a programmer cannot have
more than three memory pools, i.e., one memory pool assigned to each strobe. IGBTHREBI only

32-bit data and can only accommodate the 32-bit memory pool .sysmem. ConverselyaftRB®RB1

can hold 8-, 16-, and 32-bit data and can accommodate the 8-, 16-, and 32-bit memory pools .sysm8,
.sysm16, and .sysmem.

All pointers and constants must be stored in memory configured to hold 32-bit data. Hence, .bss, .stack,
.Cinit, and .const sections must reside in memory with data size configured to 32 bits.

11

C Compiler and Assembler Switch

To create code for the 'C32, the assembler and C compiler utilize the -v32 version specification switch. The
following example demonstrates the use of this switch with the assembler and C compiler, respectively:

asm30 -v32 myfile.asm
cl30 -v32 myfile.c

Linker Switches

To support the 'C32’s 8- and 16-bit memory pools, the linker utilizes the following switches: -heap8,
-heapl6, and -heap. These switches set the size, in words, of the respective 8-, 16-, and 32-bit memory
system areas .sysm8, .sysml16, and .sysmem. The user must link these sections into the appropriate
addresses thereby activating strobes that are configured to access 8-, 16-, or 32-bit data.

The following example demonstrates the link-time sizing of an 8-bit memory pool to 256K words:
Ink30 -heap8 0x4000

The linker creates these memory system areas using an input file that contains the .sysmem, .sysm8, and
.Sysm16 data-section definitions. If the input file does not exist, the linker is unable to perform memory
area processing.

The linker also creates the global symbols _SYSMEM_SIZE, _SYSMEMS8 SIZE, and
_SYSMEM16_SIZE and subsequently assigns each a value equal to the respective -heap, -heap8, and
-heapl6 size. The default size for each memory system area is 1K words (word size is dependent upon
system memory width).

Debugger Configuration

For the debugger to properly disassemble and read/write external memory, the user must configure the
strobe control registers before loading and executing code. Because the 'C32 supports code execution from
16- or 32-bit memory, the debugger may need to temporarily set the strobe control register to a 32-bit data
size in order to write an instruction (either by loading code or patching code) or to read an instruction with
the objective of disassembling a range of program memory.

To support code execution from 16- and 32-bit memory, the Memory Map Add command includes a new
typeparameter that directs the debugger to treat .text sections as 32-bit data. While reading or writing .text
sections, the debugger does the following:

e Temporarily stores the configuration of the appropriate strobe control register

e Temporarily sets the data size to 32 bits

¢ Reads or writes the targeted portion of the .text section

* Restores the strobe control register to its previous value

The syntax for the Memory Map Add command is:

ma address, length, type

address defines the starting address of a range of memory
length defines the length of the memory range

12

type identifies the read/write characteristic of the memory range depending upon one or more of the
following keywords:

* R:read only

e W: write only

* WR or RAM: read/write

* PROTECT: no-access memory

* TX:memory that storestext(code) section

TMS320C32 Configuration Examples

The following subsections demonstrate potential 'C32 memory interface configurations. Also included are
instructions on how to allocate buffers, build link files, and configure the debugger for each memory
configuration.

Example 1. Two External Memory Banks
The 'C32’s external memory interface allows the use of two zero wait-state external memory banks with
different widths without requiring additional logic or incurring access penalty costs. These external

memory banks provide the programmer with flexibility in trading performance versus system cost, i.e.,
amount of memory chips. For example, the programmer could execute code from 32-bit wide memory

13

while storing data in 8-bit memory (see Figure 6). This approach would be advantageous for applications
with large amounts of 8-bit data that require execution at the fastest speed of the device.

TMS320C32
A4 > A14 >1A14 > A14 >1A14
A13 >1A13 >1A13 >1A13 »>A13
A12 >A12 >A12 >A12 >A12 >{A14
A11 > A11 >{A11 > A1l >{A11 >{A13
A1 1A A1 A A1 > A3
AQ > Ag > Ag > Ao > Ag > Ao
_ — A1
RIW »|WE > WE »|WE > WE > Ao
cs cs —plcs p{Cs
\ME
STRBL_B3 1/0(7-0) 1/10(7-0) 1/0(7-0) 1/0(7—-0) —»{Cs
STRBO_B2 A A A I
p| 1/0(7-0)
STRBO_B1
STRBO_BO
D(31-24) |-«
D(23-16) |«
D(15-8) |«
D(7-0) |
STRB1 B3/A.1 |4
STRB1_B2/A |4
STRBL_BO |«

Figure 6. Zero Wait-State Interface for 32- and 8-Bit SRAM Banks

In Figure 6, a bank of 32K 32 bits is mapped to STRB&Nnd a bank of 32K 8 hits is mapped to STRB1
For this configuration, the programmer must set the following:
e STRBOcontrol register physical memory width to 32 bits and the data type size to 32 bits
* STRB Config bit field to zero, i.e., STRR®ntrol register = 000FO000h (banks are separate)
e STRB1control register physical memory width to 8 bits and the data type size to 8 bits, i.e.,
STRB1control register = 00000000h

Additionally, the PRGW pin must hmulled lowto indicate 32-bit program memory width.

Figure 6 also maps the 32-bit wide bank’s external memory address piAs,38.A1Aq, to the 'C32’s
A14A13A12...A1AQ pins. Conversely, the 8-bit wide bank’s memory address pingh £5...A1Ag, are

mapped to the 'C32s ¥...A1ApA_1 pins. Because STRBi configured for 8-bit memory width, the
external address presented on 'C32 pins is shifted right by two bits. As a result of this mapping, external
memory accesses in the range Oh through 7FFFh read or write 32-bit data to the 32-bit-wide bank (STRBO
Memory accesses in the range 900000h through 907FFFh read or write 8-bit data to the 8-bit-wide bank
(STRB)).

14

Two banks of different memory widths should not be connected to the same STRB without external decode
logic. Different memory widths require STRBx_Bignals to be configured as address pins. These address
pins are active for any external memory access, i.e., STEBRB], IOSTRB and program fetches.

Dynamic Memory Allocation

Examples of 8-bit dynamic buffer allocation, linker configuration, and a debugger batch file are provided
in the following subsections.

C Code

The following C code demonstrates the allocation of two buffers (1K and 4K, 8-bit words) using the 8-bit
dynamic memory allocation routines.
void main()
{
int *pufferl;
float *buffer2;

/* Configure the STRBO control register for 32-bit wide memory, 32-bit
data size. */

*0x808064 = 0xF0000;

/* Configure the STRB1 control register for 8-bit wide memory, 8-bit data
size. */

*0x808068 = 0x00000;

/* Allocate 1K 8-bit words in the 8-bit memory pool. */
bufferl = malloc8(1024 * sizeof(int));

/* Allocate 4K 8-bit floats in the 8-bit memory pool. */
buffer2 = malloc8(4096 * sizeof(float));

/* Process buffers. */

callDSPoperation(bufferl, buffer2);

/* Free buffers. */

free8(buffer2);

free8(bufferl);

NOTE: The TMS320 floating-point C compiler sizeof function returns 1 for both integers and float data types.

Linker Command File

The following linker command file allocates sections of the above code into the desired memory
configuration.

sample.obj /* Input filename */
—heap8 32768 [* Set 8-bit memory pool size. */
—stack 8704 /* Set C system stack size. */
—0 sample.out [* Specify output file. */

15

—m sample.map /* Specify map file. */

MEMORY

{
PRGRAM :org = 0x0000, len = 0x2000
STRBORAM : org = 0x2000, len = 0x6000
ONCHIRAM : org = 0x87Fe00, len = 0x200
STRB1RAM : org = 0x900000, len = 0x8000

}

SECTIONS

{
.text > PRGRAM [* 32-bit data section */
.Cinit > STRBORAM /* 32-bit data section */
.const > STRBORAM /* 32-bit data section */
.bss > STRBORAM [* 32-bit data section */
.stack > STRBORAM /* 32-bit data section */
.sysm8 > STRB1RAM [* 8-bit memory pool mapped to STRB1 T

}

Debugger Batch File

The following debugger batch file executes initialization commands that configure the C source debugger
to handle a 'C32 with the memory configuration shown in Figure 6.

mr

sconfig init.clr

; Define memory configuration.

ma 0x0000, 0x2000, R|W|TX ; Inform debugger that this section holds code
(.text).

ma 0x2000, 0x6000, RAM ; No code here, STRBO

ma 0x87FE00, 0x200, RAM ; On-chip

ma 0x808000, 0x10, RAM ; Peripheral Bus Control — DMA

ma 0x808020, 0x20, RAM ; Peripheral Bus Control — Timers

ma 0x808040, 0x10, RAM ; Peripheral Bus Control — Serial Port 0

ma 0x808060, 0x10, RAM ; Peripheral Bus Control — External Memory Interface

ma 0x900000, 0x8000, RAM ;STRBLI

reset

map on ; Make emulator aware of this memory configuration.

2*0x808064 = 0xF0000 :Set STRBO control register to 32-bit memory width,
; 32-bit data size.

2*0x808068 = 0x00000 :Set STRB1I ~ control register to 8-bit memory width,

: 8-bit data size.

16

load sample.out ; Configure STRBO and STRB1 control registers before
; loading code.
Static Memory Allocation

Examples of 8-bit static buffer allocation and associated linker configuration are provided in the following
subsections. The debugger batch file (not shown) is identical to the batch file previously listed under
Dynamic Memory Allocation.

C Code

The following C code demonstrates the static allocation of two buffers (1K and 4K, 8-bit words) by defining
a user section called .mydata8. This section is used to hold a structure consisting of two arrays of data
values.

#pragma DATA_SECTION(buffer8, “.mydata8”)
struct bufferStruct {

in[1024];
out[4096];
} buffers;
void main()
{
/* Configure the STRBO control register for 32-bit wide memory, 32-bit
data size. */
*0x808064 = 0xF0000;
I* Cog}‘igure the STRBI _ control register to 8-bit wide memory, 8-bit data
size.
*0x808068 = 0x00000;
/* Process buffers. */
callDSPoperation(buffer8.in, buffer8.out);
}

Linker Command File

The following linker command file allocates sections of the above C code into the desired memory
configuration.

sample.obj /* Input filename */
—stack 8704 /* Set C system stack size. */
—0 sample.out [* Specify output file. */
—m sample.map [* Specify map file. */
MEMORY
{
PRGRAM :org = 0x0000, len = 0x2000
STRBORAM : org = 0x2000, len = 0x6000
ONCHIRAM : org=0x87Fe00, len=0x200

17

STRB1IRAM : org = 0x900000, len =0x8000

}

SECTIONS

{
.text > PRGRAM [* 32-bit data section */
.cinit > STRBORAM /* 32-bit data section */
.const > STRBORAM /* 32-bit data section */
.bss > STRBORAM [* 32-bit data section */
.stack > STRBORAM /* 32-bit data section */
.mydata8 > STRB1RAM /* 8-bit memory pool mapped to STRB1 */

}

Example 2. Single External Memory Bank

Consider the case of a typical audio compression application written in C that requires 32-bit data for the
system stack and 16-bit data for the audio buffers. In this case, the programmer could interface the 'C32
as shown in Figure 7. This example assumes 32K 32-bit words of external memory. This memory is further
defined as containing 8.5K 32-bit words of stack and 8K 32-bit words of program space; both areas are
mapped to STRB@rogram space includes constants and global/static variables) Also, external memory
contains 32K of 16-bit word data buffers that are mapped into STRB1

Due to this mapping, the programmer must set the following:
e STRBOcontrol register physical memory width to 32 bits and the data type size to 32 bits
e STRB Config bit field to one, i.e., STRR®ntrol register = 002F0000h
e STRBl1control register physical memory width to 32 bits and the data type size to 16 bits, i.e.,
STRB1control register = 000D0000h

18

Additionally, the PRGW pin must milled lowto indicate 32-bit program memory width.

A22
A13
A12
A11
TMS320C32

A1
Ao

RIW

STRBO_B3
STRBO_B2
STRBO_B1
STRBO_BO
D(31-24)
D(23-16)

D(15-8)
D(7-0)

> A14 > A14 > A14 > A1

| A13 > A13 > A13 > A13

> A0 > Ao > Ao > A2
—» A11 —» A11 —» A11 —» A1

| A1 | A1 | Aq | Aq

| - | - | - | -

> Ao > Ao > Ao 7 Ao
R L e L e | .

—» CS L S —»1 Cs —» CS
/l 110(7-0) 110(7-0) 1/0(7-0) 110(7-0)
A A A A

< !
—<
| ¢
| <

Figure 7. Zero Wait-State Interface for 32-Bit SRAMs with 16- and 32-Bit Data Accesses

The external memory address pingA1 3...AjAgare mapped to the 'C32'$8A13A12...AjAgpins. This

mapping was selected to position the system stack immediately after the 'C32’s internal RAM.
Performance is consequently improved as the top of the stack resides in internal RAM, and the stack is
allowed to grow into external RAM. With this mapping, external memory accesses in the range 4000h
through 7FFFh read or write 16-bit data; memory accesses in the range Oh through 3FFFh read or write

32-bit data. The PRGW pin controls the program fetches.

19

Figure 8 shows the contents of external memory. Due to the address shift of the 'C32’s external memory
interface, the memory map seen by the 'C32 CPU is slightly different (see Figure 9).

Physical Logical
Address Contents Address Contents
oh System Stack Area Oh
(8K x 32 Bits)
1FFFh
2000h Program Word 0 2000h
Program Word 1 Program
(8K x 32 Bits)
3FFFh
3FFFh Program Word 8191 87FEOOh
Internal RAM
4000h Datal Data0 (512 x 32 Bits)
87FFFFh
4001h Data3 Data2 880000h
System Stack
(8K x 32 Bits)
881FFFh
7FFFh Data32767 Data32766
900000h
Data Buffers
(32 x 16 Bits)
907FFFh
FFFFFFh
NOTE: For 32-bit data, physical address = logical address. For 16-bit data, physical address = logical address shifted
left by one.
Figure 8. External Memory Map Figure 9. TMS320C32 Memory Map

Dynamic Memory Allocation

Examples of 16-bit dynamic buffer allocation, linker configuration, and a debugger batch file are provided
in the following subsections.

C Code

The following C code demonstrates the allocation of two buffers (1K and 4K, 16-bit words) using the 16-bit
dynamic memory allocation routines provided by the runtime-support library.

include <bus30.h>

void main()
{
int *pufferl;
float *buffer2;
/* Configure the STRBO control register to STRBO and STRB1 overlay. */

/* 32-bit wide memory, 32-bit data size */

20

/* If using the PRTS30 headers,
BUS_ADDR—>STRBO_gcontrol = STRBO_1_CNFG | MEMW_32 | DATA_32; */
*0x808064 = 0x2F0000;

[* Configure STRB1 control register to 32-bit wide memory, 16-bit data
size. */

/* If using the PRTS30 headers,
BUS_ADDR->STRB1_gcontrol = MEMW_32 | DATA_16; */

*0x808068 = 0xD00O0O0;

/* Allocate 1K 16-bit words in the 16-bit memory pool. */

bufferl = malloc16(1024 * sizeof(int));

/* Allocate 4K 16-bit floats in the 16-bit memory pool. */

buffer2 = malloc16(4096 * sizeof(float));

[* Process buffers. */

callDSPoperation(bufferl, buffer2);

[* Free buffers. */

free16(buffer2);

freel6(bufferl);

Linker Command File

The following linker command file allocates sections of the above C code into the memory configuration
depicted by Figure 8.

sample.obj /* Input filename */

—heapl6 32768 [* Set 16-bit memory pool size. */

—stack 8704 /* Set C system stack size. */

—0 sample.out [* Specify output file. */

—m sample.map /* Specify map file. */

MEMORY

{
STRBORAM : org = 0x2000, len = 0x2000
STACKRAM : org =0x87Fe00, len = 0x2200
STRB1IRAM : org = 0x900000, len = 0x8000

}

SECTIONS

{
.text > STRBORAM [* 32-bit data section */
.cinit > STRBORAM /* 32-bit data section *
.const > STRBORAM /* 32-bit data section */
.bss > STRBORAM [* 32-bit data section */

21

.stack > STACKRAM [* 32-bit data section */
.sysm16 > STRB1RAM /* 16-bit memory pool mapped to STRB1 */
}

Debugger Batch File

The following debugger batch file executes initialization commands that configure the C source debugger
to handle a 'C32 with the memory configuration shown in Figure 8.
mr
sconfig init.clr
Define memory configuration.
ma 0x2000, 0x2000, R|W|TX ; Inform debugger that this section holds code (.text).
ma 0x87FE00, 0x2000, RAM
ma 0x900000, 0x8000, RAM
map on ; Make emulator aware of this memory configuration.
?*0x808064 = 0x2F0000 ; Set STRBO ___ control register to STRBO and STRB1 overlay.
; 32-bit memory width, 32-bit data size

?*0x808068 = 0xD0O00O ; Set STRB1 control register.
; 32-bit memory width, 16-bit data size

1

load sample.out ; Configure STRBO /ISTRBL1 control registers before loading
code.

22

References

TMS320C32 Microcontroller User’s Guidégexas Instruments, 1995, literature number
SPRU132, pp. 7-3, 7-8.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Gul@xas Instruments, 1995,
literature number SPRUO34E, p. 5-35.

TMS320 Floating-Point DSP Assembly Language Tools User’s Gliggs Instruments,
1990, literature number SPRUO035, p. 8-5.

TMS320C3x C Source Debugger User’s Guitexas Instruments, 1993, literature number
SPRUO053, p. 11-25.

23

Appendix

MEMORY8.C Runtime Support Functions

minit8()
Syntax:

Defined in:

Description:

malloc8()
Syntax:

Defined in:

Description:

Example:

Reset Dynamic Memory Pool
#include <stdlib.h>
void minit8(void);

The minit8() function resets all of the 8-bit memory pool that previously was allocated by calls to
the malloc8(), calloc8(), and realloc8() functions.

NOTE: Calling the minit8() function makes all of the heap8 memory space available again. Any
objects previously allocated will be lost, i.e., can no longer be accessed.

minit8() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm8 section in MEMORY8.C. The linker sets the size of this section from the value specified
by the -heap8 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

Allocate Memory

#include <stdlib.h>

void *malloc8(size_t size);

The malloc8() function allocates size 8-bit words from the 8-bit memory pool and returns a pointer
to the allocated space. This function does not modify memory that it allocates. If malloc8() cannot
allocate space, i.e., there is no available memory, it returns a null pointer (0).

malloc8() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm8 section in MEMORY8.C. The linker sets the size of this section from the value specified
by the -heap8 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

This example allocates free space for a structure.

struct xyz *p;
p = malloc8(sizeof (struct xyz));

24

calloc8()
Syntax:

Defined in:

Description:

Example:

realloc8()
Syntax:

Defined in:

Description:

Allocate and Clear Memory
#include <stdlih.h>
void *calloc8(size_t nmemb, size_t size);

The calloc8() function allocates size 8-hit words from the 8-bit memory pool for each of nmemb
objects and returns a pointer to the allocated space. Allocated memory is initialized to all Os. If
calloc8() cannot allocate memory, i.e., there is no available memory, it returns a null pointer (0).

calloc8() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm8 section in MEMORY8.C. The linker sets the size of this section from the value specified
by the -heap8 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

This example uses the calloc8() routine to allocate and clear twenty 8-bit words.

ptr = calloc8(10,2); /*Allocate and clear twenty 8-bit words. */

Change Heap Size
#include <stdlib.h>
void *realloc8(void *ptr, size_t size);

The realloc8() function changes the size of the allocated memory pointed to by ptr to the number
of 8-hit words specified by size. The contents of the memory space (up to the lesser of the old and
new sizes) are not changed.

® |If ptris O, realloc8() behaves like malloc8().

® If ptr points to unallocated space, the function takes no action and returns.

® If space cannot be allocated, memory is not changed, and realloc8() returns O.

® |f size = 0 and ptr is not null, realloc8() frees the space pointed to by ptr.

When an entire object must be moved in order to allocate more space, realloc8() returns a pointer

to the new space. Any memory freed by this operation is deallocated. If an error occurs, realloc8()
yields a null pointer (0).

realloc8() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm8 section in MEMORY8.C. The linker sets the size of this section from the value specified
by the -heap8 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C Com-
piler User’s Guide (literature number SPRUO34E).

25

free8()

Syntax:
Defined in:

Description:

Example:

Deallocate Memory
#include <stdlib.h>
void free8(void *ptr);

The free8() function deallocates memory space (pointed to by ptr) that previously was allocated
by a malloc8(), calloc8(), or realloc8() call. This deallocation makes the memory space available
again. free8() will not take action involving a request to free unallocated space, i.e., will only return
tothe point of the call. For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4 of the TMS320 Floating-Point Optimizing C Compiler User’s Guide (literature number
SPRUO34E).

This example allocates ten 8-bit words and then frees them.

char *x
x = malloc8(10); /* Allocate ten 8-bit words.*/
free8(x); /* Free ten 8-bit words bytes. */

MEMORY16.C Runtime Support Functions

minit16()

26

Syntax:
Defined in:

Description:

Reset Dynamic Memory Pool
#include <stdlib.h>
void minit16(void);

The minit16() function resets all of the 16-bit memory pool that previously was allocated by calls
to the malloc16(), calloc16(), and realloc16() functions.

NOTE: Callingthe minit16() function makes all of the heap16 memory space available again. Any
objects previously allocated will be lost, i.e., can no longer be accessed.

minit16() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm16 section in MEMORY16.C. The linker sets the size of this section from the value specified
by the -heap16 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

malloc16()
Syntax:

Defined in:

Description:

Example:

calloc16()
Syntax:

Defined in:

Description:

Example:

Allocate Memory

#include <stdlib.h>

void *malloc16(size_t size);

The malloc16() function allocates size 16-bit words from the 16-bit memory pool and returns a
pointer to the allocated space. This function does not modify memory that it allocates. If malloc16()
cannot allocate space, i.e., there is no available memory, it returns a null pointer (0).

malloc16() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm16 section in MEMORY16.C. The linker sets the size of this section from the value specified
by the -heap16 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

This example allocates free space for a structure.

struct xyz *p;
p = malloc16(sizeof (struct xyz));

Allocate and Clear Memory

#include <stdlih.h>

void *calloc16(size_t nmemb, size_t size);

The calloc16() function allocates size 16-bit words from the 16-bit memory pool for each of nmemb
objects and returns a pointer to the allocated space. Allocated memory is initialized to all Os. If
calloc16() cannot allocate memory, i.e., there is no available memory, it returns a null pointer (0).
calloc16() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm16 section in MEMORY16.C. The linker sets the size of this section from the value specified
by the -heap16 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

This example uses the calloc16() routine to allocate and clear ten 16-bit words.

ptr = calloc16(10,1); /*Allocate and clear ten 16-bit words. */

27

realloc16()

Syntax:

Defined in:

Description:

freel6()

28

Syntax:

Defined in:

Description:

Example:

Change Heap Size
#include <stdlib.h>
void *realloc16(void *ptr, size_t size);

The realloc16() function changes the size of the allocated memory pointed to by ptr to the number
of 16-bit words specified by size. The contents of the memory space (up to the lesser of the old
and new sizes) are not changed.

® |[fptris 0, realloc16() behaves like malloc16().

® If ptr points to unallocated space, the function takes no action and returns.

® |f space cannot be allocated, memory is not changed, and realloc16() returns 0.
® |If size = 0 and ptr is not null, realloc16() frees the space pointed to by ptr.

When an entire object must be moved in order to allocate more space, realloc16() returns a pointer
to the new space. Any memory freed by this operation is deallocated. If an error occurs, realloc16()
yields a null pointer (0).

realloc16() uses memory from a special memory pool, or heap, that is defined in the uninitialized
.sysm16 section in MEMORY16.C. The linker sets the size of this section from the value specified
by the -heap16 option. The default heap size is 1K words. For more information, refer to subsection
4.1.3, Dynamic Memory Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C
Compiler User’s Guide (literature number SPRUO34E).

Deallocate Memory
#include <stdlib.h>
void free16(void *ptr);

The freel16() function deallocates memory space (pointed to by ptr) that previously was allocated
by a malloc16(), calloc16(), or realloc16() call. This deallocation makes the memory space
available again. free16() will not take action involving a request to free unallocated space, i.e., will
only return to the point of the call. For more information, refer to subsection 4.1.3, Dynamic Memory
Allocation, on page 4-4 of the TMS320 Floating-Point Optimizing C Compiler User’s Guide
(literature number SPRUO34E).

This example allocates ten 16-bit words and then frees them.

char *x
x = malloc16(10); /* Allocate ten 16-bit words. */
freel6(x); /* Free ten 16-bit words. */

