- Single Supply 2.7-V to 5.5-V Operation - ±0.4 LSB Differential Nonlinearity (DNL), ±1.5 LSB Integral Nonlinearity (INL) - 12-Bit Parallel Interface - Compatible With TMS320 DSP - Internal Power On Reset - Settling Time 1 μs Typ - Low Power Consumption: - 8 mW for 5-V Supply - 4.3 mW for 3-V Supply - Reference Input Buffers - Voltage Output - Monotonic Over Temperature - Asynchronous Update ### description The TLV5619 is a 12-bit voltage output DAC with a microprocessor and TMS320 compatible parallel interface. The 12 data bits are double buffered so that the output can be updated asynchronously using the $\overline{\text{LDAC}}$ pin. During normal operation, the device dissipates 8 mW at a 5-V supply and 4.3 mW at a 3-V supply. The power consumption can be lowered to 50 nW by setting the DAC to power-down mode. The output voltage is buffered by a ×2 gain rail-to-rail amplifier, which features a Class A output stage to improve stability and reduce settling time. ### applications - Battery Powered Test Instruments - Digital Offset and Gain Adjustment - Battery Operated/Remote Industrial Controls - Machine and Motion Control Devices - Cordless and Wireless Telephones - Speech Synthesis - Communication Modulators - Arbitrary Waveform Generation # DW OR PW PACKAGE (TOP VIEW) ### **AVAILABLE OPTIONS** | | 7.17.12.12.2.2.01.110.110 | | | | | | | | | | |----------------|---------------------------|---------------|--|--|--|--|--|--|--|--| | | PACKAGE | | | | | | | | | | | TA | SMALL OUTLINE
(DW) | TSSOP
(PW) | | | | | | | | | | 0°C to 70°C | TLV5619CDW | TLV5619CPW | | | | | | | | | | -40°C to 85°C | TLV5619IDW | TLV5619IPW | | | | | | | | | | -40°C to 125°C | TLV5619QDW | _ | | | | | | | | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ### functional block diagram ### **Terminal Functions** | TERMINAL | | 1/0 | DESCRIPTION | | |--------------------|-------------------|-----|---|--| | NAME | NO. | 1/0 | DESCRIPTION | | | CS | 18 | Ι | Chip select | | | D0 (LSB)-D11 (MSB) | 19, 20,
1 – 10 | I | arallel data input | | | GND | 14 | | Ground | | | LDAC | 16 | Ι | Load DAC | | | OUT | 13 | 0 | Analog output | | | PD | 15 | I | When low, disables all buffer amplifier voltages to reduce supply current | | | REFIN | 12 | 1 | Voltage reference input | | | V_{DD} | 11 | | Positive power supply | | | WE | 17 | I | Write enable | | ### TLV5619 2.7 V TO 5.5 V 12-BIT PARALLEL DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN SLAS172D - DECEMBER 1997 - REVISED NOVEMBER 2000 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage (V _{DD} to GND) | | |---|---| | Analog input voltage range | $\dots -0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ | | Reference input voltage | V _{DD} + 0.3 V | | Digital input voltage range to GND | $\dots - 0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ | | Operating free-air temperature range, T _A : TLV5619C | 0°C to 70°C | | TLV5619I | –40°C to 85°C | | TLV5619Q | 40°C to 125°C | | Storage temperature range, T _{stq} | 65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | 260°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions | | | | MIN | NOM | MAX | UNIT | |--|------------|-----|-----|-------|----------------------|------| | Supply voltage, V _{DD} (5-V Supply) | | 4.5 | 5 | 5.5 | V | | | Supply voltage, V _{DD} (3-V Supply) | | | 2.7 | 3 | 3.3 | V | | High-level digital input voltage, VIH | V_{DD} | | 2 | | | V | | Low-level digital input voltage, V _{IL} | V_{DD} | | | | 0.8 | V | | Reference voltage, V _{ref} to REFIN terminal (5-V Supply) | | | 0 | 2.048 | V _{DD} -1.5 | V | | Reference voltage, V _{ref} to REFIN terminal (3 | -V Supply) | | 0 | 1.024 | V _{DD} -1.5 | V | | Load resistance, R _L | | | 2 | 10 | | kΩ | | Load capacitance, C _L | | | | | 100 | pF | | | TLV5619C | | 0 | | 70 | | | Operating free-air temperature, TA | TLV5619I | | -40 | | 85 | °C | | | TLV5619Q | | -40 | | 125 | | NOTES: 1. The recommended operating levels for both V_{IH} and V_{IL} apply to all valid values of V_{DD}. ^{2.} Reference input voltages greater than $V_{DD}/2$ will cause output saturation for large DAC codes. # 2.7 V TO 5.5 V 12-BIT PARALLEL DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN SLAS172D – DECEMBER 1997 – REVISED NOVEMBER 2000 electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) ### static DAC specifications | | PARAMETER | | TEST CONDITION | S | MIN | TYP | MAX | UNIT | |------|--|-------------|---|------------|-----|-------|------|-----------------| | | Resolution | | Vref(REFIN) = 2.048 V at 5 V,
1.024 V at 3 V | | 12 | | | bits | | | Integral nonlinearity (INL) | | Vref(REFIN) = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 3 | | ±1.5 | ±4 | LSB | | | Differential nonlinearity (DNL) | | V _{ref(REFIN)} = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 4 | | ± 0.4 | ± 1 | LSB | | EZS | Zero-scale error (offset error at | zero scale) | Vref(REFIN) = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 5 | | ±3 | ±20 | mV | | | Zero-scale-error temperature coefficient | | V _{ref} (REFIN) = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 6 | | 3 | | ppm/°C | | EG | Gain error | | V _{ref(REFIN)} = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 7 | | ±0.25 | ±0.5 | % of FS voltage | | | Gain error temperature coefficient | | Vref(REFIN) = 2.048 V at 5 V,
1.024 V at 3 V, | See Note 8 | | 1 | | ppm/°C | | PSRR | Power supply rejection ratio | Zero scale | See Notes 9 and 10 | | | 65 | | dB | | FORK | Power-supply rejection ratio | Gain | See Notes a and 10 | | | 65 | | uБ | - NOTES: 3. The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. - 4. The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. - 5. Zero-scale error is the deviation from zero voltage output when the digital input code is zero. - 6. Zero-scale-error temperature coefficient is given by: EZS TC = [EZS (T_{max}) EZS (T_{min})]/V_{ref} × 10⁶/(T_{max} T_{min}). - 7. Gain error is the deviation from the ideal output $(2 \times V_{ref} 1 LSB)$ with an output load of 10 k Ω excluding the effects of the zero-error. - 8. Gain temperature coefficient is given by: EG TC = [EG(T_{max}) EG (T_{min})]/V_{ref} \times 10⁶/(T_{max} T_{min}). - 9. Zero-scale-error rejection ratio (EZS-RR) is measured by varying the V_{DD} from 4.5 V to 5.5 V dc and measuring the proportion of this signal imposed on the zero-code output voltage. - 10. Gain-error rejection ratio (EG-RR) is measured by varying the V_{DD} from 4.5 V to 5.5 V dc and measuring the proportion of this signal imposed on the full-scale output voltage after subtracting the zero scale change. ### output specifications | | PARAMETER | TEST CONDITION | S | MIN | TYP | MAX | UNIT | |------------------------|-------------------------------------|-------------------------------|-----------------------|-----|-----|----------------------|-----------------| | VO | Voltage output range | $R_L = 10 \text{ k}\Omega$ | | 0 | | V _{DD} -0.4 | V | | | Output load regulation accuracy | VO(OUT) = 4.096 V,
2.048 V | R _L = 2 kΩ | | 0.1 | 0.29 | % of FS voltage | | loog() | Output short circuit source current | $V_{O(OUT)} = 0 V$ | 5-V Supply | | 100 | | mA | | IOSC(source) | Output short circuit source current | Full`scalé code | 3-V Supply | | 25 | 100 | IIIA | | lo(| Output source current | R _L = 100 Ω | 5-V Supply | | 10 | | mA | | ^I O(source) | | | 3-V Supply | | 10 | | 111/2 | ## TLV5619 2.7 V TO 5.5 V 12-BIT PARALLEL DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN SLAS172D - DECEMBER 1997 - REVISED NOVEMBER 2000 electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) ### reference input (REFIN) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-----------------------------|---|-----|-----|----------------------|------| | V _{ref} | Reference input voltage | See Note 11 | 0 | | V _{DD} -1.5 | V | | Ri | Reference input resistance | | | 10 | | МΩ | | Ci | Reference input capacitance | | | 5 | | pF | | | Reference feed through | REFIN = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 12) | | -60 | | dB | | | Reference input bandwidth | REFIN = 0.2 V _{pp} + 1.024 V dc at -3 dB | | 1.4 | | MHz | NOTES: 11. Reference input voltages greater than V_{DD}/2 will cause output saturation for large DAC codes. ### digital inputs (D0 - D11, CS, WE, LDAC, PD) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|----------------------------------|----------------------|-----|-----|-----|------| | Ι _{ΙΗ} | High-level digital input current | $V_I = V_{DD}$ | | | 1 | μΑ | | IIL | Low-level digital input current | V _I = 0 V | | | -1 | μΑ | | Ci | Input capacitance | | | 8 | | pF | ### power supply | | PARAMETER TEST CONDITIONS | | | MIN | TYP | MAX | UNIT | |-----|---------------------------|--|------------|-----|------|-----|------| | [| Dower cumply current | No load, All inputs 0 V or VDD | 5-V Supply | | 1.6 | 3 | m ^ | | IDD | Power supply current | No load, All inputs 0 V or V _{DD} | 3-V Supply | | 1.44 | 2.7 | mA | | | Power down supply current | | | | 0.01 | 10 | μΑ | ^{12.} Reference feedthrough is measured at the DAC output with an input code = 0x000 and a V_{ref(REFIN)} input = 1.024 V dc + 1 V_{pp} at 1 kHz. # TLV5619 2.7 V TO 5.5 V 12-BIT PARALLEL DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN SLAS172D - DECEMBER 1997 - REVISED NOVEMBER 2000 operating characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) ### analog output dynamic performance | | PARAMETER | TES | T CONDITIONS | | MIN | TYP | MAX | UNIT | |----------------|-----------------------------------|--|---|---------------|-----|-----|-----|------| | SR | Slew rate | $C_L = 100 \text{ pF},$
$R_L = 10 \text{ k}\Omega,$ | Vref(REFIN) = 2.048 V,
1.024 V, | 5-V
Supply | 8 | 12 | | V/μs | | SK | Siew fate | Code 32 to code 4095,
Code 4095 to code 32, | V _O from 10% to 90% 90% to 10% | 3-V
Supply | 6 | 9 | | V/µs | | t _S | Output settling time (full scale) | To ± 0.5 LSB,
R _L = 10 kΩ, | C _L = 100 pF,
See Note 13 | | | 1 | 3 | μs | | | Glitch energy | DIN = all 0s to all 1s | | | | 5 | | nV-s | | S/N | Signal to noise | f _S = 480 kSPS,
BW = 20 kHz,
C _L = 100 pF, | $f_{OUT} = 1 \text{ kHz},$ $R_L = 10 \text{ k}\Omega$ $T_A = 25^{\circ}\text{C}$, See Note 14 | 5-V
Supply | 65 | 78 | | | | S/(N+D) | Signal to noise + distortion | • | $f_{OUT} = 1 \text{ kHz},$ $R_1 = 10 \text{ k}\Omega,$ | 5-V
Supply | 58 | 67 | | | | 3/(14+15) | Signal to hoise + distortion | C _L = 100 pF, | $T_A = 25^{\circ}C$, See Note 14 | 3-V
Supply | 58 | 69 | | dB | | | Total harmonic distortion | $f_S = 480 \text{ kSPS},$ BW = 20 kHz, $C_L = 100 \text{ pF},$ | f_{OUT} = 1 kHz,
R _L = 10 kΩ,
T _A = 25°C, See Note 14 | | | -68 | -60 | | | | Spurious free dynamic range | $f_S = 480 \text{ kSPS},$ $BW = 20 \text{ kHz},$ $C_L = 100 \text{ pF},$ | $f_{OUT} = 1 \text{ kHz},$
$R_L = 10 \text{ k}\Omega,$
$T_A = 25^{\circ}\text{C}$, See Note 14 | | 60 | 72 | | | NOTES: 13. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x020 to 0x3DF or 0x3DF to 0x020. Limits are ensured by design and characterization, but are not production tested. ^{14. 1} kHz sinewave generated by DAC, reference voltage = 1.024 V at 3 V and 2.048 V at 5 V. # timing requirement # digital inputs | | | MIN | NOM | MAX | UNIT | |------------------------|--|-----|-----|-----|------| | t _{su(CS-WE)} | Setup time, CS low before positive WE edge | 13 | | | ns | | t _{su(D)} | Setup time, data ready before positive WE edge | 9 | | | ns | | th(D) | Hold time, data held after positive WE edge | 0 | | | ns | | t _{su(WE-LD)} | Setup time, positive WE edge before LDAC low | 0 | | | ns | | twh(WE) | Pulse width, WE high | 25 | | | ns | | t _{w(LD)} | Pulse width, LDAC low | 25 | | | ns | ### PARAMETER MEASUREMENT INFORMATION Figure 1. Timing Diagram ### TYPICAL CHARACTERISTICS # MAXIMUM OUTPUT VOLTAGE vs LOAD 5 VDD = 5 V, Vref = 2 V, Input Code = 4095 4 100 k 10 k 1 k 100 10 RL – Output Load – Ω Figure 2 # TOTAL HARMONIC DISTORTION vs ### **TYPICAL CHARACTERISTICS** # SIGNAL-TO-NOISE + DISTORTION Figure 6 Figure 7. Differential Nonlinearity ### TYPICAL CHARACTERISTICS Figure 8. Integral Nonlinearity ### **POWER DOWN SUPPLY CURRENT** Figure 9 ### **APPLICATION INFORMATION** ### definitions of specifications and terminology ### integral nonlinearity (INL) The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. ### differential nonlinearity (DNL) The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. ### zero-scale error (E_{ZS}) Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0. ### gain error (E_G) Gain error is the error in slope of the DAC transfer function. ### signal-to-noise ratio + distortion (S/N+D) S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels. ### spurious free dynamic range (SFDR) SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels. ### total harmonic distortion (THD) THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal and is expressed in decibels. # 2.7 V TO 5.5 V 12-BIT PARALLEL DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN SLAS172D - DECEMBER 1997 - REVISED NOVEMBER 2000 ### APPLICATION INFORMATION ### linearity, offset, and gain error using single end supplies When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset the output voltage may not change with the first code depending on the magnitude of the offset voltage. The output amplifier attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive below ground and clamps the output at 0 V. The output voltage remains at zero until the input code value produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 10. Figure 10. Effect of Negative Offset (Single Supply) This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive below the ground rail. For a DAC, linearity is measured between zero input code (all inputs 0) and full scale code (all inputs 1) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured between full scale code and the lowest code that produces a positive output voltage. ### general function The TLV5619 is a 12-bit, single supply DAC, based on a resistor string architecture. It consists of a parallel interface, a power down control logic, a resistor string, and a rail-to-rail output buffer. The output voltage (full scale determined by reference) is given by: 2 REF $$\frac{\text{CODE}}{0 \times 1000}$$ [V] Where REF is the reference voltage and CODE is the digital input value, range 0x000 to 0xFFF. A power on reset initially puts the internal latches to a defined state (all bits zero). ### APPLICATION INFORMATION ### parallel interface The device latches data on the positive edge of \overline{WE} . It must be enabled with \overline{CS} low. \overline{LDAC} low updates the DAC with the value in the holding latch. \overline{LDAC} is an asynchronous input and can be held low, if a separate update is not necessary. However, to control the DAC using the load feature, \overline{LDAC} can be driven low after the positive \overline{WE} edge. Figure 11. Proposed Interface Between TLV5619 and TMS320C2XX, 5X DSPs Figure 12. Proposed Interface Between TLV5619 and TMS320C3X DSPs ### APPLICATION INFORMATION ### TLV5619 interfaced to TMS320C203 DSP ### hardware interface Figure 13 shows an example of the connection between the TLV5619 and the TMS320C203 DSP. The only other device that is needed in addition to the DSP and the DAC is the 74AC138 address decoding circuit. Using this configuration, the DAC address is 0x0084 within the I/O memory space of the TMS320C203. LDAC is held low so that the output voltage is updated with the rising WE edge. The power down mode is deactivated permanently by pulling PD to VDD. Figure 13. TLV5619 to TMS320C203 DSP Interface Connection ### software No setup procedure is needed to access the TLV5619. The output voltage can be set using one command: out data addr, DAC addr Where data_addr points to the address location (in this example 0x0060) holding the new output voltage data and DAC addr is the I/O space address of the TLV5619 (in this example 0x0084). The following code shows, how to use the timer of the TMS320C203 as a time base to generate a voltage ramp with the TLV5619. A timer interrupt is generated every 205 µs. The corresponding interrupt service routine increments the output code (stored at 0x0060) for the DAC and writes the new code to the TLV5619. Only the 12 LSBs of the data in 0x0060 are used by the DAC, so that the resulting period of the saw waveform is: $\tau = 4096 \times 205 \text{ E-6 s} = 0.84 \text{ s}$ ### **APPLICATION INFORMATION** ### software listing ``` ; File: ramp.asm ; Description: This program generates a ramp. ;----- I/O and memory mapped regs ----- .include "regs.asm" TLV5619 .equ 0084h ;----- vectors ----- .ps 0h b start b INT1 INT23 b b TIM_ISR * Main Program ***************** .ps 1000h .entry start: ldp #0 ; set data page to 0 ; disable interrupts ; disable maskable interrupts setc INTM splk #Offffh, IFR splk #0004h, TMR ; set up the timer #0000h, 60h splk splk #0042h, 61h, PRD 60h, TIM out out #0c2fh, 6 splk 62h out ; enable interrupts clrc INTM ; enable maskable interrupts ; loop forever! next idle ; wait for interrupt b next ; all else fails stop here done ; hang there ****************** * Interrupt Service Routines ******************* TNT1: ; do nothing and return ret INT23: ; do nothing and return ret TIM_ISR: ; useful code #1h ; increment accumulator add sacl 60h, TLV5619 ; write to DAC 011t clrc intm; re-enable interrupts ret ; return from interrupt .end ``` ### **MECHANICAL DATA** ### DW (R-PDSO-G**) ### **16 PIN SHOWN** ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 ### **MECHANICAL DATA** ### PW (R-PDSO-G**) ### 14 PIN SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 ### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265