MICROWAVE POWER GaAs FET

Low Distortion Internally Matched Power GaAs FETs (C-Band)

Features

- Low intermodulation distortion
- $IM_3 = -42 \, dBc \, at \, Po = 31.5 \, dBm$,
- Single carrier level
- High power
- P_{1dB} = 42.0 dBm at 6.4 GHz to 7.2 GHz
- High gain
 - $G_{1dB} = 7.5 \text{ dB}$ at 6.4 GHz to 7.2 GHz
- Broad band internally matched
- Hermetically sealed package

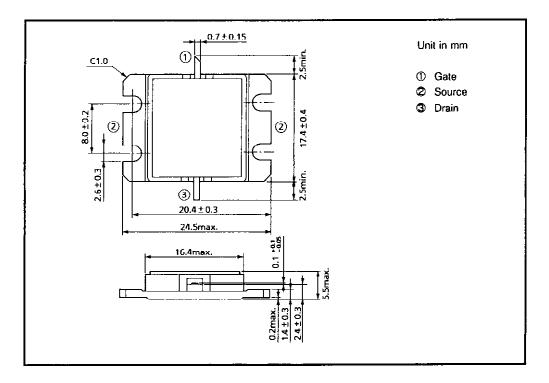
RF Performance Specifications (Ta = 25° C)

Characteristics	Symbol	Condition	Unit	Min.	Тур.	Мах
Output Power at 1dB Compression Point	P _{1dB}		dBm	41.0	42.0	-
Power Gain at 1dB Compression Point	G _{1dB}	V _{DS} = 10V	dB	6.5	7.5	-
Drain Current	I _{DS1}	f = 6.4 ~ 7.2 GHz	А	_	4.2	5.0
Gain Flatness	ΔG		dB	_	-	±0.6
Power Added Efficiency	η _{add}		%	_	31	_
3rd Order Intermodulation Distortion	IM ₃	Note 1	dBc	-42	-45	-
Drain Current	I _{DS2}		А	_	4.2	5.0
Channel-Temperature Rise	ΔT_{ch}	V _{DS} xI _{DS} xR _{th} (c-c)	°C	_	_	80

Electrical Characteristics (Ta = 25° C)

Characteristic	Symbol	Condition	Unit	Min.	Тур.	Мах
Trans-conductance	gm	V _{DS} = 3V I _{DS} = 5.2A	mS	_	3200	_
Pinch-off Voltage	V _{GSoff}	V _{DS} = 3V I _{DS} = 70mA	V	-2	-3.5	-5.0
Saturated Drain Current	I _{DSS}	$V_{DS} = 3V$ $V_{GS} = 0V$	А	_	10.0	13.0
Gate-Source Breakdown Voltage	V _{GSO}	I _{GS} = -210μA	V	-5	_	_
Thermal Resistance	R _{th (c-c)}	Channel to case	°C/W	-	1.9	2.5

Note 1: 2 tone Test Pout = 31.5dBm Single Carrier Level.

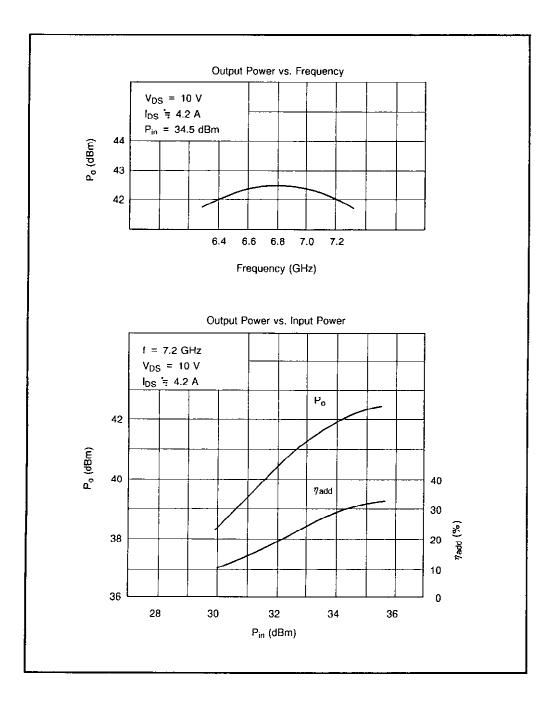

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or OSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments (bic could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

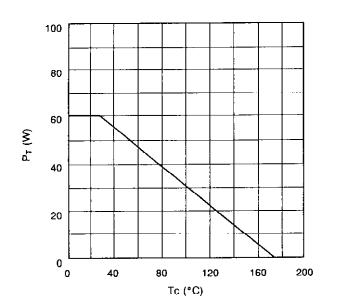
Absolute Maximum Ratings (Ta = 25° C)

Characteristic	Symbol	Unit	Rating
Drain-Source Voltage	V _{DS}	V	15
Gate-Source Voltage	V _{GS}	V	-5
Drain Current	I _{DS}	А	13
Total Power Dissipation ($T_c = 25^{\circ}C$)	P _T	W	60
Channel Temperature	T _{ch}	°C	175
Storage Temperature	T _{stg}	°C	-65~175

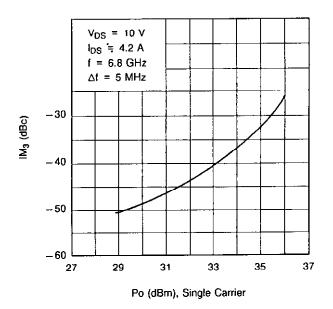
Package Outline (2-16G1B)



Handling Precautions for Packaged Type


Soldering iron should be grounded and the operating time should not exceed 10 seconds at 260°C.

2/5


RF Performances

Power Dissipation vs. Case Temperature

IM₃ vs. Output Power Characteristics

TIM6472-14L S-Parameters (MAGN. and ANGLES)

	A							
+0.5		+2 	+5	+150	7.20 7.00 5685 Scale for 512	+90° 7.6 72 7.8	f =6.0~7 +60° 7.6 Scale or I Sc	+30°
-0.2	20072 7.0 200	60 -2	- 5	- 150°	6.80		2 3	y 6.0 ⁴ y − 30°
	-1	 	S11 S#		- 120*	- 90°	4 ← 60° ← ★	— S21 — S12
FREQUENCY (MHz)	T	 S11 ANG	Ser	S12 ANG	. 120' <		 	
	MAG	511 ANG	See MAG	ANG	MAG	- 90°	MAG	— \$12 \$22 ANG
(MHz)		 511	Ser I		. 120' <	<u>- 90°</u>		- \$12 522
(MHz) 6.0	MAG 0.529	511 ANG 157.2	S≃ MAG 0.048	ANG -56.3	MAG 3.350	521 ANG -7.0	MAG 0.558	- \$12 522 ANG -113.8
(MHz) 6.0 6.2	MAG 0.529 0.442	S11 ANG 157.2 110.8	Sz: MAG 0.048 0.063	ANG -56.3 -94.8 -129.5	. 120 MAG 3.350 3.549	521 ANG -7.0 -41.8	MAG 0.558 0.500	- \$12 522 ANG -113.8 -149.5
(MHz) 6.0 6.2 6.4	MAG 0.529 0.442 0.372	511 ANG 157.2 110.8 61.6	Ser MAG 0.048 0.063 0.078	ANG -56.3 -94.8	MAG 3.350 3.549 3.565	- 90° - 90° - - 90 - 90° - 90° - 90° - 90° - 90° - 90	MAG 0.558 0.500 0.473	S ²² ANG -113.8 -149.5 175.2
(MHz) 6.0 6.2 6.4 6.6	MAG 0.529 0.442 0.372 0.334	S11 ANG 157.2 110.8 61.6 12.1	See MAG 0.048 0.063 0.078 0.089	ANG -56.3 -94.8 -129.5 -162.2	MAG 3.350 3.549 3.565 3.478	- 30° - 30° - 7.0 - 41.8 - 75.6 - 108.1 - 139.4	MAG 0.558 0.500 0.473 0.462	- \$12 522 ANG -113.8 -149.5 175.2 143.6 114.6
(MHz) 6.0 6.2 6.4 6.6 6.8	MAG 0.529 0.442 0.372 0.334 0.315	511 ANG 157.2 110.8 61.6 12.1 -35.9	Sz: MAG 0.048 0.063 0.078 0.089 0.098	ANG -56.3 -94.8 -129.5 -162.2 167.0	MAG 3.350 3.549 3.565 3.478 3.386	- 90° - 90° - - 90 - 90° - 90° - 90° - 90° - 90° - 90	MAG 0.558 0.500 0.473 0.462 0.441	S22 ANG -113.8 -149.5 175.2 143.6
(MHz) 6.0 6.2 6.4 6.6 6.8 7.0	MAG 0.529 0.442 0.372 0.334 0.315 0.289	511 ANG 157.2 110.8 61.6 12.1 -35.9 -83.0	Szz MAG 0.048 0.063 0.078 0.089 0.098 0.105	ANG -56.3 -94.8 -129.5 -162.2 167.0 135.6	MAG 3.350 3.549 3.565 3.478 3.386 3.292	- 90° - 90° - 90° - 7.0 - 41.8 - 75.6 - 108.1 - 139.4 - 170.8	MAG 0.558 0.500 0.473 0.462 0.441 0.416	S22 ANG -113.8 -149.5 175.2 143.6 114.6 83.1