features

- Minimum Supply Voltage of 0.75 V
- Supply Voltage Supervision Range:
 - 1.2 V, 1.5 V, 1.8 V (TPS312x)
 - 3 V (TPS3125 Devices Only)
 - Other Versions on Request
- Power-On Reset Generator With Fixed Delay Time of 180 ms
- Manual Reset Input (TPS3123/5/6/8)
- Watchdog Timer Retriggers the RESET Output at V_{DD} ≥ V_{IT}
- Supply Current of 14 μA (Typ)
- SOT23-5 Package
- Temperature Range . . . −40°C to 85°C
- Reset Output Available in Active-Low (TSP3123/4/5), Active-High (TSP3124/5), and Open-Drain Active-Low (TPS3126/8)

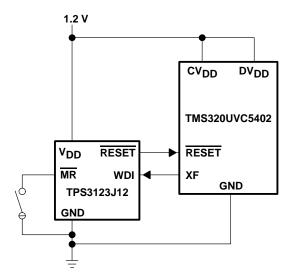
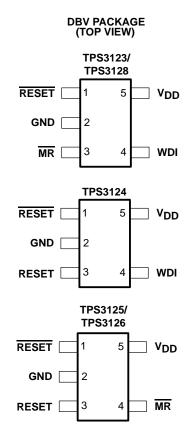



Figure 1. Typical Low-Voltage DSP Application

typical applications

- Applications Using Low Voltage DSPs, Microcontrollers, or Microprocessors
- Wireless Communication Systems
- Portable/Battery-Powered Equipment
- Programmable Controls
- Intelligent Instruments
- Industrial Equipment
- Notebook/Desktop Computers
- Automotive Systems

description

The TPS312x family of ultralow voltage processor supervisory circuits provides circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power-on, \overline{RESET} is asserted when the supply voltage (V_{DD}) becomes higher than 0.75 V. Thereafter, the supply voltage supervisor monitors V_{DD} and keeps \overline{RESET} output active as long as V_{DD} remains below the threshold voltage (V_{IT}). An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time, t_{dtvp} = 180 ms starts after V_{DD} has risen above the threshold voltage (V_{IT}).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

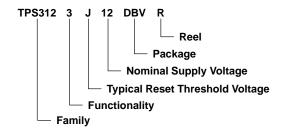
description (continued)

When the supply voltage drops below the threshold voltage (V_{IT}) , the output becomes active (low) again. No external components are required. All the devices of this family have a fixed-sense threshold voltage (VIT) set by an internal voltage divider.

The TPS3123/5/6/8 devices incorporate a manual reset input, MR. A low level at MR causes RESET to become active. The TPS3124 devices do not have the input MR, but include a high-level output RESET same as the TPS3125 and TPS3126 devices. In addition, the TPS3123/4/8 have a watchdog timer that needs to be triggered periodically by a positive or negative transition at WDI. When the supervising system fails to retrigger the watchdog circuit within the time-out interval $t_{tout} = 0.8 \text{ s}$, $\overline{\text{RESET}}$ output becomes active for the time period (t_d) . This event also reinitializes the watchdog timer.

The circuits are available in a 5-pin SOT23-5 package. The TPS312x devices are characterized for operation over a temperature range of -40°C to 85°C.

PACKAGE INFORMATION STANDARD VERSIONS


TA	DEVIC	E NAME	THRESHOLD VOLTAGE	MARKING
	TPS3123J12DBVR [†]	TPS3123J12DBVT [‡]	1.08 V	PBNI
	TPS3123G15DBVR [†]	TPS3123G15DBVT [‡]	1.40 V	PBOI
	TPS3123J18DBVR [†]	TPS3123J18DBVT‡	1.62 V	PBPI
	TPS3124J12DBVR [†]	TPS3124J12DBVT [‡]	1.08 V	PBQI
	TPS3124G15DBVR [†]	TPS3124G15DBVT [‡]	1.40 V	PBRI
	TPS3124J18DBVR [†]	TPS3124J18DBVT‡	1.62 V	PBSI
	TPS3125J12DBVR [†]	TPS3125J12DBVT [‡]	1.08 V	PBTI
-40°C to 85°C	TPS3125G15DBVR [†]	TPS3125G15DBVT [‡]	1.40 V	PBUI
-40 C to 65 C	TPS3125J18DBVR [†]	TPS3125J18DBVT [‡]	1.62 V	PBVI
	TPS3125L30DBVR†	TPS3125L30DBVT [‡]	2.64 V	PBXI
	TPS3126E12DBVR [†]	TPS3126E12DBVT [‡]	1.14 V	PFOI
	TPS3126E15DBVR†	TPS3126E15DBVT [‡]	1.43 V	PFPI
	TPS3126E18DBVR†	TPS3126E18DBVT‡	1.71 V	PFQI
	TPS3128E12DBVR [†]	TPS3128E12DBVT [‡]	1.14 V	PFRI
	TPS3128E15DBVR†	TPS3128E15DBVT‡	1.43 V	PFSI
	TPS3128E18DBVR†	TPS3128E18DBVT‡	1.71 V	PFTI

[†] The DBVR passive indicates tape and reel of 3000 parts.

[‡] The DBVT passive indicates tape and reel of 250 parts.

ordering information application specific versions (see Note)

DEVICE NAME	NOMINAL SUPPLY VOLTAGE, V _{NOM}
TPS312xx12DBV	1.2 V
TPS312xx15DBV	1.5 V
TPS312xx18DBV	1.8 V
TPS312xx30DBV	3.0 V

DEVICE NAME	TYPICAL RESET THRESHOLD VOLTAGE-V _{IT}
TPS312xAxxDBV	V _{NOM} -1%
TPS312xBxxDBV	V _{NOM} -2%
TPS312xCxxDBV	V _{NOM} -3%
TPS312xDxxDBV	V _{NOM} -4%
TPS312xExxDBV	V _{NOM} -5%
TPS312xFxxDBV	V _{NOM} -6%
TPS312xGxxDBV	V _{NOM} -7%
TPS312xHxxDBV	V _{NOM} -8%
TPS312xlxxDBV	V _{NOM} -9%
TPS312xJxxDBV	V _{NOM} -10%
TPS312xKxxDBV	V _{NOM} -11%
TPS312xLxxDBV	V _{NOM} -12%
TPS312xMxxDBV	V _{NOM} -13%
TPS312xNxxDBV	V _{NOM} -14%
TPS312xOxxDBV	V _{NOM} -15%

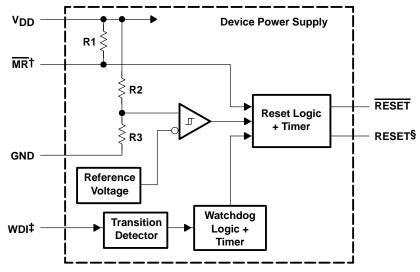
NOTE: For the application specific versions contact the local TI sales office for availability and lead time.

Function Tables

TPS3123/8

MR	VDD > V _{IT}	RESET
L	0	L
L	1	L
Н	0	L
Н	1	Н

T	D	2	24	2	

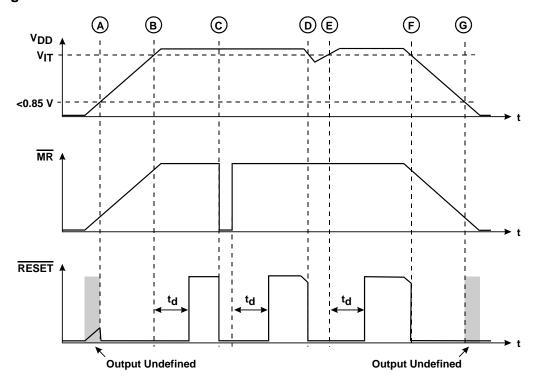

	11 00124						
VDD > V _{IT}	RESET	RESET					
0	L	Н					
1	Н	L					

TPS3125/6

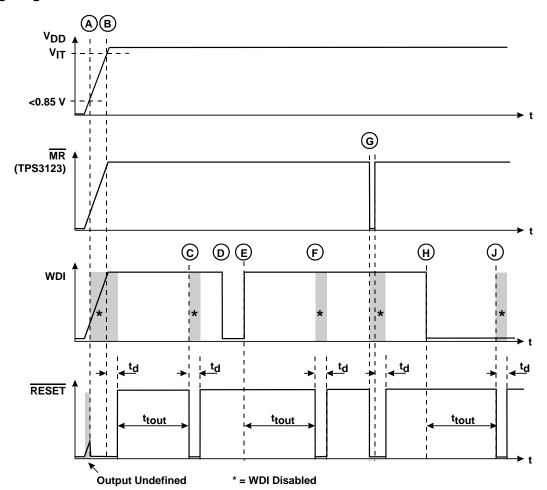
MR	VDD > V _{IT}	RESET	RESET
L	0	L	Н
L	1	L	Н
Н	0	L	Н
Н	1	Н	L

SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

functional block diagram



†TPS3123/5/6/8


‡TPS3123/4/8

§ TPS3124/5/6

timing diagram TPS3123/5/6/8

timing diagram TPS3123/4/8

SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	3.6 V
All other pins (see Note 1)	
Maximum low output current, I _{OL}	5 mA
Maximum high output current, IOH	−5 mA
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{DD})	±10 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±10 mA
Continuous total power dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Soldering temperature	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	437 mW	3.5 mW/°C	280 mW	227 mW

recommended operating conditions at specified temperature range

		MIN	MAX	UNIT
Supply voltage V	$T_A = 0^{\circ}C \text{ to } 85^{\circ}C$	0.75	3.3	V
Supply voltage, V _{DD}	$T_A = -40^{\circ}C$ to $85^{\circ}C$	0.85	3.3	V
Input voltage, V _I		0	V _{DD} +0.3	V
High-level input voltage, VIH		0.7×V _{DD}		V
Low-level input voltage, V _{IL}			0.3×V _{DD}	V
Input transition rise and fall rate at WDI, $\Delta t/\Delta V$			1	μs/V
Operating free-air temperature range, TA		-40	85	°C

SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

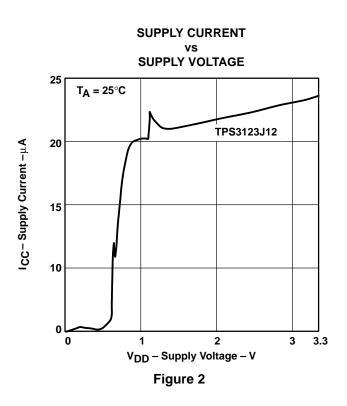
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

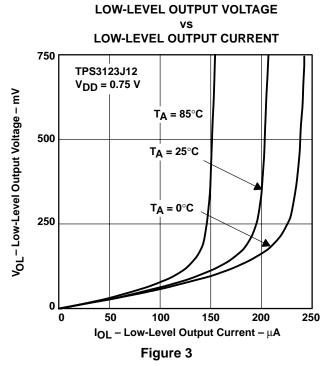
	PARAMETER		TEST CON	DITIONS	MIN	TYP	MAX	UNIT	
	MR pullup resistor (internal)					27		kΩ	
	High-level input current	WDI	$WDI = V_{DD} = 3.3 V$		-1		1	μΑ	
ΉΗ	nigh-leverinput current	MR	$\overline{MR} = 0.7 \times V_{DD}$	V _{DD} = 3.3 V	-20		-55	μΑ	
1	Low level input ourrent	WDI	WDI = 0 V,	V _{DD} = 3.3 V	-1		1	μΑ	
lı∟	Low-level input current	MR	$\overline{MR} = 0 \text{ V},$	V _{DD} = 3.3 V	-80		-170	μΑ	
ІОН	High-level output current	TPS3126-xx, TPS3128-xx	V _{DD} = V _{OH} = 3.3 V				200	nA	
		RESET	$V_{DD} = 1.5 V$,	$I_{OH} = -1 \text{ mA}$					
∨он	High-level output voltage	RESET	$V_{DD} = 3.3 \text{ V},$	$I_{OH} = -4.5 \text{ mA}$	0.8×V			V	
VOH	(TPS3123/4/5 only)	RESET	$V_{DD} = 0.75 V$,	I _{OH} = -8 μA	0.0×vDD			V	
		RESET	$V_{DD} = 1.5 V,$	$I_{OH} = -1 \text{ mA}$					
		RESET	$V_{DD} = 0.75 V$,	I _{OL} = 15 μA					
VOL	Low-level output voltage	RESET	$V_{DD} = 1.5 V$,	$I_{OL} = 1.4 \text{ mA}$			$0.2 \times V_{DD}$	V	
VOL	Low-level output voltage	RESET	$V_{DD} = 1.5 V$,	$I_{OL} = 1.4 \text{ mA}$				V	
		KESET	$V_{DD} = 3.3 V$,	$I_{OL} = 3 \text{ mA}$			0.4		
		TPS312xJ12			1.04	1.08	1.12		
		TPS312xG15		1.35	1.40	1.45			
		TPS312xJ18]		1.56	1.62	1.68		
VIT-	Negative-going input threshold voltage (see Note 2)	TPS312xL30	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$		2.57	2.64	2.71	V	
	old voltago (000 11010 2)	TPS312xE12			1.10	1.14	1.18		
		TPS312xE15			1.38	1.43	1.48		
		TPS312xE18			1.65	1.71	1.77		
			1 V < V _{IT} _ < 1.4 V			15			
V_{hys}	Hysteresis at V _{DD} input		1.4 V < V _{IT} - <2 V			20		mV	
			2 V < V _{IT} _ < 3 V			30			
			$\underline{WD}I = V_{DD},$	V _{DD} = 0.75 V		14			
 	Complex compant	TPS3128-xx	MR unconnected	$V_{DD} = 3.3 \text{ V}$		22	30	4	
IDD	Supply current	TPS3125-xx TPS3126-xx	MR unconnected	V _{DD} = 0.75 V		14		μΑ	
		(see Note 3)	t directificated	V _{DD} = 3.3 V		18	25		
Ci	Input capacitance at MR, WDI		$V_{I} = 0 V \text{ to } 3.3 V$			5		pF	

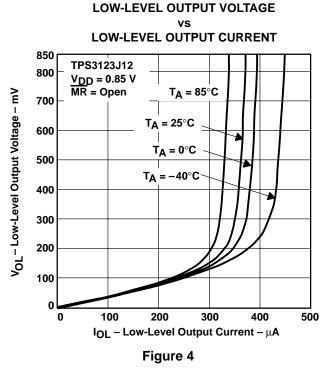
NOTES: 2. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminal.

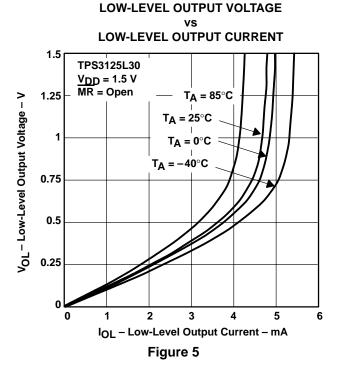
^{3.} The supply current during delay time t_d is typical 5 μ A higher.

SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

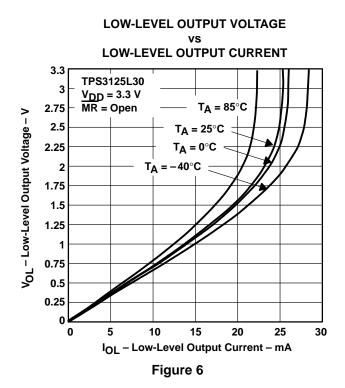

timing requirements at R $_L$ = 1 M $\Omega,\,C_L$ = 50 pF, T_A = 25 $^{\circ}C$

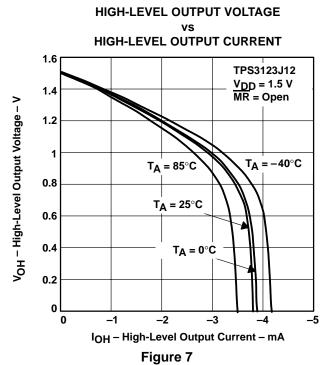

	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
		At V _{DD}	$V_{IH} = V_{IT-} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$		6			
t _W	Pulse width	At MR	V>V 102V V02xV	\/ 0.7 \\/	1			μs
		At WDI	$V_{DD} \ge V_{IT-} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD},$	$V_{IH} = 0.7 \times V_{DD}$	0.1			

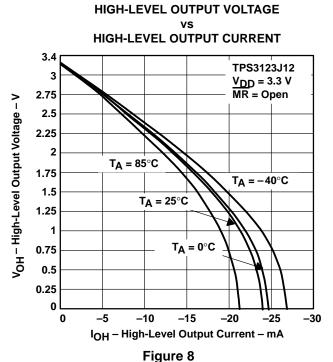

switching characteristics at R $_L$ = 1 M $\Omega,\,C_L$ = 50 pF, T_A = 25 $^{\circ}C$

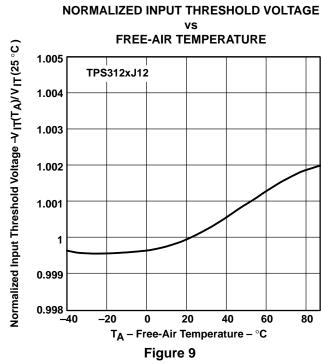

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{tout}	Watchdog time out		$V_{DD} \ge V_{IT-} + 0.2 \text{ V},$ See timing diagram	0.8	1.4	2.1	s	
t _d	Delay time		V _{DD} > V _{IT} + 0.2 V, See timing diagram	100	180	260	ms	
^t PHL	Propagation delay time, high-to-low-level output	MR to RESET delay (TPS3123/5/6/8)	$V_{DD} \ge V_{IT-} + 0.2 \text{ V},$ $V_{IL} = 0.2 \times V_{DD},$ $V_{IH} = 0.8 \times V_{DD}$			0.1	- μs	
^t PLH	Propagation delay time, low-to-high-level output	MR to RESET delay (TPS3125/6)				0.1		
^t PHL	Propagation delay time, high-to-low-level output	V _{DD} to RESET delay	V _{IL} = V _{IT} - 0.2 V, V _{IH} = V _{IT} + 0.2 V			10		
^t PLH	Propagation delay time, low-to-high-level output	V _{DD} to RESET delay (TPS3124/5/6)				10	μs	

TYPICAL CHARACTERISTICS

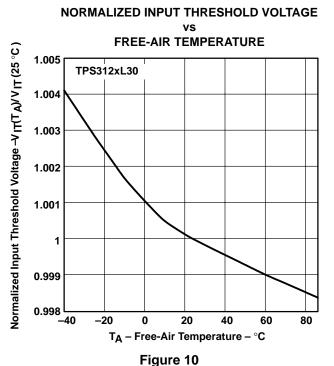








TYPICAL CHARACTERISTICS



MINIMUM PULSE DURATION

TYPICAL CHARACTERISTICS

THRESHOLD OVERDRIVE

4.5

4.5

Win = Open
VIT = 2.64 V
TA = 25°C

TPS312xL30

TPS312xL30

1.5

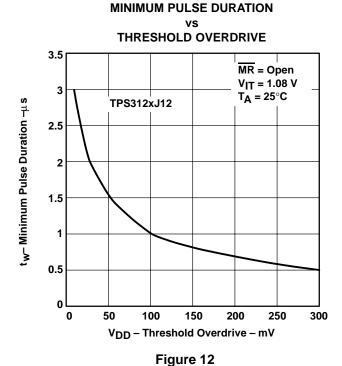
1

0.5

100

150

Figure 11

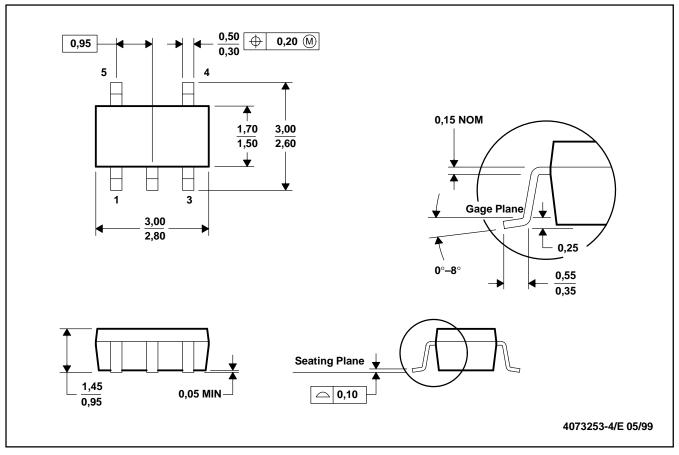

V_{DD} - Threshold Overdrive - mV

200

250

300

0



SLVS227A - AUGUST 1999 - REVISED DECEMBER 2000

MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265