
SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

- Very Low Dropout Voltage, Less Than 0.6 V at 150 mA
- Very Low Quiescent Current
- TTL- and CMOS-Compatible Enable on TL751L Series
- 60-V Load-Dump Protection

- Reverse Transient Protection Down To –50 V
- Internal Thermal-Overload Protection
- Overvoltage Protection
- Internal Overcurrent-Limiting Circuitry
- Less Than 500-μA Disable (TL751L Series)

NC – No internal connection

description/ordering information

The TL750L and TL751L series of fixed-output voltage regulators offer 5-V, 8-V, 10-V, and 12-V options. The TL751L series also has an enable (ENABLE) input. When ENABLE is high, the regulator output is placed in the high-impedance state. This gives the designer complete control over power up, power down, or emergency shutdown.

The TL750L and TL751L series are low-dropout positive-voltage regulators specifically designed for battery-powered systems. These devices incorporate overvoltage and current-limiting protection circuitry, along with internal reverse-battery protection circuitry to protect the devices and the regulated system. The series is fully protected against 60-V load-dump and reverse-battery conditions. Extremely low quiescent current during full-load conditions makes these devices ideal for standby power systems.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

description/ordering information (continued)

Тј	V _O TYP AT 25°C	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Power Flex (KTE)	Reel of 2000	TL750L05CKTER	TL750L05C
			Tube of 75	TL750L05CD	50L05C
			Reel of 2500	TL750L05CDR	501050
	5 V	SOIC (D)	Tube of 75	TL751L05CD	51L05C
	5 V		Reel of 2500	TL751L05CDR	512050
		TO-92 (LP)	Bulk of 1000	TL750L05CLP	750L05C
		TO-226AA (LP)	Reel of 2000	TL750L05CLPR	7502050
		TO-220 (KC)	Tube of 50	TL750L05CKC	TL750L05C
	8 V	SOIC (D)	Tube of 75	TL750L08CD	50L08C
			Reel of 2500	TL750L08CDR	502080
		TO-92 (LP) TO-226AA (LP)	Bulk of 1000	TL750L08CLP	750L08C
0°C to 125°C	10 V	PDIP (P)	Tube of 50	TL751L10CP	TL751L10C
		SOIC (D)	Tube of 75	TL750L10CD	501.400
			Reel of 2500	TL750L10CDR	50L10C
			Tube of 75	TL751L10CD	51L10C
			Reel of 2500	TL751L10CDR	512100
		TO-92 (LP)	Bulk of 1000	TL750L10CLP	750L10C
		TO-226AA (LP)	Reel of 2000	TL750L10CLPR	7502100
			Tube of 75	TL750L12CD	50L12C
		SOIC (D)	Reel of 2500	TL750L12CDR	
	12 V		Tube of 75	TL751L12CD	51L12C
			Reel of 2500	TL751L12CDR	
		TO-92 (LP) TO-226AA (LP)	Bulk of 1000	TL750L12CLP	750L12C

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DEVICE COMPONENT COUNT				
Transistors	20			
JFETs	2			
Diodes	5			
Resistors	16			

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

absolute maximum ratings over operating junction temperature range (unless otherwise noted)[†]

Continuous input voltage	
Transient input voltage, T _A = 25°C (see Note 1)	
Continuous reverse input voltage	
Transient reverse input voltage, t ≤ 100 ms	–50 V
Operating virtual junction temperature, T _J	150°C
Lead temperature 1,6 mm (1/16 inch) for 10 seconds	260 mA
Storage temperature range, T _{stg}	. –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The transient input voltage rating applies to the waveform shown in Figure 1.

package thermal data (see Note 2)

PACKAGE	BOARD	θJC	θ JA
PDIP (P)	High K, JESD 51-7	57°C/W	85°C/W
POWER-FLEX (KTE)	High K, JESD 51-5	3°C/W	23°C/W
SOIC (D)	High K, JESD 51-7	39°C/W	97°C/W
TO-92 (LP)	High K, JESD 51-7	55°C/W	140°C/W
TO-220 (KC)	High K, JESD 51-5	3°C/W	19°C/W

NOTE 2: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

recommended operating conditions over recommended operating junction temperature range (unless otherwise noted)

				MIN	MAX	UNITS
			TL75xL05	6	26	
V.			TL75xL08	9	26	v
V _I Input voltage			TL75xL10	11	26	v
			TL75xL12	13	26	
VIH	VIH High-level ENABLE input voltage			2	15	V
· +		TJ = 25°C	TL751Lxx	-0.3	0.8	V
VIL+	V _{IL} ‡ Low-level ENABLE input voltage		TL751Lxx	-0.15	0.8	v
IO Output current range		TL75xLxx	0	150	mA	
TJ Operating virtual junction temperature		TL75xLxxC	0	125	°C	

[‡] The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for ENABLE voltage levels and temperature only.

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

electrical characteristics, V_I = 14 V, I_O = 10 mA, T_J = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]			TL750L05 TL751L05			
					TYP	MAX		
Output voltage	$V_{I} = 6 V \text{ to } 26 V,$	L 010 450 m A	$T_J = 25^{\circ}C$	4.80	5	5.2	V	
	$v_{1} = 0 v t0 20 v,$	$I_{O} = 0$ to 150 mA	$T_J = 0^{\circ}C$ to $125^{\circ}C$	4.75		5.25	v	
Input regulation voltage	V _I = 9 V to 16 V				5	10		
	$V_I = 6 V$ to 26 V				6	30	mV	
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz		60	65		dB	
Output regulation voltage	I _O = 5 mA to 150 mA				20	50	mV	
Drenoutvoltogo	IO = 10 mA	I _O = 10 mA				0.2		
Dropout voltage	IO = 150 mA					0.6	V	
Output noise voltage	f = 10 Hz to 100 kHz				500		μV	
Input bias current	IO = 150 mA				10	12	-	
	$V_{I} = 6 V \text{ to } 26 V,$	I _O = 10 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$		1	2		
	ENABLE > 2 V					0.5		

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			TL750L08 TL751L08			UNIT
					TYP	MAX	
Output voltage	$V_{\rm H} = 0.V_{\rm H}$ to 26 V	$h_{0} = 0$ to 150 mA	TJ = 25°C	7.68	8	8.32	V
	$V_{I} = 9 V \text{ to } 26 V,$ $I_{O} = 0 \text{ to } 150 \text{ mA}$	IO = 0.00150 IIIA	$T_J = 0^{\circ}C$ to $125^{\circ}C$	7.6		8.4	v
Input regulation voltage	$V_{I} = 10 V \text{ to } 17 V$				10	20	mV
	V _I = 9 V to 26 V				25	50	mv
Ripple rejection	V _I = 11 V to 21 V,	f = 120 Hz		60	65		dB
Output regulation voltage	I _O = 5 mA to 150 mA				40	80	mV
Dranaut voltage	I _O = 10 mA					0.2	V
Dropout voltage	I _O = 150 mA					0.6	v
Output noise voltage	f = 10 Hz to 100 kHz				500		μV
Input bias current	I _O = 150 mA				10	12	
	V _I = 9 V to 26 V,	l _O = 10 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$		1	2	mA
	ENABLE > 2 V					0.5	

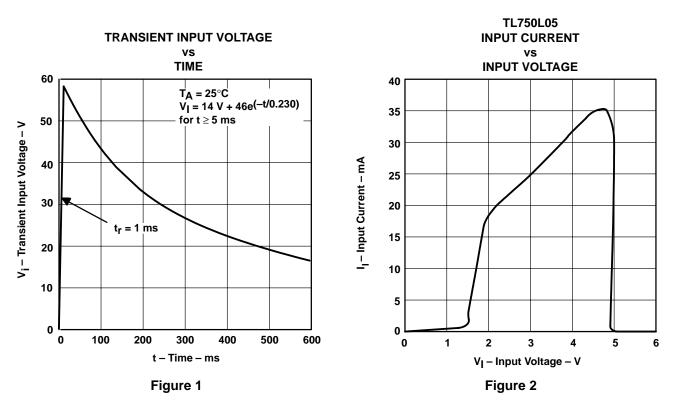
[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

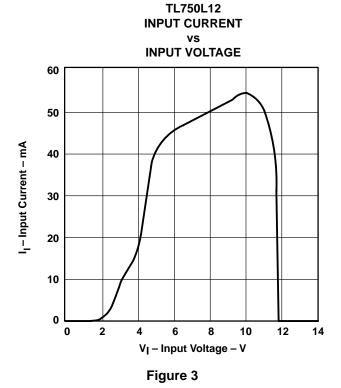
electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			TL750L10 TL751L10			UNIT	
				MIN	TYP	MAX		
Output voltage	V _I = 11 V to 26 V,	I _O = 0 to 150 mA	$T_J = 25^{\circ}C$	9.6	10	10.4	V	
	$v_{1} = 11 v 10 20 v,$	IO = 0.00150 IIIA	$T_J = 0^{\circ}C$ to $125^{\circ}C$	9.5		10.5	v	
Input regulation voltage	VI = 12 V to 19 V				10	25		
	VI = 11 V to 26 V				30	60	mV	
Ripple rejection	VI = 12 V to 22 V,	f = 120 Hz		60	65		dB	
Output regulation voltage	I _O = 5 mA to 150 mA				50	100	mV	
Dronout voltage	I _O = 10 mA					0.2	· v	
Dropout voltage	I _O = 150 mA					0.6	v	
Output noise voltage	f = 10 Hz to 100 kHz				700		μV	
Input bias current	I _O = 150 mA				10	12		
	V _I = 11 V to 26 V,	I _O = 10 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$		1	2	mA	
	ENABLE > 2 V					0.5		

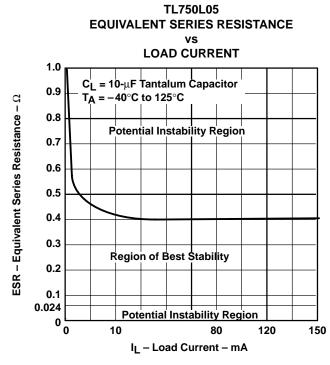
[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.


electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			TL750L12 TL751L12		
				TYP	MAX	
Output voltage	$V_1 = 13 V \text{ to } 26 V$. $I_0 = 0 \text{ to } 150 \text{ mA}$	TJ = 25°C	11.52	12	12.48	V
		$T_J = 0^{\circ}C$ to $125^{\circ}C$	11.4		12.6	v
Input regulation voltage	V _I = 14 V to 19 V			15	30	mV
Input regulation voltage	V _I = 13 V to 26 V			20	40	mv
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz			55		dB
Output regulation voltage	IO = 5 mA to 150 mA			50	120	mV
Drepout voltage	I _O = 10 mA				0.2	V
Dropout voltage	I _O = 150 mA				0.6	v
Output noise voltage	f = 10 Hz to 100 kHz			700		μV
	I _O = 150 mA			10	12	
Input bias current	$V_{I} = 13 V \text{ to } 26 V$, $I_{O} = 10 \text{ mA}$,	$T_J = 0^{\circ}C$ to $125^{\circ}C$		1	2	mA
	ENABLE > 2 V				0.5	

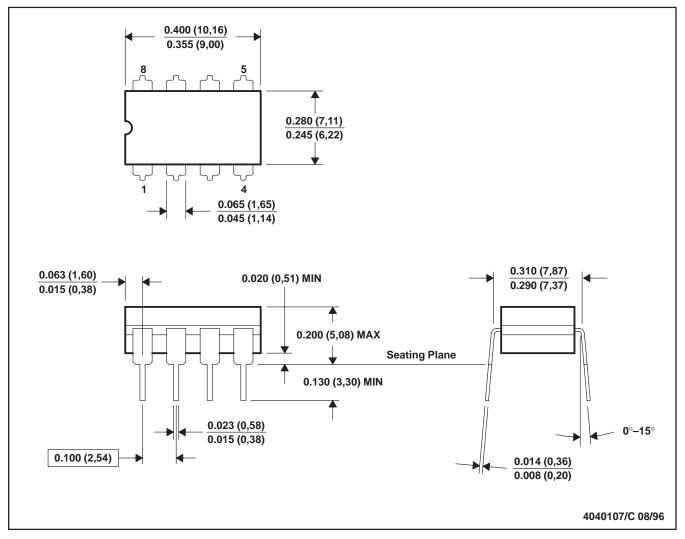

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003


TYPICAL CHARACTERISTICS

SLVS017Q - SEPTEMBER 1987 - REVISED MAY 2003

TYPICAL CHARACTERISTICS

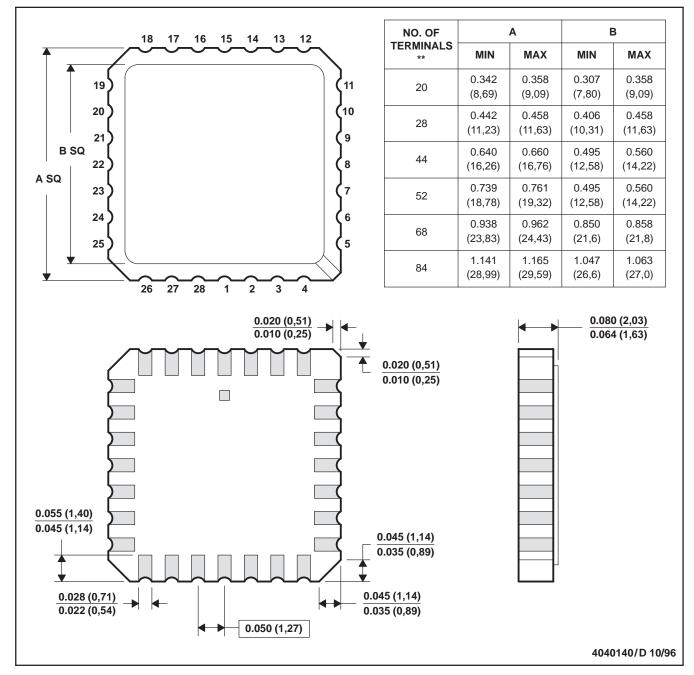


MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

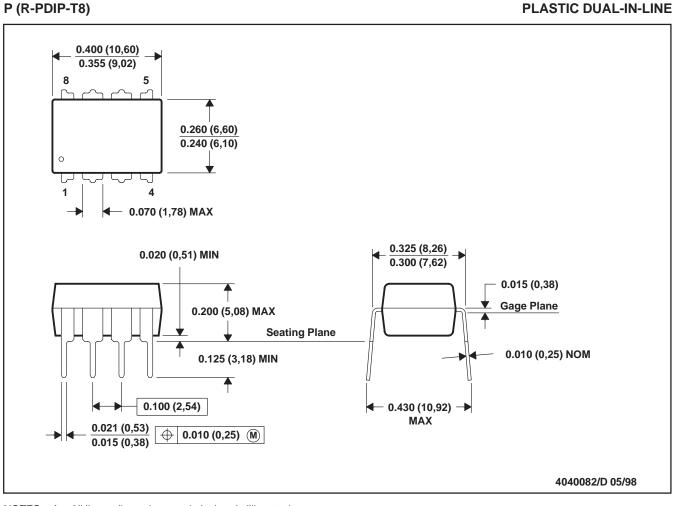
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8



MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

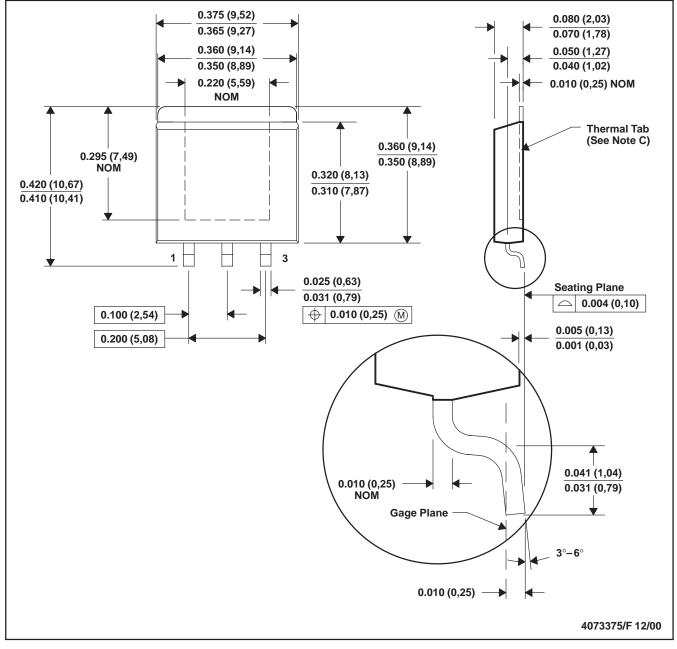
LEADLESS CERAMIC CHIP CARRIER


28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

MPDI001A - JANUARY 1995 - REVISED JUNE 1999

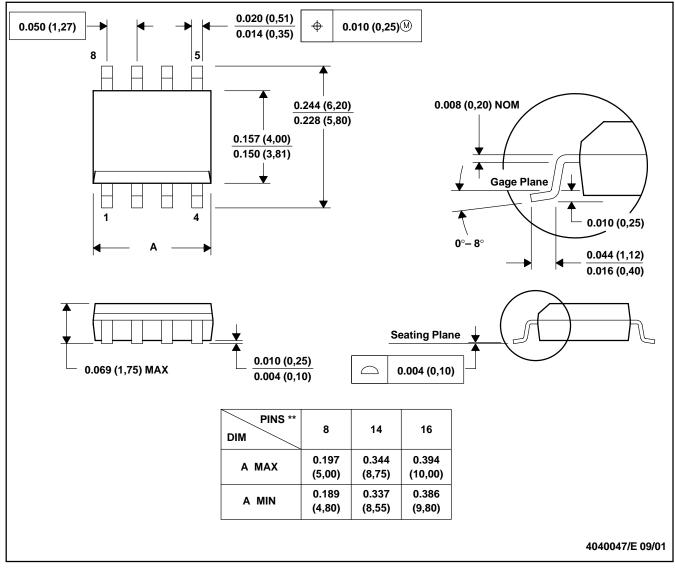

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

MPFM001E - OCTOBER 1994 - REVISED JANUARY 2001

PowerFLEX[™] PLASTIC FLANGE-MOUNT

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. The center lead is in electrical contact with the thermal tab.
 - D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
 - E. Falls within JEDEC MO-169


KTE (R-PSFM-G3)

PowerFLEX is a trademark of Texas Instruments.

MSOI002B - JANUARY 1995 - REVISED SEPTEMBER 2001

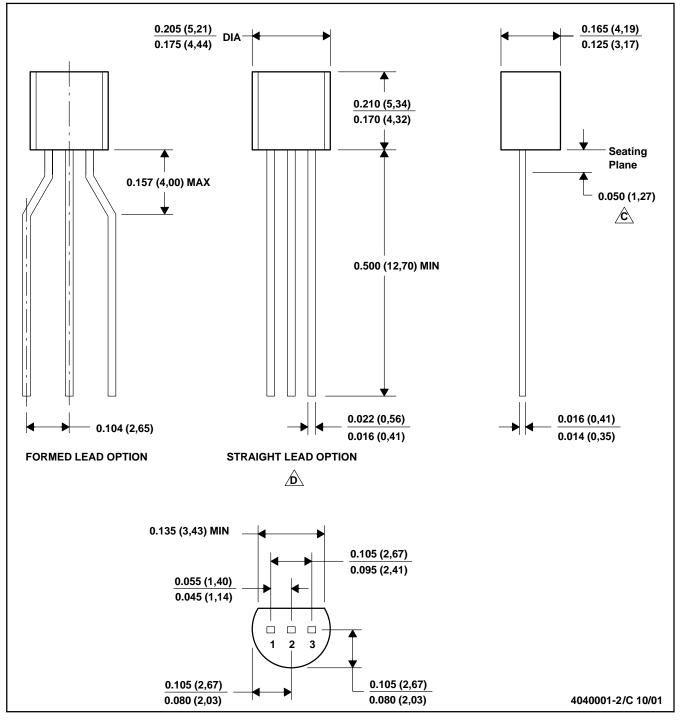
PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

MSOT002A - OCTOBER 1994 - REVISED NOVEMBER 2001

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

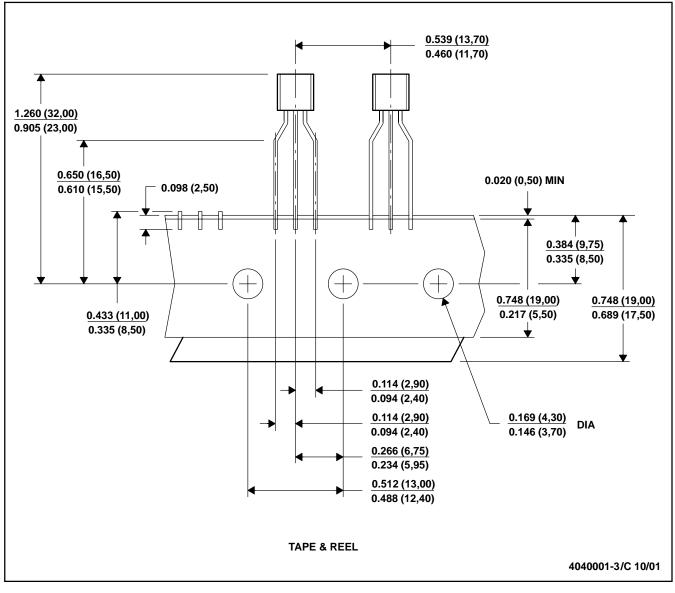
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

 \underline{c} Lead dimensions are not controlled within this area

D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:


Straight lead option available in bulk pack only.

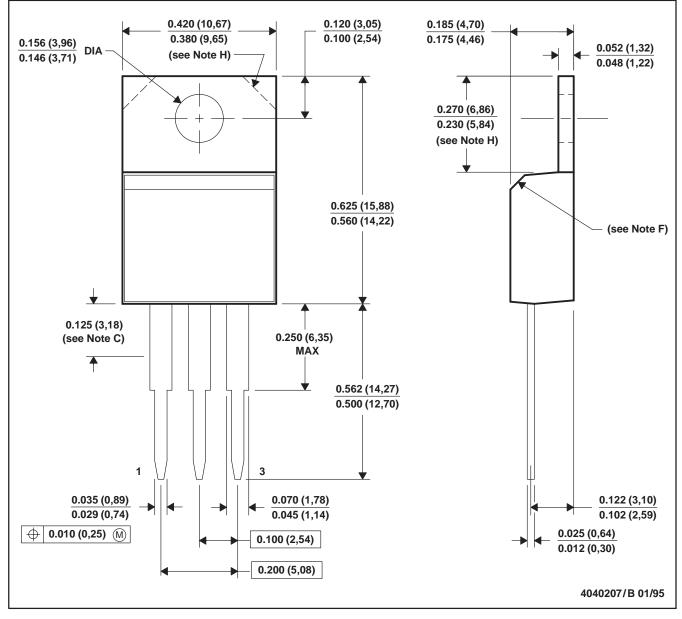
Formed lead option available in tape & reel or ammo pack.

MSOT002A - OCTOBER 1994 - REVISED NOVEMBER 2001

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

MSOT007A - JANUARY 1995 - REVISED SEPTEMBER 1995

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- F. The chamfer is optional.

KC (R-PSFM-T3)

- G. Falls within JEDEC TO-220AB
- H. Tab contour optional within these dimensions

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated