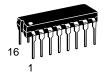
1.0 A Output Current, Dual Power Operational Amplifiers

The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.


- Output Current to 1.0 A
- Slew Rate of 1.3 V/µs
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion

http://onsemi.com

PDIP-8 DP1 SUFFIX CASE 626

PDIP-16 DP2 SUFFIX CASE 648

SO-16W DW SUFFIX CASE 751G

SOEIAJ-16 DM2 SUFFIX CASE 966

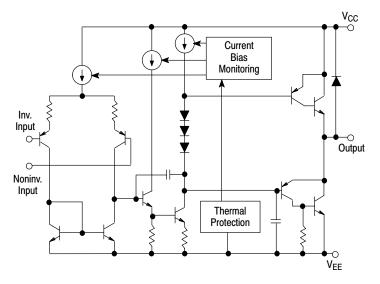
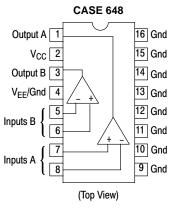
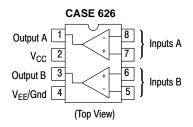
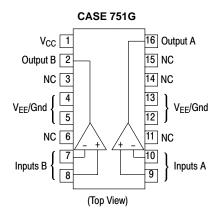


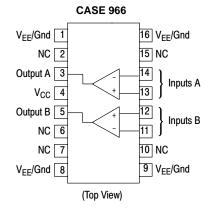
Figure 1. Representative Block Diagram


ORDERING INFORMATION

Device	Package	Shipping
TCA0372DW	SO-16W	47 Units/Rail
TCA0372DWR2	SO-16W	1000 Tape & Reel
TCA0372DP1	PDIP-8	50 Units/Rail
TCA0372BDP1	PDIP-8	50 Units/Rail
TCA0372DP2	PDIP-16	25 Units/Rail
TCA0372DM2EL	SOEIAJ-16	2500 Tape & Reel


DEVICE MARKING INFORMATION


See general marking information in the device marking section on page 6 of this data sheet.


PIN CONNECTIONS

*Pins 4 and 9 to 16 are internally connected.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	V _S	40	V
Input Differential Voltage Range	V_{IDR}	Note 1	V
Input Voltage Range	V _{IR}	Note 1	V
Junction Temperature (Note 2)	T _J	+150	°C
Operating Temperature Range	T _A	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
DC Output Current	lo	1.0	А
Peak Output Current (Nonrepetitive)	I _(max)	1.5	А
Thermal Resistance, Junction–to–Air Case 626 Case 648 Case 751G	R _{θJA}	137 72 80	°C/W
Thermal Resistance, Junction–to–Case Case 626 Case 648 Case 751G	$R_{ heta JC}$	23 10 12	°C/W

- Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, R_L connected to ground, T_A = -40° to +125°C.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage ($V_{CM} = 0$) $T_A = +25^{\circ}C$ $T_A, T_{low} \text{ to } T_{high}$	V _{IO}	_ _	1.0 _	15 20	mV
Average Temperature Coefficient of Offset Voltage	$\Delta V_{IO}/\Delta T$	_	20	_	μV/°C
Input Bias Current (V _{CM} = 0)	I _{IB}	_	100	500	nA
Input Offset Current (V _{CM} = 0)	I _{IO}	_	10	50	nA
Large Signal Voltage Gain $V_0 = \pm 10 \text{ V, } R_L = 2.0 \text{ k}$	A _{VOL}	30	100	_	V/mV
Output Voltage Swing (I_L = 100 mA) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$ $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	V _{OH}	14.0 13.9 –	14.2 - -14.2 -	- -14.0 -13.9	V
Output Voltage Swing ($I_L = 1.0 \text{ A}$) $V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = T_{low} \text{ to } T_{high}$ $V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +24 \text{ V}, V_{EE} = 0 \text{ V}, T_A = T_{low} \text{ to } T_{high}$	V _{OH}	22.5 22.5 –	22.7 - 1.3 -	- - 1.5 1.5	V
Input Common Mode Voltage Range $T_A = +25$ °C $T_A = T_{low}$ to T_{high}	V _{ICR}	V _{EE} to (V _{CC} -1.0) V _{EE} to (V _{CC} -1.3)		V	
Common Mode Rejection Ratio (R _S = 10 k)	CMRR	70	90	_	dB
Power Supply Rejection Ratio ($R_S = 100 \Omega$)	PSRR	70	90	_	dB
$\begin{aligned} & \text{Power Supply Current} \\ & T_{A} = +25^{\circ}\text{C} & \text{TCA0372} \\ & & \text{TCA0372B} \\ & T_{A} = T_{low} \text{ to } T_{high} & \text{TCA0372} \\ & & \text{TCA0372B} \end{aligned}$	I _D	- - -	5.0 8.0 - -	10 10 14 14	mA

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_L \ connected \ to \ ground, \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics	Symbol	Min	Тур	Max	Unit
Slew Rate ($V_{in} = -10 \text{ V to } +10 \text{ V}$, $R_L = 2.0 \text{ k}$, $C_L = 100 \text{ pF}$) $A_V = -1.0$, $T_A = T_{low}$ to T_{high}	SR	1.0	1.4	_	V/μs
Gain Bandwidth Product (f = 100 kHz, C_L = 100 pF, R_L = 2.0 k) T_A = 25°C T_A = T_{low} to T_{high}	GBW	0.9 0.7	1.4 –	1 1	MHz
Phase Margin $T_J = T_{low}$ to T_{high} $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	Фт	_	65	_	Degrees
Gain Margin $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	A _m	_	15	_	dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0 to 100 kHz$	e _n	_	22	_	nV/√Hz
Total Harmonic Distortion $A_V = -1.0$, $R_L = 50 \Omega$, $V_O = 0.5 VRMS$, $f = 1.0 kHz$	THD	-	0.02	-	%

NOTE: In case V_{EE} is disconnected before V_{CC} , a diode between V_{EE} and Ground is recommended to avoid damaging the device.

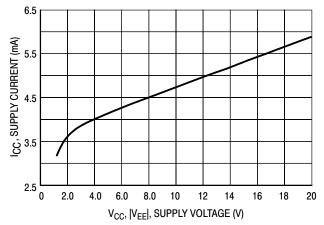


Figure 2. Supply Current versus Supply Voltage with No Load

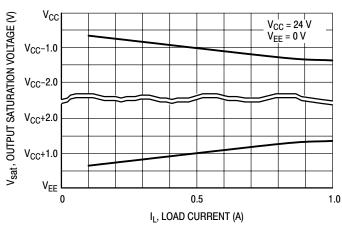


Figure 3. Output Saturation Voltage versus Load Current

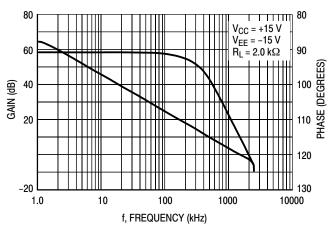


Figure 4. Voltage Gain and Phase versus Frequency

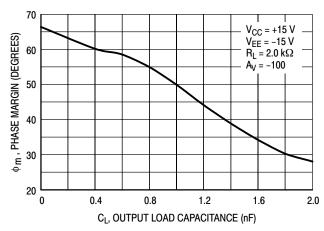


Figure 5. Phase Margin versus Output Load Capacitance

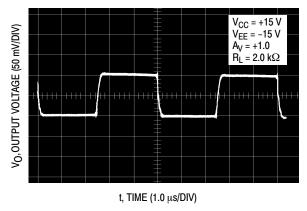


Figure 6. Small Signal Transient Response

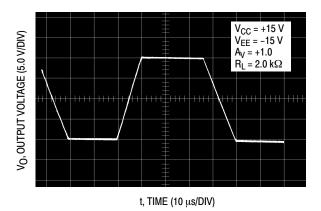


Figure 7. Large Signal Transient Response

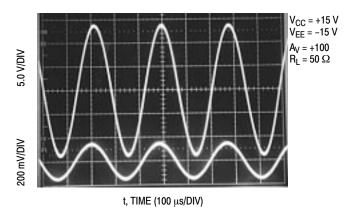


Figure 8. Sine Wave Response

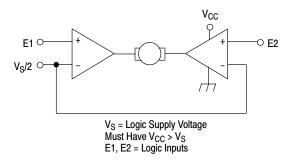
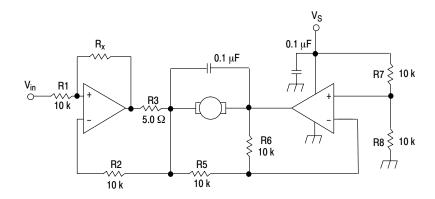
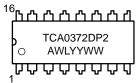
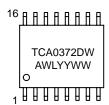



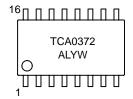
Figure 9. Bidirectional DC Motor Control with Microprocessor–Compatible Inputs

For circuit stability, ensure that $R_X > \frac{2R3 + R1}{R_M}$ where, R_M = internal resistance of motor. The voltage available at the terminals of the motor is: $V_M = 2 (V_1 - \frac{V_S}{2}) + |R_0| \cdot I_M$ where, $|R_0| = \frac{2R3 \cdot R1}{R_X}$ and I_M is the motor current.

Figure 10. Bidirectional Speed Control of DC Motors

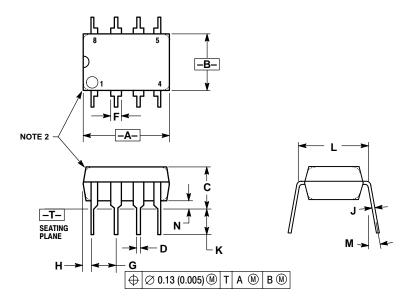

MARKING DIAGRAMS




PDIP-16 DP2 SUFFIX CASE 648

SO-16W DW SUFFIX CASE 751G

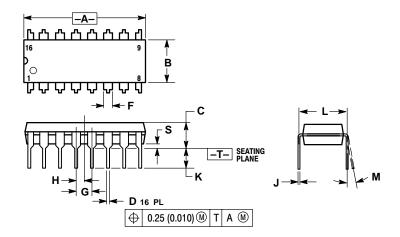
SOEIAJ-16 DM2 SUFFIX CASE 966



A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

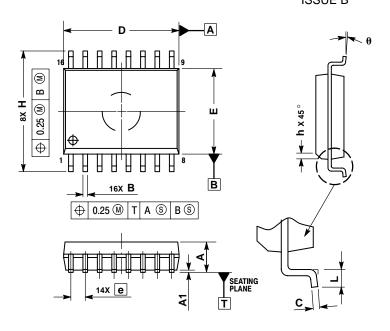
PACKAGE DIMENSIONS


PDIP-8 **DP1 SUFFIX** CASE 626-05 **ISSUE L**

- NOTES:
 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
c	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M		10°		10°
N	0.76	1.01	0.030	0.040

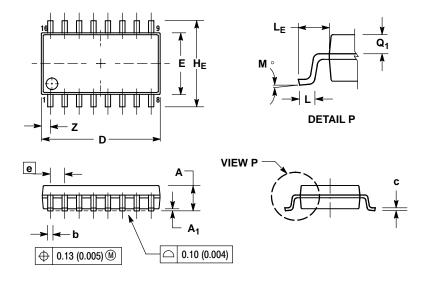
PDIP-16 **DP2 SUFFIX** CASE 648-08 ISSUE R



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10 °
S	0.020	0.040	0.51	1.01

PACKAGE DIMENSIONS


SO-16W **DW SUFFIX** CASE 751G-03 **ISSUE B**

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD
- PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	10.15	10.45	
Е	7.40	7.60	
е	1.27	BSC	
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

SOEIAJ-16 **DM2 SUFFIX** CASE 966-01 **ISSUE O**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) DED SIDE. PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
- INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	-	2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

Notes

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.