TOSHIBA

MICROWAVE SEMICONDUCTOR

TECHNICAL DATA

MICROWAVE POWER GaAs FET TIM5964-8LC

FEATURES:

- LOW INTERMODULATION DISTORTION IM3 = -45 dBc at Po = 28 dBm, Single Carrier Level
- HIGH POWER
 P1dB = 39 dBm at 5.9 GHz to 6.4 GHz
- HIGH GAIN
- G1dB = 9.0 dB at 5.9 GHz to 6.4 GHz

 BROAD BAND INTERNALLY MATCHED
- HERMETICALLY SEALED PACKAGE

RF PERFORMANCE SPECIFICATIONS (Ta = 25℃)

CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Output Power at 1 dB Compression Point	P1dB		dBm	38.0	39.0	. .
Power Gain at 1 dB Compression Point	GldB	VDS = 10V	đв	8.0	9.0	
Drain Current	IDS1	$f = 5.9 \sim 6.4 \text{GHz}$	A	-	2.2	2.8
Gain Flatness	ΔG	·	đВ	-	-	±0.6
Power Added Efficiency	7 add		*	_	32	-
3rd Order Intermodulation Distortion	IM3	Note 1	dBc	-42	-45	-
Drain Current	IDS2		A	-	2.2	2.8
Channel Temperature Rise	$\Delta exttt{Tch}$	V _{DS} ×I _{DS} ×R _{th} (c-c)	τ	_	-	80

ELECTRICAL CHARACTERISTICS (Ta = 25℃)

CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Trans- conductance	дт	VDS = 3V $IDS = 3.0A$	mS	-	1800	-
Pinch-off Voltage	VGSoff	VDS = 3V $IDS = 40mA$	v	-2	-3.5	-5.0
Saturated Drain Current	IDSS	VDS = 3V VGS = 0V	A	-	5.8	7.5
Gate-Source Breakdown Voltage	VGSO	IGS = -120 μ A	V	-5	-	-
Thermal Resistance	Rth(c-c)	Channel to Case	°C/W	-	2.3	3.5

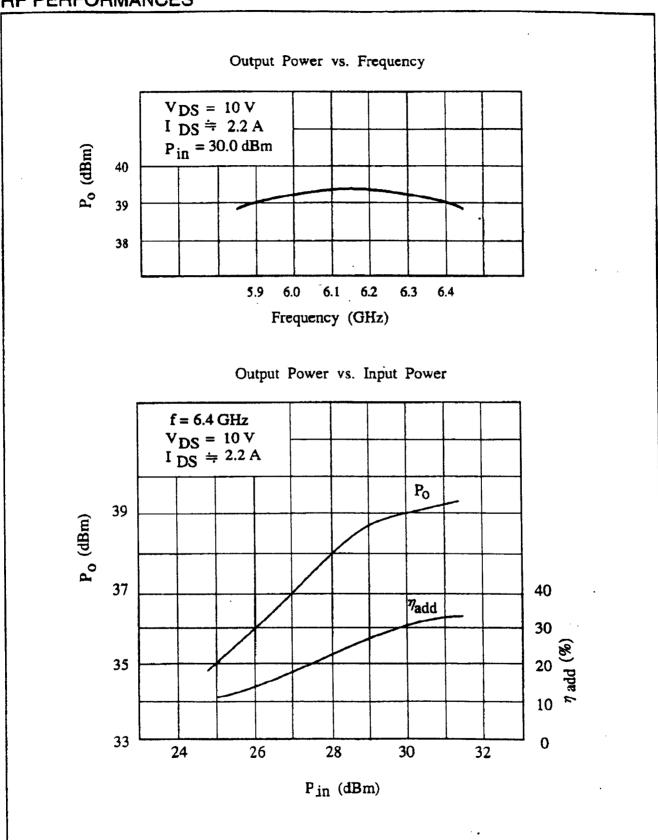
Note 1: 2 tone Test Pout = 28 dBm Single Carrier Level.

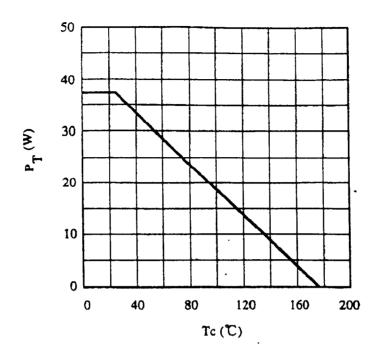

[★] The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infrigements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

[★] The information contained herein may be changed without prior notice. It is therefore advisable to contact TOSHIBA before proceeding with the design of eqipment incorporating this product.

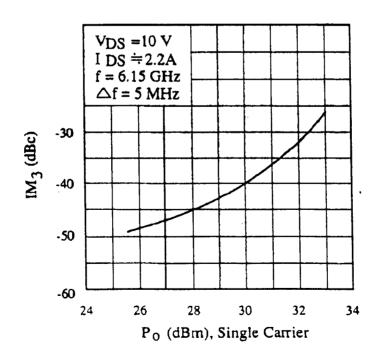
ABSOLUTE MAXIMUM RATINGS (Ta = 25℃)

CHARACTERISTICS	SYMBOL	UNIT	RATING	
Drain-Source Voltage	Vos	V	15	
Gate-Source Voltage	Vas	V	-5	
Drain Current	Ins	A	8	
Total Power Dissipation (Tc=25C)	Pr	W	37.5	
Channel Temperature	Ten	℃ .	175	
Storage Temperature	Taty	Ç	-65~175	


PACKAGE OUTLINE (2-11D1B)


HANDLING PRECAUTIONS FOR PACKAGED TYPE

Soldering iron should be grounded and the operating time should not exceed 10 seconds at $260\,\mathrm{C}$.


RF PERFORMANCES

POWER DISSIPATION VS. CASE TEMPERATURE

IM3 VS. OUTPUT POWER CHARACTERISTICS

