

27- 32 GHz 0.7 Watt Power Amplifier

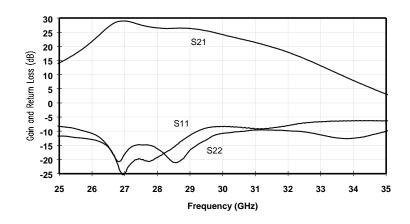
TGA1073B

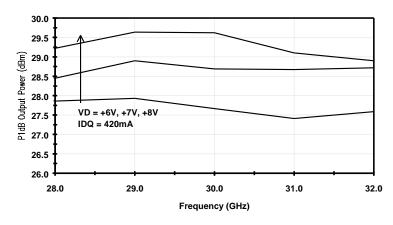
Prototype Part #, Production Part # TBD

The TriQuint TGA1073B-EPU is a three stage HPA MMIC design using TriQuint's proven 0.25 um Power pHEMT process. The TGA1073B is designed to support a variety of millimeter wave applications including point-to-point digital radio and LMDS/LMCS and Ka band satellite ground terminals.

The three stage design consists of a 2 x 300um input stage driving a 2 x 600um interstage followed by a 4 x 600um output stage.

The TGA1073B provides 28.5 dBm nominal output power at 1dB compression across 27-32GHz. Typical small signal gain is 25 dB at 28GHz and 18dB at 32GHz.

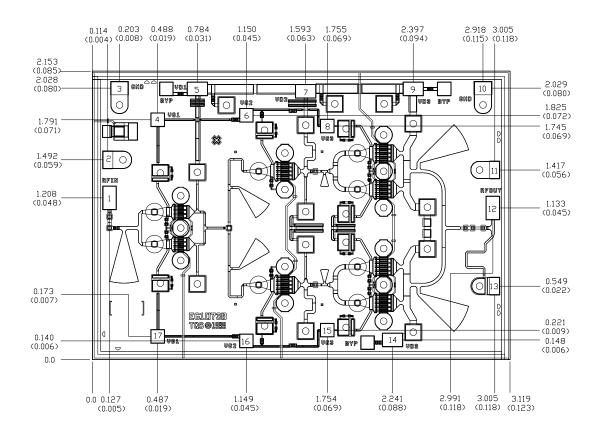

The TGA1073B requires minimum off-chip components. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.


Key Features and Performance

- 0.25 um pHEMT Technology
- 25 dB Nominal Gain @ 28 GHz
- 28.5 dBm Nominal Pout @ P1dB (7V)
- -38 dBc IMR3 @ 18 dBm SCL
- Bias 6 8 V @ 420 mA
- Chip Dimensions 3.12mm x 2.16mm

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Communications

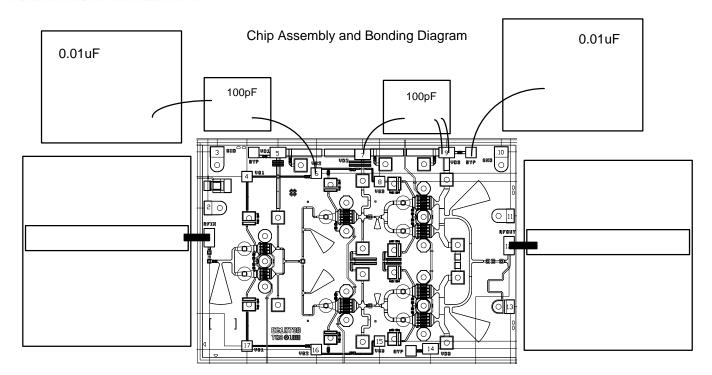


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

Advance Product Information

Mechanical Characteristics

Units: millimeters (inches) Thickness: 0.1016 (0.004)


Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

Bond	Pad	#1	(RF	Inpu	ıt)	0.105	×	0.180	(0.004	X	0.007)
Bond	Pad	#2	(GN	D)		0.078	×	0.136	(0.003	×	0.005)
Bond	Pad	#3	(GN	D)		0.103	×	0.136	(0.004	×	0.005)
Bond	Pad	#4	(VC	51)		0.105	×	0.105	(0.004	×	0.004)
Bond	Pad	#5	(VI)1)		0.105	×	0.155	(0.004	×	0.006)
Bond	Pad	#6	(VC	i2)		0.105	×	0.105	(0.004	×	0.004)
Bond	Pad	#7	$(\vee I$)2)		0.105	×	0.155	(0.004	×	0.006)
Bond	Pad	#8	(V(3)		0.105	X	0.105	(0.004	×	0.004)
Bond	Pad	#9	(VI)3)		0.105	×	0.155	(0.004	×	0.006)
Bond	Pad	#10	(G1	۷D>		0.103	×	0.136	(0.004	×	0.005)
Bond	Pad	#11	(GN	1D)		0.078	×	0.136	(0.003	×	0.005)
Bond	Pad	#12	(RI	- Dut	tput)	0.105	×	0.180	(0.004	×	0.007)
Bond	Pad	#13	(GI	(UV		0.078	×	0.136	(0.003	×	0.005)
Bond	Pad	#14	(V	D3)		0.105	X	0.155	(0.004	×	0.006)
Bond	Pad	#15	(V	G3)		0.105	X	0.105	(0.004	×	0.004)
Bond	Pad	#16	(V	G2)		0.105	×	0.105	(0.004	×	0.004)
Bond	Pad	#17	(V	G1>		0.105	×	0.105	(0.004		0.004)

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

TriQuint (SEMICONDUCTOR.

Advance Product Information

Recommended:

Solder MMIC to carrier using AuSn 80/20 Bond MMIC RF in and RF out with 5mil Au ribbon Ribbon should be as short as possible Bond DC Lines as shown with 1 mil bondwires

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 &C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 aC

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.